Моніторинг земель поблизу ВАТ "Рівнеазот"

Охорона, моніторинг та методика обстеження земель, боротьба з забрудненням ґрунтів промисловими відходами. Контроль за накопиченням важких металів у ґрунті та рослинах. Закономірності розподілу і поведінки металів у ґрунті, токсична дія та детоксикація.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык украинский
Дата добавления 13.01.2010
Размер файла 440,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

При більш детальному вивченні білкового обміну виявилося, що надлишкова концентрація важких металів у рослинах впливає на його фракційний склад, при постійності вмісту глобулінів зростає кількість проламінів, глютелінів і нерозчинного залишку і дещо зменшується вміст альбумінів. Ця обставина вказує на погіршення складу білків, зокрема на зниження вмісту лізину.

Важкі метали, починаючи з певної концентрації, гальмують процес фотосинтезу і зменшують транспірацію рослин. При високому вмісті у середовищі, наприклад РЬ, продуктивність фотосинтезу в різних сільськогосподарських культурах виходить на рівень 10% від максимальної, а транспірація скорочується майже у 20 разів порівняно з контролем (Bazzaz et al., 1985) [16, 148].

Результатом пригнічення токсикантами фізіолого-біохімічних процесів є загальне послаблення опору рослин до хвороб і шкідників, що називається «вторинною» дією токсикантів.

Рис. 1. Фітотоксичність важких металів

Токсичну дію металів на рослини можна прослідкувати по росту:

· 0-2 - ріст відсутній;

· 2-3 - гостра нестача;

· 3-4 - середня нестача;

· 4-5 - оптимальний вміст;

· 5-6 - слабка токсичність;

· 6-7 - сильна токсичність;

· 7 - загибель рослини.

На відміну від симптомів нестачі, які для кожного елементу є специфічними, ознаки надлишку більш-менш однакові. Згідно зі схемою Busser, при поступовому зростанні концентрації іонів у середовищі спостерігається поступова поява ознак пригнічення рослинного організму:

· 1 - гальмування росту;

· 2 - хлороз листків;

· 3 - некрози верхівок і країв листків;

· 4 - відмирання коренів.

Якщо некрози листків і відмирання коренів виступають як прямий наслідок надлишкового вмісту елементу в рослинних тканинах, то хлороз і обмеження росту можуть бути також і результатом антагоністичних взаємовідносин надлишкового іону з іонами поживних речовин і виникнення таким чином індукованої нестачі у тканині.

Висока фітотоксичність властива Нg і Cd. Менш токсичними є Cu, Zn, Pb. У дослідах із зеленними культурами встановлено наступний ряд токсичності вивчених хімічних елементів: Cd > Ni > Zn, Cr > Pb [Foroughi et al., 1975] [19, 239]. Згідно з даними, фітотоксичність важких металів розміщується таким чином: Cd > Cu > Co = Ni > As = Cr > Zn > Mn = Fe > Pb.

K.V. Smilde (1981) розташував метали за фітотоксичністю в такий ряд: Cd> Ni> Cu> Zn> Cr і РЬ. Він вказує на те, що метали у чистому вигляді менш токсичні, ніж у поєднанні з іншими металами.

За чутливістю до кадмію рослини можна розмістити у такій послідовності (по зростаючій): томат, овес, салат, лугові трави, морква, редька, квасоля, горох. Цинк слаботоксичний для рослин, малотоксичний і молібден, навіть якщо він попадає у ґрунт у великій кількості. Мідь у високих концентраціях може мати токсичну дію на рослину, особливо на легких і малогумусних ґрунтах. Ознаки хлорозу й утворення численних зафарбованих у коричневий колір бічних корінців відмічалось у рослин при вмісті у ґрунті 0,7-1,1 кг/га сполук міді, які вилучаютьсь з водою. Найменшу безпеку становить свинець, оскільки у рослинах добре відлагоджена система захисту при проникненні його у кореневу систему.

1.6 Нормування вмісту важких металів у ґрунті

Зберігання головної функції ґрунту - забезпечення умов для нормальної життєдіяльності сільськогосподарських культур - в умовах зростаючого забруднення оточуючого середовища стає завданням першочергового значення. Успішне вирішення його залежить, зокрема, від дієвості контролю за надходженням забруднювачів у ґрунт, а із ґрунту - у харчовий ланцюг.

