Производство азотной кислоты

История развития промышленного производства азотной кислоты, особенности ее получения и сферы применения. Методика проведения расчета производительности, тепловых и конструктивных расчетов оборудования цеха по производству азотной кислоты из аммиака.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 09.05.2010
Размер файла 63,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Аварийные противогазы хранятся в аварийных шкафах.

2. Расчетная часть

Исходные данные для материального расчета:

Производительность цеха - 190000 т \ год по моногидрату

Производительность агрегата - 45000 т \год

Концентрация продукционной азотной кислоты (ОСТ 113-03-270-90):

Азотная кислота - 50%

Вода - 50%

Аммиак (ГОСТ 6221-90):

Содержание аммиака, % об. - не менее 99,6 %

Вода - 0,4 %

Степень окисления аммиака - 0,97 %

Степень абсорбции - 0,99 %

Степень использования оборудования - 0,965

Состав аммиачно-воздушной смеси (материальный баланс действующего производства), % (об.):

Аммиак - 11,1

Кислород - 17,9

Азот - 67,8

Вода - 3,2

2.1 Предварительный расчет

2.1.1 Рассчитываем часовую производительность

Пч = П \ 24 * 0,965 * 365 (1.1)

Где П - производительность цеха, т\год;

24 - часов в сутки;

0,965 - коэффициент использования оборудования;

365 - дней в году.

Пч = 190000 \ 24 * 0,965 * 365 = 22,475 т\час = 22475 кг\час

При средней производительности одного агрегата 45000 т\год моногидрата азотной кислоты, количество установок в проектируемом цехе составит:

N = Пч \ Пагр (1.2)

Где Пч - часовая производительность цеха, т\час;

Пагр - средняя произволительность одного агрегата, т\час;

N = 22,475 \ 5,130 = 4,38

Принимаем количество 5 агрегатов.

Для обеспечения заданной производительности нужно взять 5 установок, тогда по моногидрату на 1 установку составит:

П = Пч \ N (1.3)

П = 22,47 \ 5 = 4,5 т\час или 4500 \ 63 = 71,42 кмоль

Где 63 - молекулярная масса азотной кислоты.

2.2 Расчет материального баланса на 1 агрегат в час

Определяем теоретическое количество аммиака, необходимого для получения 4,5 т\час моногидрата азотной кислоты по реакции:

NH3 + 2O2 = HNO3 + H2O (1)

Так как на получение 1 моль моногидрата азотной кислоты расходуется 1 моль аммиака, то для получения 71,42 кмоль моногидрата соответственно необходимо 71,42 кмоль аммиака.

Расход аммиака с учетом степени окисления и абсорбции окислов азота составит:

С1NH3 = П \ 0,97 * 0,99 (2.1)

Где П - нагрузка по моногидрату на 1 агрегат, кмоль\час;

0,97 - степень окисления аммиака (дольные единицы);

0,99 - степень абсорбции (дольные единицы);

С1NH3 = 5,130 \ 0,97 * 0,99 = 5,342 кг или 5342,08 \ 17 = 314,23 кмоль

Определяем расход сухого воздуха при содержании аммиака в АВС 10,3 % об.

314,23 кмоль аммиака соответствует 10,3 % об.

Х кмоль воздуха соответствует 89,7 % об.

Х1 = 2736,54 кмоль\час воздуха.

Количество водяных паров, вносимых потоком воздуха при среднем содержании 0,2 % об.

2736,54 кмоль воздуха - 98,2 % об.

Х кмоль воды - 0,2 % об.

Х2 = 5,57 кмоль\час водяных паров.

Количество кислорода, поступающего в систему вместе с потоком воздуха.

С1О2 = х1 * 0,21 (2.2)

Где х1 - расход сухого воздуха;

0,21 - содержание кислорода в воздухе.

С1О2 = 2736,54 * 0,21 = 574,67 кмоль \ час

Количество азота, поступающего в систему с потоком воздуха.

С1N2 = х1 * 0,79 (2.3)

Где 0,79 - содержание азота в воздухе.

С1N2 = 2736,54 * 0,79 = 2161,86 кмоль \ час

Таблица 7 - Приход АВС в контактный аппарат.

Компонент

Кмоль

% об.

Кг

% вес.

