Биологическая роль витаминов, липидов, процессов брожения

Обзор классификации, свойств и биологической роли витаминов, анализ их основных природных источников и антагонистов. Изучение липидов, процесса брожения и его типов. Характеристика физико-химических свойств белков и уровней организации белковых молекул.

Рубрика Биология и естествознание
Вид шпаргалка
Язык русский
Дата добавления 16.05.2010
Размер файла 53,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Аффинная хроматография (хроматография по сродству). Основана аффинная хроматография на принципе избирательного взаимодействия белков (или других макромолекул) с закрепленными (иммобилизованными) на носителе специфическими веществами - лигандами, которыми могут быть субстраты или коферменты (когда выделяют какой-либо фермент) , антигены (или антитела) , гормоны или рецепторы и т. д.

Гель-хроматография. В препаративных целях, особенно при очистке белков от примесей, широко используют метод молекулярных сит, или гель-хроматографию.

Электрофорез. Метод свободного электрофореза, детально разработанный лауреатом Нобелевской премии А. Тизелиусом, основан на различии в скорости движения (подвижности) белков в электрическом поле, которая определяется величиной заряда белка при определенных значениях рН и ионной силы раствора.

Одним из наиболее распространенных методов фракционирования белков (как и методов оценки гомогенности) является диск-электрофорез (от англ. discontinuous - прерывистый, перемежающийся) в полиакриламидном геле, при котором используют пары буферных растворов с различными значениями рН и разной степени пористости гель.

Очистка белков от низкомолекулярных примесей

Применение в определенной последовательности ряда перечисленных методов позволяет получить белок в очищенном состоянии, не лишенный, однако, некоторых примесей солей. Для полного освобождения белков от низкомолекулярных примесей в настоящее время используют методы диализа, гельхроматографии, кристаллизации, ультрафильтрации.

При диализе применяют полупроницаемые мембраны (целлофан, коллодийная пленка) , диаметр пор которых варьирует в широких пределах. Белки, как правило, не диффундируют через такую мембрану, в то время как низкомолекулярные вещества легко проникают через нее в окружающую среду.

Метод кристаллизации белков основан на достижении критической точки начала осаждения белка из раствора сульфата аммония при медленном повышении температуры. Уже получены сотни кристаллических белков. Однако не всякий кристаллический белок является гомогенным, поскольку при одной и той же концентрации раствора сульфата аммония могут кристаллизоваться близкие по размерам и массе разные белки.

Наилучшие результаты при освобождении белков от низкомолекулярных примесей получают с помощью гельхроматографии и ультрафильтрации. Последняя основана на продавливании растворов белка через специальные мембраны, задерживающие белковые молекулы, что позволяет не только освободить белковые растворы от низкомолекулярных примесей, но и концентрировать их.

На заключительном этапе выделения и очистки белков исследователя всегда интересует вопрос о гомогенности полученного белка. Нельзя оценивать гомогенность индивидуального белка только по одному какому-либо физико-химическому показателю. Для этого пользуются разными критериями. Из огромного числа хроматографических, электрофоретических, химических, радио- и иммунохимических, биологических и гравитационных методов наиболее достоверные результаты при определении гомогенности белка дают ультрацентрифугирование в градиенте плотности сахарозы или других в-в.

Кинетика ферментативной реакции-т. е зависимость скорости реакции от ее условий, определяется в первую очередь свойствами катализатора.

Модель Михаэлиса-Ментена.

Исходит из того, что вначале субстрат А образует с ферментомЕ комплекс, который превращается в продукт В, намного быстрее, чем в отсутствии фермента.

Константа скорости каталитической реакции соответствует числу молекул субстрата, превратившихся в продукт одной молекулой фермента за 1 сек.

Активность фермента:

[ЕА]/[Е]t=[А]+Км[А],

где[Е]t-общая концентрация фермента

V=Ккат. [ЕА]

V=Ккат. *[Е]t*[А]/Км+[А], [М/с]

-уравнение Мехаэлиса-Ментена.

Уравнение содержит два параметра, которые не зависят от концентрации субстрата[А], но характеризуют свойства фермента.