ГДК важких металів - це така їх концентрація, яка при тривалому впливі на ґрунт і рослини, що ростуть на ньому, не викликає яких-небудь патологічних змін чи аномалій у ході біологічних процесів, а також не призводить до накопичення токсичних елементів у сільськогосподарських культурах і, відповідно, не може порушувати біологічний оптимум для сільськогосподарських тварин і людини (табл.1.4.).

Макаренко Н.А. вказує на те, що валовий вміст важких металів доцільно використовувати для загальної характеристики стану ґрунтів і потенційної небезпечності важких металів [19, 251]. Лише вміст рухомих форм буде зумовлювати рівень їхньої токсичності.

Метали саме у рухомих сполуках негативно впливають на ґрунтовий біоценоз, що неодноразово було доведено вітчизняними і зарубіжними спеціалістами. Згідно з ГОСТ 17.4.1.02-83, у ґрунтах, у першу чергу, необхідно проводити контроль за вмістом As, Cd, Hg, Se, Pb, Zn (/ клас небезпечності), у другу чергу - за вмістом В, Co, Mo, Ni, Cu, Sb, Cr (// клас небезпечності), у третю чергу - Ва, V, W, Mn, Sr (/// клас небезпечності).

Існування зворотного зв'язку між вмістом важких металів у ґрунті і врожаєм враховується, наприклад, румунськими дослідниками при класифікації ступеня забруднення ґрунтів (Rauta, Carstea, 1986) [19, 153]:

Ступінь забруднення ґрунту Зниження врожаю і(чи)

його якості, %

практично незабруднені <5

злегка забруднені 6-10

середньо забруднені 11 -25

сильно забруднені 26-50

дуже сильно забруднені 51-75

надлишкове забруднення >75

Слід зазначити, що, згідно з багатьма дослідженнями, пороговим слід вважати зниження урожаю на 15-20%, оскільки при цьому відбувається важлива у гігієнічному плані обставина - накопичення важких металів у частині рослин, що вживаються у їжу, вище ГДК.

Таким чином, вивчення результатів антропогенного забруднення оточуючого середовища уданий час набуло виключно важливого значення, оскільки багато з хімічних інгредієнтів, які накопичуються у повітрі, воді і ґрунтах, є надзвичайно небезпечними для живих організмів. На найбільшу увагу заслуговує техногенне накопичення важких металів, особливо у ґрунтах - початковій ланці харчового ланцюга. Так само актуальними є вивчення забруднення сільськогосподарських культур, тому що 70-80% від загальної кількості важких металів, що надходять в організм людини, припадає на рослинну продукцію.

Таблиця 1.4.

ГДК важких металів, мг/кг

Елемент

ГДК валових форм

ГДК рухомих форм Кисіль В.І., 1997 (ацетатно-амонійний буфер, рН 4,8)

ГДК валового вмісту в рослинній продукції, мг/кг сух. реч.(Кисіль В.І.)

Мінеєв, 1990

Черних, Ладинін, 1995

Сu

100

100

3

5

Ni

50

4

-

Co

50

5

-

Zn

300

300

23

10

Cd

5

3

0,7

0,003

Pb

100

32

2

0,5

Cr

100

100

6

0,3

1.6 Способи детоксикації важких металів, техногенно накопичених у ґрунті

Серед заходів детоксикації надлишку важких металів у ґрунті можна виділити наступні:

1. Вапнування ґрунту

Установлено, що при рН 6,5 спостерігається найменша розчинність важких металів. У дослідах, проведених Карповою і Потатуєвою, встановлено, що вапно значно знижує надходження кадмію в рослини. У літературі часто відмічається переважно антагонізм між Са і важкими металами. Даних про взаємодію Мg з важкими металами дуже мало.

2. Застосування гною, торфу, органо-мінеральних компонентів та інших дозволяє використовувати властивість багатьох органічних сполук до комплексоутворення з важкими металами. Утворені металоорганічні комплекси є або малорухомими, або неспроможними до подолання клітинних мембран на контакті ґрунт - корінь. Поряд із цим використання органічних добрив вирішує інше важливе для забруднених ґрунтів завдання - збагачує їх органічним вуглецем і елементами мінерального живлення рослин.