Аммиак

314,23

10,27

5342,08

6,33

Кислород

574,67

18,80

18389,44

21,80

Азот

2161,86

70,73

60532,08

71,75

Вода

5,57

0,20

100,26

0,12

Итого:

3056,33

100

84363,86

100

Состав после окисления аммиака в соответствии с принятой степенью конверсии 97 % рассчитываем по следующим реакциям:

4NH3 + 5O2 = 4NO + 6H2O (2)

4NH3 + 3O2 = 2N2 + 6H2O (3)

Определяем количество оксида азота, образовавшегося по реакции (2) в час:

С1NO = С1NH3 * K1 (2.4)

С1NO = 314.23 * 0.97 = 304.803 кмоль \ час

Определяем количество инертного азота, образующегося по реакции (3) в час:

С2N2 = С1NH3 - С1NO \ 2 (2.5)

Где С1NH3 - расход аммиака;

С1NO - количество оксида азота.

С2N2 = 314,23 - 304,803 \ 2 = 4,71 кмоль\ час

Всего инертного газа в газовой смеси после окисления аммиака

С1N2общ = С1N2 + C2N2 (2.6)

Где С1N2 - количество азота;

C2N2 - количество инертного азота.

С1N2общ = 2161,86 + 4,71 = 2166,57 кмоль\час

Образующаяся вода по реакциям, которая находится в паровом состоянии:

8 моль аммиака образуют 12 моль воды

314,23 кмоль аммиака образуют х кмоль воды

Х3 = 471,34 кмоль\час

Определяем количество водяных паров, образовавшихся после окисления аммиака:

С(Н2О)общ. = х1 + х3 (2.7)

С(Н2О)общ. = 5,57 + 471,34 = 476,91 кмоль\час

Количество расходуемого кислорода на окисление аммиака до оксидов азота по реакции (2) в час:

4 моль аммиака требуют 5 моль кислорода

314,23 кмоль аммиака требуют х кмоль кислорода.

Х4 = 392,78 кмоль \ час кислорода.

Количество расходуемого кислорода на окисление аммиака до оксида азота по реакции (3) принимаем 4 % от общего кислорода.

С(О2 - N2) = 0.75 * С1NH3 (1 - ?К) (2.8)

С(О2 - N2) = 0,75 * 5342,08 * 0,025 = 3,13 кмоль \ час

Общий расход кислорода составит:

С(О2)общ = х4 + С(О2 - N2) (2,9)

С(О2)общ = 392,78 + 3,13 = 395,91 кмоль \ час

Определяем, сколько остается кислорода в газовой смеси после окисления аммиака:

СОСТ. = С1 О2 - С(О2)общ (2.10)

СОСТ. = 574,67 - 395,91 = 178,76 кмоль \ час

Таблица 8 - Расход из контактного аппарата

Компонент

Кмоль

% об.

Кг

% вес.

Аммиак

304,803

9,74

9144,09

10,87

Кислород

178,76

5,71

5720,32

6,80

Азот

2166,57

69,28

60663,96

72,12

Вода

476,91

15,25

8584,38

10,21

Итого:

3127,043

100

84112,75

100

2.3 Тепловой расчет

Определяем приход тепла по реакциям

4NH3 + 5O2 = 4NO + 6H2O + 908 кДж (4)

4NH3 + 3О2 = 2NO3 + 6H2O + 1270кДж (5)

Q1 = QP * ПЧАС \ 4 * 10613, 3 (3.1)

Где QP - тепло в реакции,

ПЧАС - производительность часовая,

4 - коэффициент по реакции.

Q1 = 908 * 22,47 \ 4 * 10613,3 = 54135153 кДж = 5,4 * 107 кДж

Q2 = 1270 * 22,47 \ 2 * 219 = 3124790,6 кДж = 3,1 * 106 кДж

Определяем приход тепла с аммиачно-воздушной смесью, поступающей в контактный аппарат.

Q3 = m * c * tX (3.2)

Где: m - количество поступающей аммиачно-воздушной смеси, кмоль,

с - средние мольные теплоемкости компонентов смеси в пределах от 0 до 250 ?С, они составляют:

38,5 Дж для аммиака,

30,2 Дж для кислорода,

29,2 Дж для азота.

tX - температура смеси, ?С.

