Химия цвета

Строение молекул и цвет. Особенности твердого состояния неорганических красителей. Цвет металлов. Молекулы бесцветны, а вещество окрашено. Цвет полярных молекул. Среда воздействует на цвет. Колориметрия.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 22.08.2007
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Известно, что кристаллический иод практически не-растворим в воде. В 100-процентной H2SO4 образуется розовый раствор, а в 30-процентвом олеуме 0,5 М раствор иода имеет коричневый цвет, такой же, как и в этиловом спирте. Растворители меняют состояние молекул и ионов. В среде концентрированной серной кислоты существуют комплексы и ионы; розовый -- I3+, синий I+, коричне-вый I5+.

Основы структурной теории цветности органических молекул

Попытки связать цвет органического вещества с его структурой предпринимаются исключительно давно. При-мерно сто лет назад была выдвинута порвал теория, соединившая окраску с наличием в молекуле соединений опре-деленных групп атомов.

Особое значение для структуры окрашенного соедине-ния имеет цепочка атомов С, связанных друг с другом чередующимися двойными и одинарными связями:

-СН=СН-СН=СН- и т. д.

В таких цепочках проявляется эффект сопряжения. Происходит как бы выравнивание двойных и одинарных связей:

Перекрывание орбиталей, на которых находятся р-электроны, таково, что появляется возможность образования как бы дополнительной связи и между теми углеродными атомами, которые соединены одинарной связью; все атомы охватываются едиными молекулярными орбиталями. Элек-трон получает возможность передвигаться по всей моле-куле в целом.

С подобным эффектом сопряжения мы встречаемся при изучении свойств бензола, у которого невозможно разли-чить отдельные двойные и одинарные связи; да их в молекуле СбНб и нет -- все связи равноценные (рис. 12).

Однако образование таких делокализованных л-связей накладывает ограничение на строение молекулы: чтобы электронные орбитали могли перекрываться, атомы в мо-лекуле должны лежать хотя бы примерно в одной плос-кости.

Рис. 12. Электронное строение молекулы бензола: а -- у-связи; б -- р--связи.

Опытным путем еще до того, как были открыты зако-номерности электронного строения и его изменение при взаимодействии молекулы вещества с лучом света, удалось подметить наиболее важное по влиянии структурных фрагментов молоекул па цвет соединений. Так оказалось, что удлинение цепи сопряженных двойных связей приво-дит к переходу от бесцветного или слабоокрашенного к темным цветам:

Если вместо простых ароматических ядер (типа бен-зольных) появляются конденсированные (типа нафтали-на), то это вызывает углубление цвета,

Группы С = О, связанные друг с другом, вызывают более глубокий цвет соединения:

Более прочная и более тесная связь между атомами угле-рода, относящимися к отдельным частям молекулы, при-водит к более интенсивной и более глубокой окраске:

Кроме цепей сопряжения, ответственными за цвет являются и другие группы атомов, между которыми тоже имеются ненасыщенные связи. Такие группы, благодаря которым возникает возможность появления цвета у веще-ства, получили название хромофоры от греческих слов «хрома» -- цвет и «форео» -- несу, иначе говоря -- «несущие цвет». Вот примеры нескольких таких групп:

Вещества, содержащие хромофоры, называются хромо-генами. Сами по себе эти вещества еще не являются кра-сителями, потому что не отличаются ни яркостью, ни чистотой цвета. Объясняется это тем, что хотя и происходит в таких молекулах перераспределение электронов и их энергии, но не настолько, чтобы избирательно и в значи-тельном количестве поглощать кванты света только одной определенной длины волны. Такая возможность появля-ется лишь после того, как в молекулу соединения будут введены группы, отличающиеся либо резко выраженным сродством к электрону, либо способные свои электроны в значительной мере отдавать в общее пользование. Одним словом, такие группы, которые резко меняют состояние электронов в хромофорных группировках.

Группы, усиливающие окраску веществ, называются ауксохромы (от греческого слово «ауксо» -- увеличиваю). Существует два типа таких групп:

Только после введения ауксохромов цвет соединения становится чистым (начинается избирательное поглощение лучей определенной длины волны) и достаточно интенсив-ным (падающий свет легко сдвигает электроны в молеку-ле). Наибольший эффект достигается, когда в молекуле соединения присутствуют одновременно и электронодонорные и электронофильные группы атомов. Одни из них отдают, а другие соответственно притягивают электроны общей электронной системы молекулы.