3. Значну здатність до детоксикації важких металів мають фосфорні добрива. Фосфати Pb, Zn та інших металів являють собою важкорозчинні сполуки, малодоступні для рослин. Внесення 3 т/га однозаміщеного фосфату кальцію в ґрунти за ефектом детоксикації Pb (враховувався вміст Pb у рослинах) відповідало внесенню від 1 до 4 т СаСO3 /га. Для зниження видатків на суперфосфат доцільно використовувати фосфоритне борошно. Тому фосфоритування кислих ґрунтів з метою інактивації надлишкових важких металів розглядається як один з важливих заходів охорони здоров'я людини і тварин.[1, 47].

4. Для детоксикації надлишку важких металів у ґрунті, можливо, ефективним стане використання цеолітів як природних, так і штучних. Слід зазначити, що це відноситься до металів, що знаходяться у ґрунтовому розчині у вигляді катіонів. Надходження у рослини аніонної форми металів від присутності цеолітів не знижується [1, 48].

При застосуванні різних видів цеоліту в кислих ґрунтах, забруднених свинцем, вдавалося знизити вміст цього металу на 30%. Разом з тим, у деяких ґрунтах ефект від присутності цеоліту виявився слабким [1, 49].

5 Як відомо з агрохімії, при поглинанні рослинами з ґрунту хімічних елементів виникають протилежно направлені взаємодії: синергічні, коли присутність одного елемента сприяє надходженню в корені іншого, і антагоністичні, коли все протікає навпаки.

Антагоністичні взаємодії між хімічними елементами, мабуть, можна використовувати для зменшення надходження важких металів із ґрунту в рослини. Зокрема, було вказано на антагонізм між На та Zn і доводилася можливість використання цинку, в даному випадку як значно менш токсичного, для обмеження надходження ртуті в харчові ланцюги [1, 50].

У США є рекомендації по застосуванню добрив, що містять Cd, з врахуванням співвідношення Zn: Cd. Якщо воно більше за 100, то кількість Cd, що вноситься на 1 га, не повинна бути більшою за 6-7 кг. Якщо менше 100, то норма внесення Cd із добривами 3-4 кг/га.

Поряд з цими існують і біологічні заходи, що діють у тому ж напрямку. До них відноситься вирощування толерантних культур чи сортів, що використовуються в їжу, вирощування технічних і лісових культур, розведення квітів.

7 Як надзвичайний захід пропонується створення нового орного горизонту як за рахунок плантажної оранки, що забезпечує захоронення шару на глибині 40-50 см і вивертання на поверхню підорного незабрудненого, так і шляхом створення насипної товщі за рахунок ґрунту, привезеного з незабрудненої території. Можливе також видалення токсичного шару і розміщення на його місці нормального ґрунту.

1.7 Токсична дія важких металів

Цинк. Ґрунт: кларк цинку в земній корі 7*10-3%. Існує 72 цинкових мінерали (мінеральних видів). Вміст його у ґрунтах залежить від материнської породи, вмісту органічної речовини реакції ґрунтового розчину. Вміст валового Zn у ґрунтах змінюється від 5,5 до 132 5 мг/кг. Ґрунти України бідні на рухомі форми Zn і мають від слідів до 0,30 мг/кг сухого ґрунту Zn і Cd є супутниками: чим більше у ґрунті Zn, тим більше у ньому Cd Відношення Zn до Cd становить близько 1000:1 (Виноградов А.П., 1950). У гумусовому шарі вміст Zn підвищується. За даними наукових установ, цинкові добрива треба вносити у ґрунт тоді, коли вміст у ньому рухомої форми в орному шарі менше 0,3 мг/кг. зв'язку з можливою шкідливою дією надлишків Zn на живі організми встановлено його ГДК, яке становить 300 мг/кг у ґрунті для валових форм і 23 мг/кг - для рухомих форм цинку [19, 258-261].

Рослини: вміст Zn у рослинах коливається від 15 до 22 мг на 1 кг сухої речовини, винос з урожаєм різних культур від 75 до 188 г на 1 га (Каталимов М.В., 1960), за іншими джерелами (Федюшкін Б. Ф., 1989) від 1200 до 2100 г/га. На думку Р.Брукса (Brooks, 1983) середній вміст цинку в рослинах 50 мкг/г сухої речовини. Zn має слабку фітотоксичність що проявляється тільки при збільшенні його вмісту в ґрунті. Ознаки фітотоксичності проявляються при вмісті Zn в тканинах 300-500 мг/кг сухої речовини. Zn входить до складу ферментів, бере участь у білковому, вуглеводневому, фосфорному обміні речовин, у біосинтезі вітамінів та росткових речовин [19, 261-262].

