Нормальная физиология

Принцип саморегуляции организма. Понятие о гомеостазе и гомеокинезе. Энергетика и биомеханика мышечного сокращения. Ультраструктура скелетного мышечного волокна. Особенности строения периферических синапсов. Классификация, строение и функции нейронов.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 14.06.2011
Размер файла 342,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Пищеварение в кишечнике. Роль поджелудочной железы в пищеварении

Пища, попавшая в двенадцатиперстную кишку, подвергается воздействию поджелудочного, кишечного соков и желчи. Поджелудочный сок вырабатывается экзокринными клетками поджелудочной железы. Это бесцветная жидкость щелочной реакции.pH=7,4-8,4. В течение суток выделяется 1,5-2,0 л сока. В состав сока входит 98,7% воды и 1,3% сухого остатка.

Сухой остаток содержит:

1. Минеральные вещества. Катионы натрия, калия, кальция, магния. Гидрокарбонат, фосфат, сульфат анионы, анионы хлора. Из минеральных веществ преобладает гидрокарбонат натрия. Его 1% из 1,3% сухого остатка. Он определяет щелочную реакцию сока. Благодаря ей кислый химус желудка приобретает нейтральную или даже слабощелочную реакцию. Это создает оптимальную среду для действия панкреатических и кишечных ферментов с pH=7-8.

2. Простые органические вещества. Мочевина, мочевая кислота, креатинин, глюкоза.

3. Ферменты. Они играют важнейшую роль в переваривании белков, жиров и углеводов и делятся на следующие группы:

a. Пептидазы. К ним относятся такие эндопептидазы, как трипсин, химотрипсин и эластаза. Они расщепляют внутренние связи белков с образованием поли- и олигопептидов. Экзопептидазами являются карбоксипептидазы А и В. Они отщепляют конечные аминокислотные цепи с образованием ди- и трипептидов и аминокислот. Все эти протеолитические ферменты выделяются железой в неактивной форме в виде трипсиногена, химотрипсиногена и прокарбоксипептидаз. При поступлении сока в двенадцатиперстную кишку, трипсиноген подвергается воздействию фермента энтерокиназы. От него отщепляется белок ингибитор, и трипсиноген переходит в активный трипсин. Этот первоначально образовавшийся трипсин в дальнейшем осуществляет активацию остального трипсиногена и других проферментов поджелудочного сока. Ингибитор трипсина образуется в тех же железистых клетках, что и трипсин. Это предупреждает воздействие пептидаз на клетки железы.

b. Липазы. Ими являются панкреатическая липаза и фосфолипаза А. Липаза расщепляет нейтральные жиры до жирных кислот и глицерина, а фосфолипаза фосфолипиды.

c. Карбогидразы. Это амилаза сока, которая расщепляет крахмал до мальтозы.

d. Нуклеазы. ДНК-аза и РНК-аза. Они гидролизуют нуклеиновые кислоты до нуклеотидов.

Механизмы выработки и регуляции секреции панкреатического сока

Проферменты и ферменты поджелудочной железы синтезируются рибосомами ацинарных клеток и сохраняются в них в виде гранул. В период пищеварения они выделяются в ацинарные протоки и разбавляются в них водой, содержащей электролиты. В протоках анионы хлора обмениваются на гидрокарбонат анионы. Поэтому гидрокарбонат натрия накапливается в соке. Этот процесс в клетках протоков происходит с участием карбоангидразы и активного транспорта.

Регуляция панкреатической секреции осуществляется рефлекторными и гуморальными механизмами. Но главными являются гуморальные. Выделяют три фазы поджелудочной секреции.

1. Сложно-рефлекторная фаза. Она запускает секрецию сока. Включает условно-рефлекторный и безусловно-рефлекторный периоды. Сокоотделение начинается через 2-3 минуты после начала приема пищи. Это связано с воздействием условно-рефлекторных факторов на рецепторы зрительной, слуховой и обонятельной сенсорных систем. При воздействии пищевых масс на механо-, термо- и вкусовые рецепторы полости рта и глотки включаются безусловно-рефлекторные механизмы. Нервные импульсы от рецепторов поступают с секреторный центр продолговатого мозга. От него по эфферентным волокнам вагуса они идут к ацинарным клеткам. Симпатические нервы тормозят секрецию.

2. Желудочная фаза. Начинается с момента поступления пищевого комка в желудок. Он также раздражает механо- и хеморецепторы желудка, импульсы от которых идут в центр секреции, затем по вагусу к поджелудочной железе. Наиболее сильными рефлекторными стимуляторами секреции панкреатического сока в эту фазу являются соляная кислота, продукты гидролиза жиров и углеводов. Возбуждает секрецию и вырабатывающийся в желудке гастрин.

3. Кишечная фаза. Развивается после поступления химуса в двенадцатиперстную кишку. Рефлекторные механизмы в этой фазе играют незначительную роль. Соляная кислота, содержащаяся в химуса, вызывает выделение S-клетками и слизистой двенадцатиперстной кишки гормона секретина (Долинский и Попельский, 1898 год, Бейлис и Старлинг, 1902 год). Секретин значительно усиливает поступление из эпителиальных клеток в протоки гидрокарбонат анионы. В результате выделяется большое количество сока богатого гидрокарбонатом натрия. Одновременно соляная кислота стимулирует образование ?-клетками кишки гормон холецистокинин-панкреозимина. Он вызывает высвобождение проферментов из гранул ацинарных клеток, а поэтому их выделение в сок. Кроме того панкреатическую секрецию в этой фазе усиливают вазоактивный интестинальный пептид (ВИП), серотонин, инсулин. Тормозящее влияние на выделение поджелудочного сока оказывают глюкагон, желудочный ингибирующий пептид и соматостатин.

В лаборатории И. П. Павлова было установлено, что наибольший объем сока выделяется на углеводы, т.е. белый хлеб, а меньше всего на жиры, т.е. жиры тормозят секрецию.

В эксперименте секреторную функцию поджелудочной железы исследуют путем наложения фистулы ее выводного протока. В клинике с помощью дуоденального зондирования тонким зондом. Для стимуляции сокоотделения через зонд вводят 0,5% раствор соляной кислоты или секретин. Затем определяют содержание ферментов в соке. Кроме того, функцию поджелудочной железы оценивают с помощью определения панкреатических ферментов в крови и моче.

Очень тяжелым заболеванием поджелудочной железы является острый панкреатит (алкогольное опьянение и т.д.). При нем наблюдается преждевременная активация трипсина, фосфолипазы А, эластазы. Возникает самопереваривание клеток железы. Поэтому применяют ингибитор протеолиза, например контрикал.