Q3 = (38,5 * 314,23 + 30,2 * 574,67 + 29,2 * 2161,86) tX = 9,2 * 104 tX кДж

Определяем расход тепла с уходящими от сеток нитрозными газами при температуре конверсии 900 ?С.

Q4 = (31,9 * 304,803 + 32,6 * 178,76 + 29,2 * 2166,57) * 900 = 7,09 * 107 кДж

Потери тепла за счет изменения тепла, вызывающих понижение температуры катализаторных сеток, составляет:

Q5 = 0, 05 * Q4 (3.3)

Q5 = 0,05 * 7,09 * 107 = 3,54 * 106 кДж

Исходя из количества поступающего и расходуемого тепла можно определить температуру tX аммиачно-воздушной смеси, поступающей в конвертор.

Q = Q1 + Q2 + Q3 + Q4 + Q5 (3.4)

Где Q1 - приход тепла по реакции (4),

Q2 - приход тепла по реакции (5),

Q3 - приход тепла с аммиачно-воздушной смесью, поступающей в контактный аппарат,

Q4 - расход тепла с уходящими от сеток газами,

Q5 - потери тепла за счет изменения тепла, вызывающих понижение температуры катализаторных сеток.

Q = 5,4 * 107 + 3,1 * 106 + 9,2 * 104 + 7,09 * 107 + 3,54 * 106 = 13179,17 * 104 = 1,3 * 108 кДж

tX = Q + q \ mНГ * сНГ (3.5)

где: q - тепло с аммиачно-воздушной смесью,

mНГ - количество нитрозных газов,

сНГ - средняя теплоемкость нитрозных газов (1,223 кДж \ кг * град)

tX = 1,3 * 108 + 9,2 * 104 \ 84112,75 * 1,223 = 128,2 ?С.

Котел-утилизатор

В данном случае тепло газа расходуется на получение пара, поэтому уравнение теплового баланса имеет вид:

Q = (W - W0) *св * (t2K - t2H) + W0 (J - св * t2H ) (3.6)

Где W - количество подаваемой на орошение воды, кг \ с;

Св - удельная теплоемкость воды, Дж \ кг ?С;

t2K - конечная температура питательной воды, ?С;

t2H - начальная температура питательной воды, ?С;

W0 - количество испарившейся воды, кг \ с.

W0 = В * F0 (x “ - x) (3.7)

Где В - коэффициент испарения, кг \ м2 к;

F0 - площадь испарения, м2;

x “ - влагосодержание пара в месте соприкосновения его с водой;

х - влагосодержание пара в газообразном объеме, кг.

Площадь испарения определяем из уравнения:

F = 2 * 420 = 840 м2

W0 = 200 *840 (0,89 - 0,76) = 21840 кг \ ч = 6,06 кг \ с

Q = (6,9 - 6,06) 4190 (247 - 140) + 6,06 (694300 - 4190 * 140) = 276064,8 Вт

То есть для испарения 6,06 кг воды за 1 секунду требуется от нитрозного газа отнять количество теплоты в размере 276064,8 Вт.

2.4 Конструктивный расчет

2.4.1 Контактный аппарат

Время конверсии ? при температуре окисления аммиака 900 ?С можно определить по уравнению

Lg = - 107 * k1 + 7.02 * 10-6 * k3 (4.1)

Где k1 = 0,97 - степень конверсии аммиака;

Lg = - 107 * 97 + 7,02 - 10-6 * 973 = 1,06 * 10-4 сек

Площадь сечения конвертора будет равна

S=100*?*V0*TK*PH\1,1* m * d * PK * 273 (1 - 1.57 * den) (4.2)

Где: ? - время конверсии, сек;

V0 - объем аммиачно-воздушой смеси при 0 ?С;

TK - температура конверсии, 900 + 273 = 1197 К;

PH - начальное давление, 9,8 * 104 н \ м3;

m - количество сеток;

d - диаметр проволоки сеток, 0,009 мм;

PK - давление газа при конверсии, 73 * 104 н\м;

n - число плетений на 1 см2, 1024 штук.

V0 = m * V \ 360 (4.3)

Где: m - масса аммиачно-воздушной смеси, кг;

V - объем при нормальных условиях.