ГДК для цинку становить 200-400 мг/кг сухої маси рослин.

Тварини і людина: цинк, як і інші мікроелементи, поступає у тваринний організм із кормами.

Цинк активізує гормони статеві, передньої частини гіпофізу і підшлункової залози. Цинк входить до складу гормону підшлункової залози інсуліну, регулюючи при цьому вуглеводневий обмін; статевих гормонів, активізуючи тестостерон, фолікулін, пролін; відіграє важливу роль у процесах запліднення і відтворення. Тісний зв'язок цинку з гормонами, ферментами і вітамінами зумовлює його регулюючий вплив на відтворну функцію, обмін вуглеводів, білків, жирів, систему кровотворення, ріст і розвиток організму тварин. Цинк виявлений у складі ферментів дегідрогенази, пептидази, трансфосфорилази, карбоксипептидази, карбоангідрази, уреази. Ці ферменти беруть участь у обміні білків і вуглеводів. Цинк каталізує ферменти аргіназу, дегіропептидазу, амінопемтидазу, енолазу та ін. Отже, він бере участь у процесах клітинного дихання та окислення вуглеводів.

Цинк є необхідним для утворення і дозрівання сперматозоїдів. При надлишковому надходженні до організму людей і тварин токсично діє на серце, кров та інші органи, виявляє канцерогенну дію. Засвоєння тваринами цинку з різних кормів неоднакове. Наприклад, цинк кукурудзи засвоюється у кількості 52%, пшениці - 60%, гороху, ячменю, вівсу і бобів - 66-68%, люпину - 80% від прийнятого (табл. 1.5.).

Таблиця 1.5.

Допустимий вміст у рослинному матеріалі й винос елементів із врожаєм

Елемент

Допустимий вміст

мг/кг сухої речовини

Винос із врожаєм, г/га

Елемент

Допустимий вміст, мг/кг сухої речовини

Винос із врожаєм, г/га

Берилій

0,1

0,5-1,0

Фтор

0,4-3,0

10-30

Бром

-

50-150

Нікель

0,1-5,0

1-80

Кадмій

0,015-0,5

0,3-8,0

Свинець

0,06

1-5

Миш'як

0,1-1,0

1,0-50,0

Сурма

2-20

20-200

Хром

0,2-1,0

1,0-10,0

Селен

0,2-2,0

1-15

Pртуть

0.05-0,10

0,2-1,5

Олово

0,8-6,0

5-50

Таблиця 1.6

Природний та допустимий вміст важких металів у ґрунті (мг/кг) і рослинному матеріалі, мг/кг сухої речовини

Свинець

Хром

Ртуть

ґрунт

рослина

ґрунт

рослина

ґрунт

рослина

Максимальний

60,2

20,6

0,32

2,40

0,25

0,07

Мінімальний

5,5

1,6

0,14

1,20

0,03

0,007

Допустимий

21,5

6,8

0,24

1,55

0,11

0,041

Таблиця 1.7

Кларки і МДР важких металів у ґрунтах (за Н.А. Черних, В.Ф. Ладиніним)

Елемент

Кларк, мг/кг

МДР, мг/кг

Свинець

10

32

Стронцій

300

1000

Ртуть

0,02

2

Кадмій

0,5

3

Хром

75

100

Ванадій

100

.

Марганець

850

1400

Кобальт

8

50

Нікель

40

50

Мідь

20

100

Цинк

50

300

Селен

0,01

10

Таблиця 1.7

Регіональні кларки важких металів для ґрунтів України, мг/кг (за А.І. Фатєєвим)