Функции печени. Роль печени в пищеварении

Из всех органов печень играет ведущую роль в обмене белков, жиров, углеводов, витаминов, гормонов и других веществ. Ее основные функции:

1. Антитоксическая. В ней обезвреживаются токсические продукты, образующиеся в толстом кишечнике в результате бактериального гниения белков - индол, скатол и фенол. Они, а также экзогенные токсические вещества (алкоголь), подвергаются биотрансформации (индол в индикан, который выводится с мочой).

2. Печень участвует в углеводном обмене. В ней синтезируется и накапливается гликоген, а также активно протекают процессы гликогенолиза и неолюкогенеза. Часть глюкозы используется для образования жирных кислот и гликопротеинов.

3. В печени происходит дезаминирование аминокислот, нуклеотидов и других азотсодержащих соединений. Образующийся при этом аммиак нейтрализуется путем синтеза мочевины.

4. Печень участвует в жировом обмене. Она преобразует короткоцепочечные жирные кислоты в высшие. Образующийся в ней холестерин используется для синтеза ряда гормонов.

5. Она синтезирует ежесуточно около 15 г альбуминов, ?1- и ?2-глобулины, ?2-глобулины плазмы.

6. Печень обеспечивает нормальное свертывание крови, ?2-глобулинами является протромбин. Ас-глобулин, конвертин, антитромбины. Кроме того, ею синтезируется фибриноген и гепарин.

7. В ней инактивируются такие гормоны, как адреналин, норадреналин, серотонин, андрогены и эстрогены.

8. Она является депо витаминов А, В, D, Е, К.

9. В ней депонируется кровь, а также происходит разрушение эритроцитов с образованием из гемоглобина билирубина.

10. Экскреторная. Ею выделяются в желудочно-кишечный тракт холестерин, билирубин, мочевина, соединения тяжелых металлов.

11. В печени образуется важнейший пищеварительный сок - желчь.

Желчь вырабатывается гепатоцитами путем активного и пассивного транспорта в них воды, холестерина, билирубина, катионов. В гепатоцитах из холестерина образуются первичные желчные кислоты - холевая и дезоксихолевая. Из билирубина и глюкуроновой кислоты синтезируются водорастворимые комплексы. Они поступают в желчные капилляры и протоки, где желчные кислоты соединяются с глицерином и таурином. В результате образуются гликохолевая и таурохолевая кислоты. Гидрокарбонат натрия образуется с помощью тех же механизмов, что и в поджелудочной железе.

Желчь вырабатывается печенью постоянно. В сутки ее образуется около 1 литра. Гепатоцитами выделяется первичная или печеночная желчь. Это жидкость золотисто-желтого цвета, щелочной реакции. Ее pH=7,4-8,6. Она состоит из 97,5% воды и 2,5% сухого остатка. В Сухом остатке содержатся:

1. Минеральные вещества. Катионы натрия, калия, кальция, гидрокарбонат, фосфат анионы, анионы хлора.

2. Желчные кислоты - таурохолевая и гликохолевая.

3. Желчные пигменты - билирубин и его окисленная форма биливердин. Билирубин придает желчи цвет.

4. Холестерин и жирные кислоты.

5. Мочевина, мочевая кислота, креатинин.

6. Муцин.

Поскольку вне пищеварения сфинктер Одди, расположенный в устье общего желчного протока, закрыт, выделяющаяся желчь накапливается в желчном пузыре. Здесь из нее реабсорбируется вода, а содержание основных органических компонентов и муцина возрастает в 5-10 раз. Поэтому пузырная желчь содержит 92% воды и 8% сухого остатка. Она более темная, густая и вязкая, чем печеночная. Благодаря этой концентрации пузырь может накапливать желчь в течение 12 часов. Во время пищеварения открывается сфинктер Одди и сфинктер Люткенса в шейке пузыря. Желчь выходит в двенадцатиперстную кишку.

Значение желчи:

1. Желчные кислоты эмульгируют часть жиров, превращая крупные жировые частицы в мелкодисперсные капли.

2. Она активирует ферменты кишечного и поджелудочного сока, особенно липазы.

3. В комплексе с желчными кислотами происходит всасывание длинноцепочечных жирных кислот и жирорастворимых витаминов через мембраны энтероцитов.

4. Желчь способствует ресинтезу триглицеридов в энтероцитах.

5. Инактивирует пепсины, а также нейтрализует кислый химус, поступающий их желудка. Этим обеспечивается переход от желудочного к кишечному пищеварению.

6. Стимулирует секрецию поджелудочного и кишечного соков, а также пролиферацию и слущивание энтероцитов.

7. Усиливает моторику кишечника.

8. Оказывает бактериостатическое действие на микроорганизмы кишечника и таким образом препятствует развитию гнилостных процессов в нем.

Регуляция желчеобразования и желчевыведения в основном осуществляется гуморальными механизмами, хотя некоторую роль играют и нервные. Самыми мощными стимуляторами желчеобразования в печени являются желчные кислоты, всасывающиеся в кровь из кишечника. Его также усиливает секретин, который способствует увеличению содержания в желчи гидрокарбоната натрия. Блуждающий нерв стимулирует выработку желчи, симпатические тормозят.

При поступлении химуса в двенадцатиперстную кишку начинается выделение 1-клетками ее слизистой холецистокинин-панкреозимина. Особенно этот процесс стимулируют жиры, яичный желток и сульфат магния. Холецистокинин-панкреозимин усиливает сокращения гладких мышц пузыря, желчных протоков, но расслабляет сфинктеры Люткенса и Одди. Желчь выбрасывается в кишку. Рефлекторные механизмы играют небольшую роль. Химус раздражает хеморецепторы тонкого кишечника. Импульсы от них поступают в пищеварительный центр продолговатого мозга. От него они по вагусу идут к желчевыводящим путям. Сфинктеры расслабляются, а гладкие мышцы пузыря сокращаются. Это способствует желчевыведению.

В эксперименте желчеобразование и желчевыведение исследуются в хронических опытах путем наложения фистулы общего желчного протока или пузыря. В клинике для исследования желчевыведения используют дуоденальное зондирование, рентгенографию с введением в кровь рентгеноконтрастного вещества билитраста, ультразвуковые методы. Белковообразовательную функцию печени, ее вклад в жировой, углеводный, пигментный обмены изучают путем исследования различных показателей крови. Например, определяют содержание общего белка протромбина, антитромбина, билирубина и ферментов.

Наиболее тяжелыми заболеваниями являются гепатиты и цирроз печени. Чаще всего гепатиты являются следствием инфекции (инфекционные гепатиты А, В,С) и воздействия токсических продуктов алкоголя. При гепатитах поражаются гепатоциты и нарушаются все функции печени. Цирроз это исход гепатитов. Самым частым нарушением желчевыведения является желчно-каменная болезнь. Основная масса желчных камней образована холестерином, так как желчь таких больных перенасыщена ими.