V0 = 84112,75 * 22,4 / 360 = 5233,68 кг \ час

S = 100 * 1,06 * 10-4 * 5233,68 * 1173 * 980 \ 1,1 * 18 * 0,09 * 73 * 273 (1* * 1,57 * 0,009 * e1024) = 3,31 м 2

2.4.2 Котел-утилизатор

Сечение трубчатки

S1 = \ 4 * dВ2 * n (4.4)

Где: dВ - внутренний диаметр трубок, м;

n - количество трубок, шт.

S1 = 3,14 \ 4 * 0,0512 * 480 = 0,98 м2

Сечение межтрубного пространства

S2 = 3,93 * S1 (4.5)

Где: 3,93 - отношение межтрубного сечения к сечению трубчатки.

S2 = 3,93 * 0,98 = 3,8 м2

Сечение, занято стенками трубок.

S3 = \ 4 * (dH2 - dВ2) * n (4.6)

Где: dH - наружный диаметр трубок.

S3 = 3,14 \ 4 * (0,0572 - 0,0512) * 480 = 0,24 м2

Сечение кожуха трубчатки по внутреннему диаметру.

S4 = S1 + S2 + S3 (4.7)

Где: S1 - сечение трубчатки, м;

S2 - сечение межтрубного пространства, м;

S3 - сечение, занятое стенками трубок, м.

S4 = 0,98 + 3,8 + 0,24 = 5,02 м2

Определяем диаметр кожуха

D = e(4 * S4 \) (4.8)

D = e(4 * 5.02 \ 3.14) = 2.5 м

Приведенный диаметр трубчатки определяем по уравнению

ПР = 4 * S1 \ П (4.9)

Где: П - смоченный периметр, м.

ПР = 4 * 0,98 \ 76,8 = 0,05

Смоченный периметр определяем по уравнению:

П = * dВ * n (4.10)

П = 3,14 * 0,051 * 480 = 76,8

Определяем длину трубок

L = F \ * dH * n * z (4.11)

Где: F - площадь теплообменника, м2;

Z - число ходов.

L = 840 \ 3.14 * 0.057 * 480 * 2 = 4,8 м = 4800 мм

Принимаем стандартную длину трубок 6000 мм.

Определяем диаметр штуцеров для подачи питательной воды.

Скорость воды принимаем равную 1 м \ сек.

dW1 = e(4 * G \ * W2 * ) (4.12)

Где: G - расход воды, кг \ сек;

W - скорость движения питательной воды в штуцере, м \ сек;

- плотность питательной воды.

dW1 = e(4 * 36,9 \ 3,14 * 12 * 1000) = 0,093 м или 93 мм

Принимаем стандартное значение равное 100 мм.

Определяем диаметр штуцера для отвода пара. Скорость пара в штуцерах принимаем равным 10 м \ сек.

dW2 = e(4 * G \ * W2 * ) (4.13)

dW2 = e(4 * 6,9 \ 3,14 * 102 * 1000) = 359 мм

Принимаем стандартное значение, равное 450 мм.

Определяем диаметр штуцера для ввода нитрозных газов

dW3 = e(4 * G \ * W2) (4.14)

dW3 = e(4 * 23.3 \ 82 * 1.4 * 3.14) = 589 мм

Диаметр штуцера для отвода нитрозных газов следует принять равным диаметру входного штуцера, то есть 600 мм, так как количество нитрозного газа, входящего в котел-утилизатор, равно количеству нитрозного газа, выходящего из него.

2.5 Расчет расходных коэффициентов

Определяем расчетный коэффициент по аммиаку на 1000 кг моногидрата азотной кислоты.

G(NH3) \ G(HNO3) (5.1)

Где: G(NH3) - количество аммиака, поступающего с аммиачно-воздушной смесью, кг \ час;

G(HNO3) - нагрузка по моногидрату на 1 агрегат, кг \ час.

5342,08 \ 4,5 = 1187,12 кг \ час HNO3

Определяем расходный коэффициент по кислороду на 1000 кг моногидрата азотной кислоты.

G(O2)\G(HNO3) (5.2)

Где: G(O2) - количество кислорода, поступающего с аммиачно-воздушной смесью, кг \ час.

18389,44 \ 4,5 = 4086,54 кг \ час HNO3

Определяем расходный коэффициент по азоту на 1000 кг моногидрата азотной кислоты.

G(N2)\G(HNO3) (5.3)

Где: G(N2) - количество азота, поступающего с аммиачно-воздушной смесью, кг \ час.