Ґрунтово-

Елемент

кліматична зона

РЬ

Zn

Мn

Cu

Co

Mo

Sr

Cr

V

Ni

Полісся

11,4*

6-25**

42

8-96

395

75-1400

8

1,4-20

10

2,5-20

2,4

1,5-5,0

118

80-520

39

20-67

16

8-29

12

9-20

Лісостеп

10

10-10

52

20-90

735

240-3000

20

10-48

17

8-40

2,8

0,9-6,3

119

52-250

51

18-100

52

16-201

26

10-80

Степ

13

10-15

62

33-100

670

200-1600

27

10-64

16

8-27

3,8

2,9-5,6

142

100-220

85

40-150

68

42-130

25

19-40

Крим: степові

10

10-10

69

40-190

845

520-1100

31

12-47

24

10-30

1,8

2,0-3,8

112

30-300

96

40-156

119

33-120

53

10-47

гірські

-

10

60

45-70

933

500-1267

83

55-125

27

23-32

1,1

0,5-1,7

-

-

-

130

253 148-267

53

43-63

Карпати: передгір'я

-

23-168

84

45-237

676

150-1575

23

5-76

17

5-32

-

0,4-3,0

-

138-145

90

30-282

106

49-302

39

8-110

гірські

61

-

50

45-70

924

500-1500

25

20-40

21

15-40

-

-

-

126-145

140

100-160

71

46-90

31

25-40

· * - середній вміст

· ** - діапазон коливань

Свинець. Ґрунт: кларк Рb у літосфері - 1,6*10-3%, 16 мг/кг. У ґрунті кількість його коливається від 0,37*10 -3 до 4,33*10 -3%. Розроблені ГДК значно відрізняються один від одного. За одними даними, ГДК валових форм Рb у ґрунті становить 100 мг/кг, за іншими - 15-20 мг/кг; 32 мг/кг. ГДК рухомих форм свинцю в ґрунті становить 2 мг/кг.

Рослини: свинець має невисоку фітотоксичність: наявність діючої у рослинах системи інактивації елементів, що проникають у кореневу систему, затримує основну частину Рb у коренях рослин. Дуже високі концентрації Рb можуть суттєво пригнітити ріст рослин і викликати хлороз, обумовлений порушенням надходження Fe.

Звичайний вміст Рb у сільськогосподарських культурах, що використовуються в їжу, - 1-5 мг/кг сухої речовини. ГДК Рb овочевих і зернових культур становить 0,3 мг/кг, але є і більш високі показники (до 10 мг/кг сухої маси). Допустима концентрація у кормах -до 10 мг/кг.

Тварини і людина: отруєння тварин свинцем трапляється у місцевостях, де трава містить до 150 мг і більше свинцю в 1 кг сухої речовини. Крім того, часто причиною отруєнь тварин цим елементом є транспортні засоби, у яких перевозять корми, забруднені сполуками свинцю, що широко застосовується у промисловості й потрапляє в атмосферу та воду.

Кадмій. Ґрунт: кларк Cd і літосфері 1,3*10-5% або 0,13 мг/кг. У ландшафті Cd є рідким розсіяним елементом. Cd численні основні, подвійні і комплексні: сполуки. ГДК у воді 10 мг в 1 л. Для ґрунтів Франції встановлено ГДК Cd 3 мг на 1 кг ґрунту, ,у нашій країні - 3 мг/кг для валових форм і 0,7 мг/кг - для рухомих. Більш інтенсивно надходить Cd у рослини на кислих ґрунтах і значно менше - на нейтральних і лужних, тому для зниження надходження його у рослини велику роль відіграє їх вапнування.

Токсичний вплив на рослини: цей елемент, маючи надзвичайно високу токсичність, легко пересувається у ґрунтах, швидко засвоюється рослинами і нагромаджується у них. Він має кумулятивні властивості. Унаслідок надмірного вмісту кадмію в рослинах спостерігається почервоніння і хлороз листків, стебел, черешків.

У природній рослинності західних штатів США концентрація кадмію коливається у межах 0,03-0,3 мкг/г сухої речовини. У зерні злаків з різних країн вміст кадмію змінюється від 0,02 до 0,2 мкг/г сухої речовини. Згідно деяких даних, середня концентрація кадмію в рослинах суходолу дорівнює 0,005 мкг/г сухої речовини.

Середній вміст в органах рослин: зерно - 0,2-4 мг/кг; солома - 0,1-12 мг/кг. Фітотоксичність Cd пояснюється його близькістю за хімічними властивостями до Zn. Може виступати у ролі Zn у багатьох біохімічних процесах, порушуючи роботу ферментів. Це призводить до цинкової недостачі і, як наслідок, пригнічення рослини та її гибелі.

Токсичний вплив на тварин і людину, токсичність кадмію проявляється досить сильно. Є дані про ембріофобну і канцерогенну дію кадмію. Цей метал здатен заміщувати цинк у ензиматичних системах, необхідних для формування кісткової тканини, що супроводжується важкими захворюваннями. Відоме гостре захворювання, що вражає кісткову систему (хвороба ітаї-ітаї). Негативний вплив на тварин виявляється не відразу після поїдання корму, що містить надмірну кількість кадмію, а через деякий час.