Значение тонкого кишечника. Состав и свойства кишечного сока

Кишечный сок является продуктом бруннеровых, либеркюнновых желез и энтероцитов тонкого кишечника. Железы вырабатывают жидкую часть сока, содержащею минеральные вещества и муцин. Ферменты сока выделяются распадающимися энтероцитами, которые образуют его плотную часть в виде мелких комочков. Сок это жидкость желтоватого цвета с рыбным запахом и щелочной реакцией. pH сока 7,6-8,6. Он содержит 98% воды и 2% сухого остатка. В состав сухого остатка входят:

1. Минеральные вещества. Катионы натрия, калия, кальция. Бикарбонат, фосфат анионы, анионы хлора.

2. Простые органические вещества. Мочевина, креатинин, мочевая кислота, глюкоза, аминокислоты.

3. Муцин.

4. Ферменты. В кишечном соке более 20 ферментов. 90% из них находятся в плотной части сока. Они делятся на следующие группы:

a) Пептидазы. Расщепляют олигопептиды (т.е. ди- и трипептиды) до аминокислот. Это аминополипептидаза, аминотрипептидаза, дипептидаза, трипептидаза, катепсины. К ним же относится энтерокиназа.

b) Карбогидразы. Амилаза гидролизует олигосахариды, образовавшиеся при расщеплении крахмала, до мальтозы и глюкозы. Сахараза расщепляет тростниковый сахар до глюкозы. Лактаза гидролизует молочный сахар, а мальтаза солодовый.

c) Липазы. Кишечные липазы играют незначительную роль в переваривании жиров.

d) Фосфатазы. Отщепляют фосфорную кислоту от фосфолипидов.

e) Нуклеазы. РНК-аза и ДНК-аза. Гидролизуют нуклеиновые кислоты до нуклеотидов.

Регуляция секреции жидкой части сока осуществляется нервными и гуморальными механизмами. Причем нервная регуляция преимущественно обеспечивается интрамуральными нервными сплетениями кишечника - мейснеровым и ауэрбаховым. При поступлении химуса в кишечник он раздражает его механорецепторы. Нервные импульсы от них идут к нейронам сплетений, а затем к кишечным железам. Выделяется большое количество сока богатого муцином. Ферментов в нем мало, так как на слущивание и распад энтероцитов нервные механизмы и гуморальные факторы не влияют. Усиливают выделение сока продукты переваривания белков и жиров, панкреатический сок, желудочный ингибирующий пептид, вазоактивный интестинальный пептид, мотилин. Тормозит соматостатин.

Полостное и пристеночное пищеварение

Пищеварение в тонком кишечнике осуществляется с помощью двух механизмов: полостного и пристеночного гидролиза. При полостном пищеварении ферменты действуют на субстраты, находящиеся в полости кишки, т.е. на расстоянии от энтероцитов. Они гидролизуют лишь крупномолекулярные вещества, поступившие из желудка. В процессе полостного пищеварения расщепляется всего 10-20% связей белков, жиров и углеводов. Гидролиз оставшихся связей обеспечивает пристеночное или мембранное пищеварение. Оно осуществляется ферментами, адсорбированными на мембранах энтероцитов. На мембране энтероцита имеется до 3000 микроворсинок. Они образуют щелочную кайму. На гликокаликсе каждой микроворсинки фиксируются молекулы ферментов поджелудочного и кишечного соков. Причем их активные группы направлены в просвет между микроворсинками. Благодаря этому поверхность слизистой кишки приобретает свойство пористого катализатора. Скорость гидролиза молекул пищевых веществ увеличивается в сотни раз. Кроме того, образующиеся конечные продукты гидролиза концентрируются у мембраны энтероцитов. Поэтому пищеварение сразу переходит к процессу всасывания, и образовавшиеся мономеры быстро переходят в кровь и лимфу, т.е. формируется пищеварительно-транспортный конвейер. Важной особенностью пристеночного пищеварения является и то, что оно протекает в стерильных условиях, т.к. бактерии и вирусы не могут попасть в просвет между микроворсинками. Механизм пристеночного пищеварения обнаружен ленинградским физиологом академиком А. М. Уголевым.

Функции тонкой кишки

Заключительное пищеварение происходит в толстом кишечнике. Его железистые клетки выделяют небольшое количество щелочного сока, с pH=8,0-9,0. Сок состоит из жидкой части и слизистых комочков. Жидкая часть включает 99% воды и 1% сухого остатка. В его состав входят:

1. Минеральные вещества - катионы натрия, калия, кальция; гидрокарбонат, фосфат, сульфат анионы, анионы хлора.

2. Простые органические вещества - продукты белкового обмена.

3. Ферменты. Пептидазы, липазы, карбогидразы, нуклеазы, фосфатазы. Они также являются продуктом энтероцитов. Однако их в 10 раз меньше, чем в тонком кишечнике. Значение этих ферментов в норме невелико, но при нарушении секреторной функции тонкого кишечника их выработка может значительно усиливаться.

4. Муцин. Образуется в железистых клетках.

Регуляция секреции жидкой части сока осуществляется интрамуральными нервными сплетениями и гуморальными факторами.

У новорожденных толстый кишечник стерилен. В течение первых месяцев жизни он заселяется непатогенной облигатной микрофлорой. 90% из них бифидобактерии, кишечная палочка, кокки.

Функции толстого кишечника

1. В нем происходит формирование каловых масс. В слепую кишку ежедневно поступает 300-500 мл химуса. За счет реабсорбции воды и электролитов он концентрируется. Каловые массы в основном состоят из клетчатки, а 30% составляют бактерии. Кроме того, они содержат минеральные вещества, продукты разложения желудочных пигментов, слизь.

2. Выделительная функция. Через толстый кишечник выводятся не переваренные остатки, в основном клетчатка. Кроме того, через него выделяются мочевина, мочевая кислота, креатинин. Если же поступают не переваренные жиры, то они выводятся с калом (стеаторрея).

3. Заключительное пищеварение. Оно происходит под действием ферментов, поступающих из тонкого кишечника, а также ферментов сока толстого. Но так как здесь химус беден пищевыми веществами, то этот процесс в норме не имеет большого значения. Особую роль играет кишечная микрофлора. Белки подвергаются гнилостному разложению и образуются токсины индол, фенол, скатол. Ею образуются и биологически активные вещества - гистамин, тирамин, а также водород, метан, сероводород. Микроорганизмы расщепляют 5-10% клетчатки до глюкозы. Они же обеспечивают сбраживание углеводов до молочной, уксусной кислоты и алкоголя.

4. Синтез витаминов. Микрофлора кишечника синтезирует витамины В6, К, Е.