60532,08\ 4,5 = 13451,57 кг \ час.

Заключение

В данном курсовом проекте было рассмотрено производство слабой азотной кислоты комбинированным методом с детальной разработкой котла-утилизатора.

Параметры рассчитанного котла-утилизатора:

Диаметр - 2500 мм

Высота - 5750 мм

Поверхность теплообмена - 840 м2

Длина трубок - 6000 мм

Диаметр штуцера для отвода пара - 450 мм

Диаметр штуцера для подачи питательной воды - 100 мм

Диаметр штуцера для ввода нитрозных газов - 600 мм

Список использованных источников

1) Дыбина П.В., Вишняк Ю.Л., Соловьева А.С. «Расчеты по технологии неорганических веществ» - М. Химия, 1987 г.

2) Мельников Е.Я. «Справочник азотчика» - М.: Химия, 1987 г.

3) Мельников Е.Я., Салтынова В.П., Наумова А.М., Блинова Ж.С. «Технология неорганических веществ и минеральных удобрений» - М.: Химия, 1983 г.

4) Шкатов Е.Ф., Шувалов В.В. «Основы автоматизации технологических процессов химических производств» - М.: Химия, 1988 г.


Подобные документы

  • Физические и физико-химические свойства азотной кислоты. Сырье для производства азотной кислоты. Характеристика целевого продукта. Процесс производства слабой (разбавленной) и концентрированной азотной кислоты. Действие на организм и ее применение.

    презентация [1,6 M], добавлен 05.12.2013

  • В настоящее время в промышленных масштабах азотная кислота производится исключительно из аммиака. Физико-химические основы синтеза азотной кислоты из аммиака. Общая схема азотнокислотного производства. Производство разбавленной азотной кислоты.

    контрольная работа [465,6 K], добавлен 30.03.2008

  • Физические и физико-химические свойства азотной кислоты. Дуговой способ получения азотной кислоты. Действие концентрированной серной кислоты на твердые нитраты при нагревании. Описание вещества химиком Хайяном. Производство и применение азотной кислоты.

    презентация [5,1 M], добавлен 12.12.2010

  • Сущность промышленного получения азотной кислоты методом окисления аммиака кислородом воздуха. Обоснование принятой схемы производства. Оценка выпускаемой продукции, исходного сырья, вспомогательных материалов. Расчеты материальных балансов процессов.

    курсовая работа [1,1 M], добавлен 11.08.2012

  • Технологические свойства азотной кислоты, общая схема азотнокислотного производства. Физико-химические основы и принципиальная схема процесса прямого синтеза концентрированной азотной кислоты, расходные коэффициенты в процессах производства и сырье.

    реферат [2,3 M], добавлен 08.04.2012

  • Теоретические основы каталитического окисления аммиака. Получение неконцентрированной азотной кислоты под давлением 0,73МПа. Конструкция основного аппарата и вспомогательного оборудования. Автоматизация технологического процесса. Анализ готовой продукции.

    дипломная работа [244,8 K], добавлен 03.11.2013

  • Физико-химические свойства и области применения азотной кислоты. Обоснование технологической схемы переработки окислов азота в азотную кислоту. Расчеты материальных балансов процессов, тепловых процессов, конструктивные расчеты холодильника-конденсатора.

    курсовая работа [822,8 K], добавлен 03.12.2009

  • Азотная кислота как важнейший продукт химической промышленности. Производство концентрированной и неконцентрированной азотных кислот. Концентрирование нитратом магния. Прямой синтез азотной кислоты из окислов азота. Катализаторы окисления аммиака.

    курсовая работа [1,5 M], добавлен 29.03.2009

  • Основные свойства и способы получения синтетического аммиака из природного газа. Использование аммиака для производства азотной кислоты и азотсодержащих солей, мочевины, синильной кислоты. Работа реакторов идеального вытеснения и полного смешения.

    курсовая работа [1,0 M], добавлен 20.11.2012

  • Зависимость температуры кипения водных растворов азотной кислоты от содержания HNO. Влияние состава жидкой фазы бинарной системы на температуру кипения при давлении. Влияние температуры на поверхностное натяжение водных растворов азотной кислоты.

    реферат [3,9 M], добавлен 31.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.