Кадмій знижує здатність організму протистояти хворобам. Він має мутагенні і канцерогенні властивості, негативно впливає на спадковість, а також руйнує еритроцити крові, сприяє захворюванням нирок і сім'яних залоз, викликає гастрит і анемію (МінєєвВ.Г. та ін., 1981) [19, 264].

Для людини допустима доза Cd становить 70 мкг на добу для дорослих і повністю виключає його присутність у питній воді та їжі для дітей.

Розділ 2. Методика обстеження земель навколо підприємств-забруднювачів

Як свідчить багаторічний досвід з цього питання, що зона істотного забруднення ґрунтового покриву навколо промислових підприємств охоплює територію в напрямку пануючих вітрів до 20-30 км і із інших напрямків 10-15 км. Розподіл атмосферних викидів по площі довкола відбувається в певній закономірності на промисловій площадці підприємства переважають викиди, що надходять із заводських труб і вентиляційної системи: в радіусі 0,5-1 км випадають найбільш великі і важкі частки; на відстані 1,5-2,5 км знаходиться зона максимального і різноманітного забруднення; на відстані 2,5-5,0 км при високих заводських трубах розташована зона такого ж різноманітного забруднення, але викиди мають більш тонкий гранулометричний склад; у смузі 5-10 км зосереджуються газопилові викиди різноманітного складу, однак щільність покриття ними тут значно менша.

Перед обстеженням забрудненості ґрунтового здійснюють рекогностировочний об'їзд територій під час якого уточняють розміщення населених пунктів напрямок сільськогосподарського виробництва та випадки захворювання жителів населених пунктів. Обстежуючи умови забруднення навколишнього середовища промисловими викидами, необхідно підтримувати зв'язок з державними органами охорони природи, місцевими установами санітарно-епідеміологічної та гідрометеорологічними службами, які мають пункти контролю за станом повітря, води, ґрунту. Ступінь забруднення ґрунтового покриву попередньо оцінюється за показниками кислотності, лужності, засоленості, співвідношення C/N в гумусі, вмісту сірки тощо. Висновок про дальність переносу техногенних викидів робиться на підставі всієї зібраної інформації, яка використовується також при виготовленні прогнозної (загальної) картосхеми. Вона обов'язково потрібна на початковому етапі обстеження, як первісна основа. Загальну картосхему виготовляються у такий спосіб: на плані місцевості навколо підприємства забруднювача в радіусі 10 км по периметру проводять зовнішню мережу території підвищеного вмісту важких металів, після чого намічають виїзні маршрутні лінії для відбору зразків ґрунту, а також орієнтовні місця розташування, розмір і конфігурацію ключових, та елементарних ділянок і пробних (робочих) площадках.

Розуміти терміни і назви ділянок потрібно так:

Ключова ділянка - це найменша геоморфологічна одиниця ландшафту, що в достатній мірі відображає тип, підтип тобто генезис і властивості ґрунту, ґрунтотворної породи, а також рельєф території, гідрологію, рослинність і т. д. В її межах виділяють елементарні ділянки.

Елементарна ділянка - це частина площі ключової ділянки, яка досить однорідна за мезорельєфом і ґрунтовим покривом на рівні виду і різновиду. В межах ключової ділянки їх може бути одна або декілька. Розмір елементарної ділянки величина не постійна і збільшується по мірі віддалення від джерела забруднювача. Чим далі від підприємства, тим більше елементарних ділянок.

Робоча (пробна) площадка. В межах елементарної ділянки виділяється робоча площадка, яка призначена безпосередньо для відбирання проб ґрунту з яких складається гніздова проба, основний розмір ділянки 1 га, але якщо її ґрунтовий покрив різноманітний виділяють 2-3 робочі ділянки.

На плані місцевості орієнтовне розміщення пробних площадок здійснюється за такою схемою: безпосередньо навколо підприємства намічають пробні площадки по 8 румбах; в радіусі 1,5-2,5 км (зона найбільшого забруднення) - по 10-12; в радіусі 2,5-5,0 км - по 12-16; в радіусі 5-10 км - по 16-24 румбах і так далі. В полі місця розташування, як пробних площадок так і елементарних та ключових ділянок, уточнюють з урахуванням ландшафтно-геохімічних особливостей території, що обстежується. При розміщенні за румбами відстань між пробними площадками становитиме 1,5-2 км, а їх загальна кількість складатиме на орних землях 100-200, а з урахуванням площ під лісами, луками пасовищами - приблизно 200.