1) Vмах. =Ккат. *[Е]t-

характеризует эффективность катализа

2) Км-константа Михаэлиса

Км=[А] при V=Vмах/2 Км=[Е]*[А]/ [ЕА],

характеризует сродство фермента к субстрату.

Высокое сродство к субстрату характеризуется низкой величиной Км и наоборот.

Все это осуществляется при определенных условиях (допущениях) :

-необратимое превращение ЕА в Е+В

-достижение равновесия м/д Е, А и ЕА

-отсутствие в растроре других форм фермента, кроме ЕА и Е

6. Механизмы окислительного и субстратного фосфорилирования

Примером субстратного фосфорелирования можно считать второй этап гликолиза. Фермент дегидрогиназа ФГА образует с 3-ФГА фермент-субстратный комплекс, с которым происходит окисление субстарта и передача электронов и протонов на НАД. В ходе окисления ФГА до ФГК в фермент-субстратном комплексе возникает высокоэнергетическая связь) т. е. связь с очень высокой свободной энергией гидролиза). Далее осуществляется фосфоролиз этой связи, в результате чего SН-фермент отщепляется от субстрата, а к остатку карбоксильной группы субстрата присоединяется неорганический фосфат, причем связь сохраняет значительный запас энергии, освободившийся в результате окисления 3-ФГА. Высокоэнергетическая фосфатная группа передается на АДР и образуется АТФ. Так каа в данном случае высокоэнергетическая ковалентная связь фосфата формируется прямо на окисляемом субстрате, такой процесс-субстратное фосфорелирование.

Процесс фосфорелирования АДР с образованием АТФ, сопряженный с переносом электронов по транспортной цепи митохондрий получил название окислительного. По поводу механизма окислительного фосфорелирования существует 3 теории:химическая, механохимическая и хемиосмотическая.

Согласно химической гипотезы в митохондриях имеются интермедиаторы белковой природы образующие комплексы с соответствующими восстановленными переносчиками. В результате окисления переносчика в комплексе возникает высокоэнергетическая связь. При распаде комплекса к интермедиатору с высокоэнергетической связью присоединяется неорганический фосфат, который затем передается на АДР.

Способность митохондриальных мембран к конформационным изменениям и связь этих изменений со степенью энергизаци митохондрий послужила основой для создания механохимических гипотез образования АТФ в ходе окислительного фосфорелирования. Согласно этим гипотезам энергия, высвобождающаяся в процессе переноса электронов непосредственно использующихся для перевода белков внутренней мембраны митохондрий в новое, богатое энергией конформационное состояние, приводящее к образованию АТФ. Таким образом, согласно механохимическим гипотезам, энергия окисления, превращается сначало в механическую энергию, а затем в энергию АТФ.

Хемиосмотическая теория сопряжения. Митчел высказал предположение, что поток электронов через систему молекул переносчиков сопровождается трансортом ионов Н через внутреннюю мембрану митохондрий. В результате на мембране создается электроно-химический потенциал ионов Н, включающий химический или осмотический градиент и электрохимический градиент. Согласно хемиосмотической теории электрохимический трансмембранный потенциал ионов Н и является источником энергии для синтеза АТФ за счет обращения транспорта ионов Н через протонный канал мембранной Н-АТФазы.

7. Способы разделения и очистки органических веществ

Для установления состава органического вещества прежде всего необходимо получить его в достаточно чистом состоянии. В зависимости от агрегатного состояния вещества (твердое, жидкое, газообразное) применяют различные методы очистки.

Твердые вещества могут быть освобождены от содержащихся в них примесей путем перекристаллизации. В этом случае стремятся найти растворитель, растворимость в котором очищаемого вещества значительно отличается от растворимости содержащихся в нем примесей. Если трудно растворимо очищаемое вещество, то оно выкристаллизовывается в чистом виде при охлаждении горячего насыщенного раствора, в то время как примеси остаются в маточном растворе. Если трудно растворимы примеси, то выкристаллизовываются они, а основное вещество остается в растворе. В ряде случаев вещество достаточной степени чистоты может быть получено только в результате многократной перекристаллизации, причем зачастую лучшие результаты получаются при чередовании различных растворителей. Иногда вещество содержит высокомолекулярные или коллоидные окрашенные примеси, которые не могут быть отделены обычной перекристаллизацией. Тогда вещество освобождают от примесей кипячением растворов с адсорбирующими агентами, например с активированным углем.