5. Защитная функция. Облигатная микрофлора кишечника подавляет развитие патогенной. Выделяемые ею кислые продукты тормозят процессы гниения. Она же стимулирует неспецифический иммунитет организма.

Моторная функция тонкого и толстого кишечника

Сокращение кишечника обеспечивается гладкомышечными клетками, образующими продольный и циркулярный слои. Благодаря связям клеток между собой гладкие мышцы кишечника являются функциональным синцитием. Поэтому возбуждение быстро и на большие расстояния распространяется по нему. В тонком кишечнике наблюдаются следующие типы сокращений:

1. Непропульсивная перистальтика. Это волна сужения кишки, образующаяся за счет сокращения циркулярных мышц и распространяющаяся в каудальном направлении. Ей не предшествует волна расслаблений. Такие волны перистальтики движутся лишь на небольшое расстояние.

2. Пропульсивная перистальтика. Это также распространяющееся локальное сокращение циркулярного слоя гладких мышц. Ему предшествует волна расслабления. Такие перистальтические волны более сильные и могут захватывать весь тонкий кишечник.

Перистальтические волны формируются в начальном отделе двенадцатиперстной кишки, где расположены пейсмекерные гладкомышечные клетки. Они движутся со скоростью от 0,1 до 20 см/сек. За счет непропульсивной перистальтики обеспечивается продвижение химуса на небольшие расстояния. Пропульсивная перистальтика возникает к концу пищеварения и служит для перехода химуса в толстый кишечник.

3. Ритмическая сегментация. Это местные сокращения циркулярных мышц в результате которых на кишечнике образуются множественные перетяжки разделяющие его на небольшие сегменты. Место расположения перетяжек постоянно меняется. Благодаря этому происходит перемешивание химуса.

4. Маятникообразные сокращения. Этот вид наблюдается при попеременном сокращении и расслаблении продольного слоя мышц участка кишки. В результате отрезок кишки движется назад-вперед и происходит перемешивание химуса. Кроме того, наблюдаются движения макроворсин тонкого кишечника. В них проходят гладкомышечное волокно. Их движения улучшают контакт слизистой с химусом.

В толстом кишечнике продольный слой гладкомышечных клеток образует ленты на кишке. В нем возникают следующие виды сокращений:

1. Маятникообразные.

2. Ритмическая сегментация.

3. Пропульсивная перистальтика. Она возникает 2-3 раза в день и способствует быстрому переходу содержимого в сигмовидную и прямую кишку.

4. Волны гаустрации. Это вздутия (гаустры) кишки, возникающие вследствие локального сокращения и расслабления продольных и циркулярных мышц. Эта волна сокращения-расслабления медленно перемещается по кишке. Такой вид соответствует непропульсивной перистальтике и также служит для передвижения содержимого.

Регуляция моторики кишечника осуществляется миогенными, нервными и гуморальными механизмами. Миогенные заключаются в способности гладкомышечных клеток, в особенности пейсмекеров, к автоматии. В них возникают спонтанные медленные колебания мембранного потенциала - медленные волны. На вершинах этих волн деполяризации генерируются пачки потенциалов действия, сопровождающихся ритмическими сокращениями. Медленные волны с потенциалом действия распространяются по продольному слою гладких мышц каудально. Это главный механизм перистальтики. Кроме того гладкомышечные клетки возбуждаются при растяжении. Поэтому возрастает частота и амплитуда медленных волн. Чем дальше от желудка тем ниже частота спонтанной активности пейсмекеров. Важную роль в регуляции моторики играют интрамуральные нервные сплетения. При растяжении стенки кишки возбуждаются чувствительные нейроны подслизистого слоя. Импульсы от них идут к эфферентным нейронам межмышечного. От последних отходят возбуждающие холинергические окончания к гладкомышечным клеткам кишки. Роль экстрамуральных вегетативных нервов небольшая. Парасимпатические нервы стимулируют моторику, а симпатические тормозят. За счет интрамуральных сплетений и отчасти экстрамуральных нервов осуществляется ряд моторных рефлексов. Например желудочно-кишечный или кишечно-кишечный. В частности при раздражении дистального отдела кишки моторика проксимального тормозится.

Тормозят моторику адреналин и норадреналин, а стимулируют ацетилхолин, серотонин, гистамин, брадикинин. Движения ворсин активирует кишечный гормон вилликинин. Он образуется энтерохромаффинными клетками слизистой при воздействии соляной кислоты.

В эксперименте секреторная функция тонкого кишечника исследуется путем создания изолированного отрезка кишки по Тири-Велли или Тири-Павлову. В последнем случае сохраняется иннервация кишки. В клинике секреторную функцию изучают с помощью зондирования специальным трехканальным зондом. Им можно получить относительно чистый кишечный сок. В последующем определяют содержание ферментов. Используются также копрологическое исследование, фиброколоноскопию. Моторику изучают рентгеноскопически.

Механизм всасывания веществ в пищеварительном канале

Всасыванием называют процесс переноса конечных продуктов гидролиза из пищеварительного канала в межклеточную жидкость, лимфу и кровь. Главным образом оно происходит в тонком кишечнике. Его длина составляет около 3 м, а площадь поверхности около 200 м2. Большая величина поверхности обусловлена наличием круговых складок, макроворсин и микроворсинок. Всасывание осуществляется с помощью механизмов диффузии, осмоса и активного транспорта.

У новорожденных в первые дни жизни белки материнского молока, в частности иммуноглобулины, могут поступать в кровь. Это обеспечивает первичный пассивный иммунитет. У взрослого человека этого в норме не происходит. Аминокислоты и некоторые олигопептиды захватываются энтероцитами и переносятся через их мембрану с помощью активного противоградиентного транспорта. Он осуществляется четырьмя натрийзависимыми системами: нейтральных, основных, дикарбоновых аминокислот и иминокислот. Первоначально молекула аминокислоты связывается с белком-переносчиком. Затем этот белок соединяется с катионами натрия, которые переносят их в клетку. Сам белок вновь возвращается. Выведение поступающих в энтероциты ионов натрия обеспечивается нитрий-калиевым насосом мембраны. Таким же образом транспортируются олигопептиды. Моносахариды также переносятся посредством нетрийзависимого активного транспорта в соединении с переносчиком. Короткоцепочные жирные кислоты поступают в энтероциты, а затем в кровь путем диффузии. Длинноцепочечные и холестерин образуют мицеллы с желчными кислотами. Затем эти мицеллы захватываются мембранной энтероцитов, жирные кислоты отсоединяются и поступают внутрь клетки в соединении с переносчиками. В энтероцитах происходит ресинтез триглицеридов и фосфолипидов, а затем образование липопротеинов. Липопротеины поступают в лимфатические капилляры. Вода и минеральные вещества всасываются главным образом в верхних отделах тонкого кишечника путем осмоса и диффузии.