Итак, из структурных особенностей органических мо-лекул для появления цвета у вещества имеют значение следующие: 1) цепочка из чередующихся одинарных и двойных связей (при этом в такой цепочке могут участво-вать и двойные связи не только между углеродными ато-мами) ; 2) наличие групп или атомов, сильно притягиваю-щих или, наоборот, легко отдающих свои электроны в об-щую электронную систему молекул; 3) атомы в молекуле должны лежать в одной плоскости (или весьма близко к этому состоянию).

Все это подчинено одной цели -- легкости воздействия квантов видимого света на электронную систему молекул и перевод ее в возбужденное состояние.

Колориметрия

Цветометрия (колориметрия), наука о методах измерения и количественного выражения цвета. Последний рассматривают как характеристику спектрального состава света (в т. ч. отраженного и пропускаемого несамосветящимися телами) с учетом зрительного восприятия. В соответствии с трехкомпонентной теорией зрения любой цвет можно представить как сумму трех составляющих, так называемых основных цветов. Выбор этих цветов определяет цветовую координатную систему, в которой любой цвет может быть изображен точкой (или цветовым вектором, направленным из начала координат в эту точку) с тремя координатами цвета - тремя числами. Последние соответствуют количествам основных цветов в данном цвете при стандартных условиях его наблюдения.

Фундаментальной характеристикой цвета, его качеством, является цветность, которая не зависит от абсолютной величины цветового вектора, а определяется его направлением в цветовой координатной системе. Поэтому цветность удобно характеризовать положением точки пересечения этого вектора с цветовой плоскостью, которая проходит через три точки на осях основных цветов с координатами цвета, равными 1.

Свойства цветового зрения учитываются по результатам экспериментов с большим числом наблюдателей с нормальным зрением (так называемым стандартным наблюдателем). В этих экспериментах зрительно уравнивают чистые спектральные цвета (то есть цвета, соответствующие монохроматическому свету с определенной длиной волны) со смесями трех основных цветов. Оба цвета наблюдают рядом на двух половинках так называемого фотометрического поля сравнения. В результате строят графики функций сложения цветов, или кривые сложения цветов, в координатах «соотношение основных цветов - длина волны спектрально чистого цвета».

Поскольку, согласно закону Г. Грассмана (1853), при данных условиях основные цвета производят в смеси одинаковый визуальный эффект независимо от их спектрального состава; по кривым сложения цветов можно определить координаты цвета сложного излучения. Для этого сначала цвет последнего представляют в виде суммы чистых спектральных цветов, а затем определяют количества основных цветов, требуемых для получения смеси, зрительно неотличимой от исследуемого цвета.

Фактически основой всех цветовых координатных систем является Международная колориметрическая система RGB (от англ. Red, Green, Blue - красный, зеленый, синий), в которой основными цветами являются красный (соответствующий из-лучению с длиной волны Х= 700 нм), зеленый (Х = 546,1 нм) и синий (Х = 435,8 нм). Измеряемый цвет С в этой системе может быть представлен уравнением: C = R + G + B, где R, G, и В - координаты цвета С. Однако большинство спектрально чис-тых цветов невозможно представить в виде смеси трех упо-мянутых основных цветов. В этих случаях некоторое количество одного (или двух) из основных цветов добавляют к спектраль-ному цвету и полученную смесь уравнивают со смесью двух оставшихся цветов (или с одним оставшимся цветом). В приведенном выше уравнении это учитывается переносом соответствующего члена из левой части в правую. Например, если был добавлен красный цвет, то C+R = G + B, или C= - R+G + B. Наличие отрицательных координат для некоторых цветов - существенный недостаток системы RGB.

Наиболее распространена международная система XYZ, в которой основные цвета X, Y и Z - нереальные цвета, выбранные так, что координаты цвета не принимают отрицательных значений, причем координата У равна яркости наблюдаемого окрашен-ного объекта.

Недостаток цветовой координатной системы XYZ - неравноконтрастность: в зависимости от области цветового пространства на одинаковые по величине участки приходится разное число (от 1 до 20) цветовых порогов, т.е. границ различения цветов. Это существенно затрудняет согласование измерений с визуальной оценкой.

Поэтому была предложена (1976) цветовая координатная система Lab, где L - яркость, или светлота, которая изменяется от 0 (абсолютно черное тело) до 100 (белое тело), координаты -а, +а, -b, +b определяют зеленый, красный, синий и желтый цвета соответственно.