Для разделения смесей, в том числе твердых веществ, в последнее время широкое распространение получил метод хроматографии, основы которого были разработаны М. С. Цветом в 1903--1906 гг. Если метод разделения смесей путем кристаллизации основан на различной растворимости компонентов, то метод хроматографии основан на различной адсорбируемое из компонентов смеси каким-либо адсорбентом. Иногда это различие настолько велико, что, обработав раствор небольшим количеством адсорбента, можно полностью извлечь один компонент смеси, оставив другой в растворе. Однако в большинстве случаев различие адсорбируемости компонентов смеси недостаточно для их полного разделения при однократной обработке раствора адсорбентом. Хроматографические методы разделения смесей получили особенно широкое распространение в химии сложных природных соединений, так как многие из этих соединений не перегоняются без разложения и трудно кристаллизуются. Техника хроматографии быстро совершенствуется; это особенно относится к распределительной хроматографии, в частности к хроматографии на бумаге. Так, например, используя метод меченых атомов (радиохроматография на бумаге) , удается быстро разделять очень малые количества смесей.

Жидкие органические вещества чаще всего разделяют иочищают перегонкой. Каждое индивидуальное жидкое вещество кипит при температуре, при которой давление его паров достигает величины атмосферного давления. Для разделения смесей жидких веществ применяется дробная, или фракционированная, перегонка, основанная на том, что образующийся пар почти всегда имеет другой состав, чем жидкая смесь, а именно: содержание вещества с большим давлением пара обычно выше в парах, чем в исходной смеси, независимо от того, какой состав имела эта смесь. Охлаждая отходящие пары веществ, последовательно собирают отдельные фракции жидкостей, содержащие в разных количествах разделяемые индивидуальные вещества. Подвергая эти фракции повторным перегонкам, можно выделить из них достаточно чистые органические вещества. Успешнее это можно осуществить с помощью так называемых ректификационных колонок.

Разделение веществ перегонкой происходит тем легче, чем больше различаются парциальные давления паров разделяемых веществ. Однако в некоторых случаях, несмотря на значительную. разницу в точках кипения чистых веществ, их смеси нельзя разделить перегонкой. Причина этого явления заключается в том, что некоторые вещества образуют постоянно кипящие (азеотропные) смеси, состав паров которых не отличается от состава жидкой фазы, в подобных случаях чистое органическое вещество получают либо обходным путем, либо удаляют второй компонент постоянно кипящей смеси, применяя какие-либо другие (химические или физические) методы. Высококипящие жидкости или такие, которые при атмосферном давлении кипят с разложением, очищают перегонкой в вакууме, так как в вакууме температура кипения понижается. В настоящее время для очистки жидких веществ все шире и шире применяется метод хроматографии.

Очистка газообразных органических веществ производится главным образом путем вымораживания, фракционированного испарения смесей при низких температурах, а также при помощи целого ряда химических операций, позволяющих связать имеющиеся в газообразном веществе примеси. Большие успехи достигнуты в области разделения газов хроматографическим методом. Благодаря большей скорости диффузии газов по сравнению с жидкостями скорость пропускания разделяемого газа через колонку и размеры гранул адсорбента могут быть значительно увеличены. При хроматографическом разделении газов используется также сильная температурная зависимость адсорбции. Иногда весь процесс ведут при низкой температуре, иногда-- при высокой, а в ряде случаев выгодно вводить газовую смесь в охлажденную колонку, а затем вытеснять компоненты, постепенно повышая температуру. В последнее время все большее значение приобретает газо-жидкостная, или газовая, хроматография, отличающаяся тем, что в колонку вместо твердого адсорбента помещается пористый материал, пропитанный высококипящей жидкостью. Разделяемые вещества (газы или жидкости в испаренном виде) пропускают через такую колонку в токе инертного газа (N2, H2, Не). Пары разных веществ задерживаются жидкой фазой по-разному, а потому выходят из колонки через разные промежутки времени.