Кількість точкових проб ґрунту, необхідних для складання гніздової проби, повинна бути тим більше чим сильніше варіювання (строкатість) вмісту важких металів. На великій відстані від джерела забруднення, де рівень забруднення і вміст важких металів мало відрізняється від фонового (природного), кількість точкових проб може бути такою як при картографуванні мікроелементів - 20-30 проб. З наближенням до підприємства для складання гніздової проби беруть 40-60 точкових проб ґрунту. Час відбору ґрунтових проб не має істотного значення, але господарської точки зору дану роботу краще виконувати до сівби на весні, або восени після збирання врожаю.

2.1 Обстеження земель навколо підприємства ВАТ «Рівнеазот»

За літературними даними зона істотного забруднення ґрунтового покриву навколо промислових підприємств охоплює територію в напрямку пануючих вітрів до 20 - 30 км, а з інших боків - 10-15 км. В 2008 році розпочато обстеження сільгоспугідь на вміст важких металів в ґрунті навколо ВАТ «Рівнеазот». У викидах цього підприємства залежно від сировини можуть знаходитись солі важких металів. За десятки років у відвалах підприємства накопичилось тисячі тонн промислових відходів, основним з яких є фосфогіпс.

Методи досліджень Для вивчення забруднення ґрунтів викидами ВАТ «Рівнеазот» було закладено пробні площадки розміром 1га по 8-ми напрямках рози вітрів в радіусі 1 км, 2,5 км, 5 км, 10 км. Змішаний зразок складався з 20-40 індивідуальних проб відібраних на пробних площадках розміщених на віддалі 5 і 10 км і 40-60 проб відібраних на віддалі 1 і 2,5 км буром на глибину 20 см.

Визначення міді, цинку, кадмію та свинцю проводилось у витяжці 0,1н азотної кислоти з послідуючою атомно-абсорбційною спектрофотометрією на С-115. Визначення ртуті проводилось у витяжці суміші концентрованих азотної та сірчаної кислоти в співвідношенні 1:1 методом безполум'яної атомної абсорбції на приладі «Юлія-2» [10].

В таблицях 2.1. - 2.5 наведено визначення вмісту важких металів в ґрунті сільгоспугідь поблизу ВАТ «Рівнеазот».

Дослідження показали, що вміст ртуті (табл. 2.1) в орному шарі ґрунту за всіма напрямками не перевищує ГДК (2,1 мг/кг). Максимальні значення цього елементу складають 0,05 мг/кг. Розподіл забруднення рівномірний незалежно відстані та напрямку і не пов'язане з викидами підприємства.

Рівні забруднення ґрунтів кадмієм (табл. 2..2) значно вищі як ртуттю, але не перевищують допустимих значень (3,0 мг/кг), Забруднення ґрунтів кадмієм найбільше на відстані 1 км. Максимальні значення відмічаються у південно-східному, північно-східному та північно-західному напрямках і складають 2,05- 2,28 мг/кг.

Вміст свинцю (табл. 2.3) в ґрунті складає 3,48-20,6 мг/кг і не перевищує ГДК (30 мг/кг). В східному, північному, північно-східному та північно-західному напрямках він зменшується з віддаленістю від підприємства. За іншими напрямками спостерігається зворотна тенденція. Максимальні значення відмічаються на відстані 2,5 км в південно-східному і південно-західному напрямках, на відстані 5 і 10 км в південному напрямку.

Вміст цинку (таблиця 2.4) в ґрунті складає 0,98 - 16,68 мг/кг, значно нижче гранично-допустимих значень (100,мг/кг). При цьому, відмічається збільшення концентрації елементу з віддаленістю від підприємства в південному та південно-східному напрямку, де спостерігаються максимальні значення.

Що стосується забруднення ґрунтів міддю (таблиця 2.5), слід відмітити, що вміст її в ґрунті складає 2,5 - 33,55 мг/кг (ГДК - 55 мг/кг).Слід відмітити, що концентрація елементу зростає лише в північно-східному і південно-західному напрямку. Максимальні рівні зустрічаються на віддалі 2,5 та 10 км від підприємства в південному та північно-східному напрямку.

Таблиця 2.1.