Пищевая мотивация

Потребление пищи организмом происходит в соответствии с интенсивностью пищевой потребности, которая определяется его энергетическими и пластическими затратами. Такая регуляция потребления пищи называется кратковременной. Долговременная возникает в результате длительного голодания или переедания, после которых объем потребляемой пищи или возрастает или снижается. Пищевая мотивация проявляется чувством голода. Это эмоционально окрашенное состояние отражающее пищевую потребность.

Субъективно чувство голода локализуется в желудке, так как движения пустого желудка вызывают раздражение его механорецепторов и поступление нервных импульсов в отделы пищевого центра. Его возникновению способствует и возбуждение хеморецепторов пустого кишечника. Однако главную роль играют глюкорецепторы желудка, кишечника, печени и продолговатого мозга. При снижении содержания глюкозы в крови они возбуждаются. Нервные импульсы от них поступают к центру голода гипоталамуса, а от него к лимбической системе и коре. Возникает чувство голода. При увеличении содержания глюкозы до определенного уровня развивается чувство насыщения, так как активируются нейроны центра насыщения гипоталамуса.

Центр голода находится в области латеральных ядер гипоталамуса, а центр насыщения в вентромедиальных. Эти центры находятся в реципрокных отношениях. В них имеются нейроны чувствительные к недостатку или избытку глюкозы, жирных кислот, аминокислот. Они совместно с периферическими рецепторами участвуют в формировании пищевой мотивации, реагируя на изменение состава спинномозговой жидкости. Координируется активность этих центров нейронами миндалевидного ядра. В частности оно определяет поведение на вкусную и невкусную пищу. Стадия насыщения возникающая при раздражении рецепторов полости рта, желудка, кишечника называется сенсорной. Возникновение этой стадии обусловлено возбуждением определенных зон фронтальной коры. Кора формирует психологические наклонности. К ним относятся обычный аппетит, склонность к определенным блюдам и т.д. При поступлении продуктов гидролиза пищевых веществ в кровь развивается метаболическая стадия насыщения.

В клинике встречаются нарушения пищевой мотивации. Например, у девушек в период полового созревания может наблюдаться нервная анорексия, т.е. отказ от еды. Иногда нервная анорексия приводит к голодной смерти. Она же часто является следствием так называемого лечебного голодания. Наблюдаются случаи непреодолимого отвращения к пище и голодная смерть. Часты случаи патологического переедания.

ФИЗИОЛОГИЯ ОБМЕНА ВЕЩЕСТВ И ЭНЕРГИИ

Обмен веществ в организме. Пластическая и энергетическая роль питательных веществ

Постоянный обмен веществ и энергии между организмом и окружающей средой является необходимым условием его существования и отражает их единство. Сущность этого обмена заключается в том, что поступающие в организм питательные вещества после пищеварительных превращений используются как пластический материал. Энергия, образующаяся при этих превращениях, восполняет энергозатраты организма. Синтез сложных специфических веществ организма из простых соединений, всасывающихся в кровь из пищеварительного канала, называется ассимиляцией или анаболизмом. Распад веществ организма до конечных продуктов, сопровождающийся выделением энергии называется диссимиляцией или катаболизмом. Два этих процесса неразрывно связаны. Ассимиляция обеспечивает аккумуляцию энергии, а энергия, выделяющаяся при диссимиляции необходима для синтеза веществ. Анаболизм и катаболизм объединены в единый процесс с помощью АТФ и НАДФ. С их помощью энергия, образующаяся в результате диссимиляции, передается для процессов ассимиляции.

Белки в основном являются пластическим материалом. Они входят в состав клеточных мембран, органелл. Белковые молекулы постоянно обновляются. Но это обновление происходит не только за счет белков пищи, но и посредством реутилизации собственных белков организма. Из 20 аминокислот, образующих белки 10 являются незаменимыми, т.е. не могут образовываться в организме. Конечными продуктами распада белков являются такие азотсодержащие соединения, как мочевина, мочевая кислота и креатинин. Состояние белкового обмена оценивается по азотистому балансу. Это соотношение количества азота поступающего с белками пищи и выделенного из организма с азотсодержащими продуктами обмена. В белке содержится около 16 г азота. Следовательно, выделение 1 г азота свидетельствует о распаде в организме 6,25 г белка. Если количество выделяемого азота равно количеству поглощенного организмом имеет место азотистое равновесие. Если поступающего азота больше, чем выделенного, это называется положительным азотистым балансом. В организме происходит задержка или ретенция азота. Положительный азотистый баланс наблюдается при росте организма, при выздоровлении после тяжелых заболеваний сопровождающихся похудением и после длительного голодания. Когда количество азота, выделяемого организмом больше, чем поступающего, имеет место отрицательный азотистый баланс. Его возникновение объясняется распадом собственных белков организма. Он возникает при голодании, отсутствии в пище незаменимых аминокислот, нарушениях переваривания и всасывания белка, тяжелых заболеваниях. Количество белка которое полностью обеспечивает потребности организма называется белковым оптимумом. Минимальное, обеспечивающее лишь сохранение азотистого баланса - белковым минимумом. Всемирная организация здравоохранения (ВОЗ) рекомендует потребление белка не менее 0,75 г на кг веса в сутки. Энергетическая роль белков относительно небольшая.

Жирами организма являются триглицериды, фосфолипиды и стерины. Основная их роль энергетическая. При окислении липидов выделяется наибольшее количество энергии, поэтому около половины энергозатрат организма обеспечивается липидами. Кроме того, они являются аккумулятором энергии в организме, потому что откладываются в жировых депо и используются по мере необходимости. Жировые депо составляют около 15% веса тела. Покрывая внутренние органы они также имеют определенную пластическую роль. Например, околопочечный жир способствует фиксации почек и предохраняет их от механических воздействий. Кроме того, фосфолипиды, холестерин и жирные кислоты входят в состав клеточных мембран и органелл. Липиды являются источником воды, потому что при окислении 100 г жира образуется около 100 г воды. Особую функцию выполняет бурый жир, располагающийся вдоль крупных сосудов. Содержащийся в его жировых клетках полипептид тормозит ресинтез АТФ за счет липидов. В результате резко усиливается теплопродукция. Большое значение имеют незаменимые жирные кислоты - линолевая, линоленовая и арахидоновая. Они не образуются в организме. Без них невозможен синтез фосфолипидов клеток, образование простагландинов и т.д. При их отсутствии задерживается рост и развитие организма.