Самым простым критерием чистоты кристаллического вещества является точка его плавления, так как уже малейшие примеси вызывают ее понижение. Если очищают неизвестное вещество, то его очистку продолжают до тех пор, пока точка плавления не перестанет повышаться. При оценке чистоты жидкого вещества наиболее простым критерием является постоянство его точки кипения при постоянном давлении (при этом нельзя забывать, что постоянными температурами кипения обладают также и азеотропные смеси). Если вещество кристаллизуется при низкой температуре, то наиболее надежным критерием его чистоты является температура замерзания. Большое значение при оценке чистоты известных жидких органических веществ имеют плотность и показатель преломления. Для чистых веществ эти величины при одинаковых условиях определения всегда постоянны.


Подобные документы

  • Биологическая химия как наука, изучающая химическую природу веществ живых организмов. Понятие витаминов, коферментов и ферментов, гормонов. Источники жирорастворимых и водорастворимых витаминов. Понятие обмена веществ и энергии, обмена липидов и белков.

    курс лекций [442,2 K], добавлен 21.01.2011

  • Антиоксиданты и ингибиторы радикальных и окислительных процессов. Перекисное окисление липидов. Биологическое действие витаминов. Исследование биологической роли активированных кислородных метаболитов. Определение концентрации белка по методу Бредфорда.

    курсовая работа [525,8 K], добавлен 12.11.2013

  • Метаболизм липидов в организме, его закономерности и особенности. Общность промежуточных продуктов. Взаимосвязь между обменами углеводов, липидов и белков. Центральная роль ацетил-КоА во взаимосвязи процессов обмена. Расщепление углеводов, его этапы.

    контрольная работа [26,8 K], добавлен 10.06.2015

  • Строение и биологическая роль липидов (жиров). Роль витаминов для организма и причины гиповитаминозов. Биохимические сдвиги в крови и в моче при мышечной работе. Биохимические основы питания и особенности питания спортсменов-силовиков, атлетов и бегунов.

    реферат [38,2 K], добавлен 20.06.2012

  • Общая характеристика и основные этапы обмена липидов, особенности процесса переваривания. Порядок всасывания продуктов переваривания липидов. Исследование различных органов и систем в данном процессе: стенок и жировой ткани кишечника, легких и печени.

    презентация [4,5 M], добавлен 31.01.2014

  • Растительные и животные жиры как основные источники липидов для человека. Технологический процесс получения микробных липидов. Использование микробиологического способа производства липидов. Применение микробных липидов в пищевых производствах.

    реферат [137,7 K], добавлен 18.06.2013

  • Изучение значения обмена липидов в организме человека. Переваривание и всасывание липидов. Анализ роли желчных кислот. Гидролиз триглицеридов. Основные продукты расщепления жиров. Активация жирных кислот и их проникновение из цитоплазмы в митохондрии.

    презентация [11,9 M], добавлен 13.10.2013

  • Витамины как один из факторов питания человека. Биологическая роль витаминов. Номенклатура и классификация витаминов. Понятие рекомендуемой суточной нормы. Понятие гипо-, гипер- и авитаминоза. Характеристика жирорастворимых и водорастворимых витаминов.

    реферат [56,9 K], добавлен 27.05.2015

  • Анализ участия витаминов в обеспечении процессов жизнедеятельности организма. Изучение особенностей жирорастворимых и водорастворимых витаминов. Клинико-фармакологическая классификация. Содержание витаминов в продуктах. Описания причин гиповитаминоза.

    презентация [1,8 M], добавлен 21.10.2013

  • Понятие и строение биологической мембраны, принципы ее жизнедеятельности. Функциональные особенности липидов в ее деятельности и развитии, механизмы. Гипотеза возникновения плазматических мембран, оценка биологической роли и значения в них белков.

    реферат [18,8 K], добавлен 03.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.