Цветность представляет собой проекцию данного цвета на плоскость ab. Система Lab более однородна и дает лучшую корреляцию с визуальными определениями, т.к. ее параметры - L, цветность и координаты а и b - близки привычным субъективным характеристикам цвета: светлоте, насыщенности и цветовому тону соответственно.

Восприятие цвета существенно зависит от условий наблюдений. Поэтому в любой цветовой координатной системе при изменении условий изменяются координаты цвета. Это явление называется метамеризмом. Различают 4 основных вида метамеризма, связанные с изменением: 1) источника освещения; 2) наблюдателя; 3) размера измеряемого поля; 4) геометрии наблюдения (напр.. под каким углом смотрят на объект; вида освещения - диффузное или направленное).

Измерения цвета лежат в основе инструментальных методов оценки качества окраски различных материалов красителями, расчета смесевых рецептур крашения, оптимизации и автоматизации химико-технологических процессов крашения и производства красителей.

Список литературы.

1. Химическая энциклопедия в 5 томах. Том 5. Науч. Изд. «Большая российская энциклопедия» Москва, 1999

2. Г.Н. Фадеев «Химия и цвет», М. «Просвещение», 1977

3. Т. Джеймс «Теория фотографического процесса» пер. 4го амер. Изд. Под ред. А.Л. Картужанского, Л. «Химия» Ленингр. Отделение, 1980


Подобные документы

  • Правило октета, структуры Льюиса. Особенности геометрии молекул. Адиабатическое приближение, электронные состояния молекул. Анализ метода валентных связей, гибридизация. Метод молекулярных орбиталей. Характеристики химической связи: длина и энергия.

    лекция [705,2 K], добавлен 18.10.2013

  • Графическое представление молекул и их свойств - теория графов в химии. Методы расчета топологических индексов. Кодирование химической информации. Оценка реакционной способности молекул. Анализ связи между топологией молекулы и свойствами соединения.

    реферат [313,2 K], добавлен 09.12.2013

  • Возможности применения химической реакции в виде звуковых колебаний. Состав для покрытия автомобилей, который изменяет цвет в зависимости от скорости автомобиля. Метод упаковки-введения-распаковки молекулы ДНК без повреждения клеточной мембраны.

    контрольная работа [22,0 K], добавлен 27.12.2010

  • Спектроскопия молекул в инфракрасном диапазоне. Особенности исследования щелочно-галоидных кристаллов и молекул в матричной изоляции. Специфический характер взаимодействия заряженных молекул между собой и с окружающими их ионами кристалла; спектр газа.

    практическая работа [348,7 K], добавлен 10.01.2016

  • Современные представления о механизме активации простых молекул комплексами переходных металлов. Механизмы активации молекул различного типа кислотными катализаторами. Сущность активации. Реакционная способность. Расщепление субстрата на фрагменты.

    реферат [2,8 M], добавлен 26.01.2009

  • Особенности молекулярного, конвективного и турбулентного механизмов переноса молекул, массы и энергии. Расчет средней квадратичной скорости молекул и описание характера их движения, понятие масштаба турбулентности. Процедуры осреднения скорости молекул.

    реферат [4,6 M], добавлен 15.05.2011

  • Ранние теории ковалентной связи. Правило октета и структуры Льюиса. Характеристики химической связи, корреляция между ними. Концепции электроотрицательности. Модель отталкивания электронных пар валентных оболочек. Квантовые состояния молекулы как целого.

    лекция [1,9 M], добавлен 18.10.2013

  • Бионеметаллы и биометаллы, биолиганды. Биологическая роль неорганических соединений. Транспорт ионов металлов. Металлосодержащие ферменты. Ферментативный катализ окислительно-восстановительных реакций. Бионеорганическая химия и охрана окружающей среды.

    реферат [1,3 M], добавлен 12.11.2008

  • Геометрія молекул як напрям в просторі їх валентних зв'язків. Положення теорії направлених валентностей, що витікає з квантово-механічного методу валентних зв'язків. Залежність конфігурації молекул від числа зв'язаних та неподілених електронних пар.

    реферат [1,2 M], добавлен 19.12.2010

  • Строение атомов металлов. Положение металлов в периодической системе. Группы металлов. Физические свойства металлов. Химические свойства металлов. Коррозия металлов. Понятие о сплавах. Способы получения металлов.

    реферат [19,2 K], добавлен 05.12.2003

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.