Углеводы в основном играют энергетическую роль, т.к. служат основным источником энергии для клеток. Потребности нейронов покрываются исключительно глюкозой. Углеводы аккумулируются в виде гликогена в печени и мышцах. Углеводы имеют определенное пластическое значение. Глюкоза необходима для образования нуклеотидов и синтеза некоторых аминокислот.

Методы измерения энергетического баланса организма

Соотношение между количеством энергии, поступающей в организм с пищей, и энергией, выделенной организмом во внешнюю среду называется энергетическим балансом организма. Существует 2 метода определения выделяемой организмом энергии.

1. Прямая калориметрия. Принцип прямой калориметрии основан на том, что все виды энергии в конечном итоге переходят в тепловую. Поэтому при прямой калориметрии определяют количество тепла выделяемого организмом в окружающую среду за единицу времени. Для этого используют специальные камеры с хорошей теплоизоляцией и системой теплообменных труб, в которых циркулирует и нагревается вода.

2. Непрямая калориметрия. Она заключается в определении соотношения выделенного углекислого газа и поглощенного кислорода за единицу времени, т.е. полном газовом анализе. Это соотношение называется дыхательным коэффициентом.

Величина дыхательного коэффициента определяется тем, какое вещество окисляется в клетках организма. Например, в молекулах углеводов атомов кислорода много. Поэтому на их окисление кислорода идет меньше и их дыхательный коэффициент равен 1. В молекулах липидов кислорода значительно меньше, поэтому дыхательный коэффициент при их окислении 0,7. Дыхательный коэффициент белков 0,8. При смешенном питании его величина 0,85-0,9. Дыхательный коэффициент становится больше при тяжелой физической работе, ацидозе, гипервентиляции и преобразовании в организме углеводов в жиры. Меньше 0,7 он бывает при переходе жоров в углеводы. Исходя из дыхательного коэффициента, рассчитывается калорический эквивалент кислорода, т.е. количество энергии выделяемой организмом при потреблении 1 л кислорода. Его величина также зависит от характера окисляемых веществ. Для углеводов он составляет 5 ккал, белков 4,5 ккал, жиров 4,7 ккал. Непрямая калориметрия в клинике производится с помощью аппаратов «Метатест-2», «Спиролит».

Величина поступающей в организм энергии определяется количеством и энергетической ценностью пищевых веществ. Их энергетическую ценность определяют путем сжигания в бомбе Бертло в атмосфере чистого кислорода. Таким путем получают физический калорический коэффициент. Для белков он равен 5,8 ккал/г, углеводов 4,1 ккал/г, жиров 9,3 ккал/г. Для расчетов используют физиологический калорический коэффициент. Для углеводов и жиров он соответствует физическому, а для белков составляет 4,1 ккал/г. Его меньшая величина для белков объясняется тем, что в организме они расщепляются не до углекислого газа и воды, а до азотсодержащих продуктов.

Основной обмен

Количество энергии, которое затрачивается организмом на выполнение жизненно важных функций, называется основным обменом. Это затраты энергии на поддержание постоянства температуры тела, работу внутренних органов, нервной системы, желез. Основной обмен измеряется методами прямой и непрямой калориметрии при базисных условиях, т.е. лежа с расслабленными мышцами, при температуре комфорта, натощак. Согласно закону поверхности, сформулированному в XIX веке Рубнером и Рише, величина основного обмена прямопропорциональна площади поверхности тела. Это связано с тем, что наибольшее количество энергии тратится на поддержание постоянства температуры тела. Помимо этого на величину основного обмена влияют пол, возраст, условия окружающей среды, характер питания, состояние желез внутренней секреции, нервной системы. У мужчин основной обмен на 10% больше, чем у женщин. У детей его величина относительно веса тела больше, чем в зрелом возрасте, а у пожилых наоборот меньше. В холодном климате или зимой он возрастает, летом снижается. При гипертиреозе он значительно увеличивается, а при гипотиреозе снижается. В среднем величина основного обмена у мужчин 1700 ккал/сут., а у женщин - 1550.

Общий обмен энергии

Общий обмен энергии - это сумма основного обмена, рабочей правки и энергии специфически-динамического действия пищи. Рабочая правка - это энергетические затраты на физическую и умственную работу. По характеру производственной деятельности и энергозатратам выделяют следующие группы работающих:

1. Лица умственного труда (преподаватели, студенты, врачи и т.д.). Их энергозатраты 2200-3300 ккал/сут.

2. Работники занятые механизированным трудом (сборщики на конвейере). 2350-3500 ккал/сут.

3. Лица занятые частично механизированным трудом (шоферы). 2500-3700 ккал/сут.

4. Занятые тяжелым немеханизированным трудом (грузчики). 2900-4200 ккал/сут.

Специфически-динамическое действие пищи - это энергозатраты на усвоение питательных веществ. Наиболее выражено это действие у белков, меньше у жиров и углеводов. В частности белки повышают энергетический обмен на 30%, а жиры и углеводы на 15%.

Физические основы питания. Режимы питания.

В зависимости от возраста, пола, профессии потребление белков, жиров, углеводов должно составлять: у мужчин I-IV групп (1:1:4)

· Белков - 96-108 г.

· Жиров - 90-120 г.

· Углеводов - 382-552 г.

у женщин I-IV групп (1:1:4)

· Белков - 82-92 г.

· Жиров - 77-102 г.

· Углеводов - 303-444 г.

В прошлом веке Рубнер сформулировал закон изодинамии, согласно которому пищевые вещества могут взаимозаменяться по своей энергетической ценности. Однако он имеет относительное значение, так как белки, выполняющие пластическую роль, не могут синтезироваться из других веществ. Это же касается незаменимых жирных кислот. Поэтому требуется питание, сбалансированное по всем питательным веществам. Кроме того необходимо учитывать усвояемость пищи. Это соотношение всосавшихся и выделившихся с калом питательных веществ. Наиболее легко усваиваются животные продукты. Поэтому животный белок должен составлять не менее 50% суточного белкового рациона, а жиры не более 70% жирового.

Под режимом питания подразумевается кратность приема пищи и распределение ее калорийности на каждый прием. При трехразовом питании на завтрак должно приходится 30% калорийности суточного рациона, обед 50%, ужин 20%. При более физиологическом четырехразовом, на завтрак 30%, обед 40%, полдник 10%, ужин 20%. Интервал между завтраком и обедом не более 5 часов, а ужин должен быть не менее чем за 3 часа до сна. Часы приема пищи должны быть постоянными.

Обмен воды и минеральных веществ

Содержание воды в организме в среднем 73%. Водный баланс организма поддерживается путем равенства потребляемой и выделяемой воды. Суточная потребность в воде составляет 20-40 мл/кг веса. С жидкостями поступает около 1200 мл воды, пищей 900 мл и 300 мл образуется в процессе окисления питательных веществ. Минимальная потребность в воде составляет 1700 мл. При недостатке воды наступает дегидратация и если ее количество в организме снижается на 20%, наступает смерть. Избыток воды сопровождается водной интоксикацией с возбуждением центральной нервной системы и судорогами.

Натрий, калий, кальций, хлор необходимы для нормального функционирования всех клеток, в частности обеспечения механизмов формирования мембранного потенциала и потенциала действия. Суточная потребность в натрии и калии 2-3 г, кальции 0,8 г, хлоре 3-5 г. Большое количество кальция находится в костях. Кроме того он нужен для свертывания крови, регуляции клеточного метаболизма. Основная масса фосфора также сосредоточена в костях. Одновременно входит в состав фосфолипидов мембран, участвует в процессах метаболизма. Суточная потребность в нем 0,8 г. Большая часть железа содержится в гемоглобине и миоглобине. Оно обеспечивает связывание кислорода. Фтор входит в состав эмали зубов. Сера в состав белков и витаминов. Цинк является компонентом ряда ферментов. Кобальт и медь необходимы для эритропоэза. Потребность во всех этих микроэлементах от десятков до сотен мг в сутки.

Регуляция обмена веществ и энергии

Высшие нервные центры регуляции энергетического обмена и обмена веществ находятся в гипоталамусе. Они влияют на эти процессы через вегетативную нервную систему и гипоталамо-гипофизарную систему. Симпатический отдел высшей нервной системы стимулирует процессы диссимиляции, парасимпатический ассимиляцию. В нем же находятся центры регуляции вводно-солевого обмена. Но главная роль в регуляции этих базисных процессов принадлежит железам внутренней секреции. В частности инсулин и глюкагон регулируют углеводный и жировой обмены. Причем инсулин тормозит выход жира из депо. Глюкокортикоиды надпочечников стимулируют распад белков. Соматотропин наоборот усиливает синтез белка. Минералокортикоиды натрий-калиевый. Основная роль в регуляции энергетического обмена принадлежит тиреоидным гормонам. Они резко усиливают его. Они же главные регуляторы белкового обмена. Значительно повышает энергетический обмен и адреналин. Большое его количество выделяется при голодании.

ТЕРМОРЕГУЛЯЦИЯ

Физиологически сложились два типа регуляции температуры тела. У хладнокровных или пойкилотермных организмов интенсивность обмена веществ небольшая, поэтому низка теплопродукция. Они неспособны поддерживать постоянство температуры тела и она зависит от температуры окружающей среды. Вредные сдвиги температуры компенсируются изменением поведения - зимняя спячка. У теплокровных, т.е. гомойотермных животных интенсивность обменных процессов очень высока и имеются специальные механизмы терморегуляции. Поэтому они имеют независимый от окружающей температуры уровень активности. Изотермия обеспечивает высокую приспособляемость теплокровных. У человека суточные колебания температуры 36,5-36,9оС. Наиболее высока температура тела человека в 16 часов. Наименьшая в 4 часа. Его организм очень чувствителен к изменениям температуры тела. При ее снижении до 27-30оС наблюдаются тяжелые нарушения всех функций, а при 25о наступает холодовая смерть (имеются сообщения о сохранении жизнеспособности при 18оС). Для крыс летальной является температура 12оС (специальные методы 1оС). При повышении температуры тела до 40оС также возникают тяжелые нарушения. При 42оС может наступать тепловая смерть. Для человека зона температурного комфорта 18-20о. Существуют и гетеротермные живые существа, которые могут временно снижать температуру тела (животные впадающие в спячку).

Терморегуляция - это совокупность физиологических процессов теплообразования и теплоотдачи, обеспечивающих поддержание нормальной температуры тела. В основе терморегуляции лежит баланс этих процессов. Регуляция температуры тела посредством изменения интенсивности обмена веществ называется химической терморегуляцией. Термогенез усиливает непроизвольная мышечная активность в виде дрожи, произвольная моторная активность. Наиболее активно теплообразование идет в работающих мышцах. При тяжелой физической работе оно возрастает на 500%. Образование тепла усиливается при интенсификации обменных процессов, это называется не дрожательным термогенезом и обеспечивается за счет бурого жира. Его клетки содержат много митохондрий и специальные пептиды, стимулирующие распад липидов с выделением тепла, т.е. происходит разобщение процессов окисления и фосфорилирования.

Теплоотдача служит для выделения избытка образующегося тепла и называется физической терморегуляцией. Она осуществляется посредством теплоизлучения, посредством которого выделяется 60% тепла, конвекции (15%), теплопроводности (3%), испарения воды с поверхности тела и из легких (20%). Баланс процессов теплообразования и теплоотдачи обеспечивается нервными и гуморальными механизмами. При отклонении температуры тела от нормальной величины, возбуждаются терморецепторы кожи, сосудов, внутренних органов, верхних дыхательных путей. Этими рецепторами являются отростки сенсорных нейронов, а также тонкие волокна типа С. Холодовых рецепторов в коже больше, чем тепловых и они расположены более поверхностно. Нервные импульсы от этих нейронов по спиноталамическим трактам поступают в гипоталамус и кору больших полушарий. Формируется ощущение холода или тепла. В заднем гипоталамусе и препоптической области переднего находится центр терморегуляции. Нейроны заднего в основном обеспечивают химическую терморегуляцию, а переднего - физическую. В этом центре имеются три типа нейронов. Первым являются термочувствительные нейроны. Они расположены в препоптической области и реагируют на изменение температуры крови проходящей через мозг. Такие же нейроны имеются в спинном и продолговатом мозге. Вторая группа является интернейронами и получает информацию от температурных рецепторов и терморецепторных нейронов. Эти нейроны служит для поддержания установочной точки, т.е. определенной температуры тела. Одна часть таких нейронов получает информацию от холодовых, другая от тепловых периферических рецепторов и терморецепторных нейронов. Третий тип нейронов - эфферентные. Они находятся в заднем гипоталамусе и обеспечивают регуляцию механизмов теплообразования. Свои влияния на эфферентные механизмы, центр терморегуляции осуществляет через симпатическую и соматическую нервные системы, железы внутренней секреции. При повышении температуры тела возбуждаются тепловые рецепторы кожи, внутренних органов, сосудов и терморецепторные нейроны гипоталамуса. Импульсы от них поступают к интернейронам, а затем к эфферентным. Эфферентными являются нейроны симпатических центров гипоталамуса. В результате их возбуждения активируются симпатические нервы, которые расширяют сосуды кожи и стимулируют потоотделение. При возбуждении холодовых рецепторов наблюдается обратная картина. Частота нервных импульсов идущих к кожным сосудам и потовым железам уменьшается, сосуды суживаются, потоотделение тормозится. Одновременно расширяются сосуды внутренних органов. Если это не приводит к восстановлению температурного гомеостаза, включаются другие механизмы. Во-первых, симпатическая нервная система усиливает процессы катаболизма (распада), а следовательно теплопродукцию. Выделяющийся из окончаний симпатических нервов норадреналин стимулирует процессы липолиза. Особую роль в этом играет бурый жир. Это явление называется не дрожательным термогенезом. Во-вторых, от нейронов заднего гипоталамуса начинают идти нервные импульсы к двигательным центрам среднего и продолговатого мозга. Они возбуждаются и активируют ?-мотонейроны спинного мозга. Возникает непроизвольная мышечная активность в виде холодовой дрожи. Третий путь - это усиление произвольной двигательной активности. Большое значение имеет соответствующее изменение поведения, которое обеспечивается корой. Из гуморальных факторов наибольшее значение имеют адреналин, норадреналин и тиреоидные гормоны. Первые два гормона вызывают кратковременное повышение теплопродукции за счет усиления липолиза и гликолиза. При адаптации к длительному охлаждению усиливается синтез тироксина и трийодтиронина. Они значительно повышают энергетический обмен и теплопродукцию посредством увеличения количества ферментов в митохондриях.

Понижение температуры тела называется гипотермией, повышение - гипертермией. Гипотермия возникает при переохлаждении. Гипотермия организма или мозга используется в клинике для продления жизнеспособности организма или мозга человека при проведении реанимационных мероприятий. Гипертермия возникает при тепловом ударе, когда температура повышается до 40-41оС. Одним из нарушений механизмов терморегуляции является лихорадка. Она развивается в результате усиления теплообразования и снижения теплоотдачи. Теплоотдача падает из-за сужения периферических сосудов и уменьшения потоотделения. Теплообразование возрастает вследствие воздействия на центр терморегуляции гипоталамуса бактериального и лейкоцитарного пирогенов, являющихся липополисахаридами. Это воздействие сопровождается и лихорадочной дрожью. В период выздоровления нормальная температура восстанавливается за счет расширения сосудов кожи и проливного пота.

ФИЗИОЛОГИЯ ПРОЦЕССОВ ВЫДЕЛЕНИЯ

Выделение - часть обмена веществ, осуществляемая путем выведения из организма конечных и промежуточных продуктов метаболизма, чужеродных и излишних веществ для обеспечения оптимального состава внутренней среды и нормальной жизнедеятельности. Процессы выделения являются неотъемлемым признаком жизни, поэтому их нарушение неизбежно приводит к нарушениям гомеостазиса, обмена веществ и функций организма, вплоть до его гибели. Выделение неразрывно связано с обменом воды, поскольку основная часть предназначенных для выведения из организма веществ выделяется растворенными в воде. Основным органом выделения являются почки, образующие и выделяющие мочу и вместе с ней подлежащие удалению из организма вещества. Почки являются также основным органом обеспечения вводно-солевого обмена.

Органы и процессы выделения

Функция выделения веществ из внутренней среды организма осуществляется почками, желудочно-кишечным трактом, легкими, кожей и слизистыми оболочками, слюнными железами. Реализуемые ими процессы выделения находятся в координированной взаимосвязи и поэтому функционально эти органы могут быть объединены понятием «выделительная система организма». Между органами выделения существуют функциональные и регуляторные взаимосвязи, в результате чего сдвиг функционального состояния одного из органов выделения меняет активность другого в пределах единой выделительной системы. Так, например, при избыточном выведении жидкости через кожу путем потоотделения при высокой температуре - снижается объем мочеобразования, при уменьшении экскреции азотистых соединений с мочой - увеличивается их выведение через желудочно-кишечный тракт, легкие и кожу.


Подобные документы

  • Основные физиологические свойства мышц: возбудимость, проводимость и сократимость. Потенциал покоя и потенциал действия скелетного мышечного волокна. Механизм сокращения мышц, их работа, сила и утомление. Возбудимость и сокращение гладкой мышцы.

    курсовая работа [1,1 M], добавлен 24.06.2011

  • Виды мышечных волокон: скелетные, сердечные и гладкие. Функции скелетных и гладких мышц, изометрический и изотонический режимы их сокращения. Одиночное и суммированное сокращения, строение мышечного волокна. Функциональные особенности гладких мышц.

    контрольная работа [1,4 M], добавлен 12.09.2009

  • Проблемы объяснения механизмов йоги с точки зрения физиологии. Процессы сокращения и расслабления мышечного волокна. Энергетическая валюта организма - аденозинтрифосфорная кислота (АТФ). Взаимосвязь скелетной мускулатуры с центральной нервной системой.

    реферат [15,4 K], добавлен 14.11.2010

  • Преобразование химической энергии в механическую работу или силу как основная функции мышц, их механические свойства. Применение закона Гука в отношении малых напряжений и деформаций. Механизм мышечного сокращения. Ферментативные свойства актомиозина.

    презентация [3,0 M], добавлен 23.02.2013

  • Иерархический принцип управления функциями организма. Характеристика общего строения головного мозга человека. Особенности функций среднего мозга, его структура, роль в регуляции мышечного тонуса, осуществлении установочных и выпрямительных рефлексов.

    контрольная работа [16,8 K], добавлен 13.03.2009

  • Механизм преобразования химической энергии АТФ непосредственно в механическую энергию сокращения и движения. Типы мыщц, их химическое строение. Роль миоцита, цитоплазмы, миофибриллов, рибосомов, лизосомов. Гликоген как основной углевод мышечной ткани.

    реферат [255,1 K], добавлен 06.09.2009

  • Строение и типы мышц. Изменение макро- и микроструктуры, массы и силы мышц в разные возрастные периоды. Основные группы мышц, их функции. Механизм мышечного сокращения. Формирование двигательных навыков. Совершенствование координации движений с возрастом.

    реферат [15,6 K], добавлен 15.07.2011

  • Понятие и функциональные особенности в человеческом организме мозжечка как отдела головного мозга позвоночных, отвечающего за координацию движений, регуляцию равновесия и мышечного тонуса. Нейронная организация данного органа, афферентные волокна.

    презентация [790,8 K], добавлен 02.12.2014

  • В основу современных теорий кабельного проведения возбуждения положена гипотеза Германна о существовании круговых токов. Каждая возбудимая клетка ограничена плазматической мембраной, к которой примыкают окружающие клетку оболочки. Физиология синапсов.

    реферат [30,0 K], добавлен 19.11.2008

  • Изучение взаимодействия нейронов между собой и нервными клетками. Электрические процессы на постсинаптической мембране. Строение химических синапсов. Особенности формирования и распространения быстрых и медленных электрических потенциалов медиаторов.

    контрольная работа [374,5 K], добавлен 19.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.