Вміст ртуті в ґрунті навколо ВАТ «Рівнеазот»

Напрямок

Віддаль від підприємства, км

1

2,5

5

10

Схід

0,04

0,04

0,04

0,04

Захід

0,03

0,04

0,03

0,04

Північ

0,04

0,04

0,03

0,03

Південь

0,03

0,03

0,03

0,04

Північний схід

0,03

0,04

0,04

0,04

Північний захід

0,03

0,03

0,04

0,05

Південний схід

0,04

0,04

0,03

0,05

Південний захід

0,04

0,04

0,04

0,04

Таблиця 2.2.

Вміст кадмію в ґрунті навколо ВАТ «Рівнеазот»

Напрямок

Віддаль від підприємства, км

1

2,5

5

10

Схід

1,82

1,08

0.7

2.2

Захід

1,62

1,75

1,43

1,03

Північ

1,52

1,25

1,66

1,57

Південь

1,89

0,70

1,3

0,72

Північний схід

2,28

1,75

2,05

1,42

Північний захід

2,05

1,5

1,03

2,16

Південний схід

2,09

0,51

0,78

1,29

Південний захід

1,49

1,65

1,21

1,68

Таблиця 2.3.

Вміст свинцю в ґрунті навколо ВАТ «Рівнеазот»

Напрямок

Віддаль від підприємства, км

1

2,5

5

10

Схід

7,91

8,31

6,39

5,16

Захід

3,79

5,77

6,05

7,37

Північ

6,49

4,36

5,43

3,86

Південь

7,75

9,11

20,6

19,64

Північний схід

7,95

3,68

4,82

3,87

Північний захід

7,56

5,04

5,79

6,53

Південний схід

5,47

12,58

7,76

9,11

Південний захід

3,48

14,53

5,58

5,15

Таблиця 2.4.

Вміст цинку в ґрунті навколо ВАТ «Рівнеазот»

Напрямок

Віддаль від підприємства, км

1

2,5

5

10

Схід

3,41

9,71

9,25

5,14

Захід

8,9

3,4

2,89

8,55

Північ

6,99

1,84

3,92

0,98

Південь

7,52

7,08

16,68

14,06

Північний схід

5,82

0,40

1,24

1,02

Північний захід

11,89

4,15

3,20

3,80

Південний схід

2,22

7,17

4,28

9,68

Південний захід

4,10

9,23

1,72

3,46

Таблиця 2.5

Вміст міді в ґрунті навколо ВАТ «Рівнеазот»

Напрямок

Віддаль від підприємства, км

1

2,5

5

10

Схід

22,14

25,65

32,7

14,94

Захід

10,35

19,40

9,63

4,14

Північ

18,73

9,22

15,61

15,78

Південь

26,58

33,55

5,40

4,56

Північний схід

26,51

2,5

3,4

32,15

Північний захід

22,42

8,53

9,46

9,99

Південний схід

12,99

25,95

21,44

6,59

Південний захід

8,07

23,6

9,32

26,54

Висновки:

1. Вміст ртуті та свинцю в ґрунті на полях поблизу ВАТ «Рівнеазот» не відрізняється від середніх значень отриманих при агрохімічній паспортизації с/г угідь

2. Середній вміст кадмію і міді в ґрунті вищий в 3 і 2 рази відповідно, а цинку в 3 рази менший порівняно з результатами агрохімічної паспортизації.

Висновки

Бурхливий розвиток промисловості і накопичення продуктів техногенезу в ґрунті обумовлює необхідність розробки і впровадження інтенсивних методів захисту ґрунтового покриву. Стратегічним напрямом в охороні природи є впровадження безвідходних технологій, замкнутих циклів виробничого водопостачання, ефективних пилогазоочисних споруд, що дозволило б зменшити навантаження на ґрунт в 100--250 разів.

Особливе занепокоєння викликає зростання в останні роки процесів техногенного забруднення та порушень водно-хімічних показників якості ґрунтів. Для підтримки рішень по забезпеченню виконання вимог закону України «Про охорону земель» і ряду інших законодавчих актів, регулюючих сучасні земельні відносини в Україні, необхідно мати достовірні, точні і своєчасні дані про якісні і топографічні характеристики забруднених та деградованих земель, природу і параметри чинників деградації та забруднення.

Моніторинг земель - це система спостереження за станом земель з метою своєчасного виявлення змін, їх оцінки, відвернення та ліквідації наслідків негативних процесів. У системі моніторингу земель проводиться збирання, оброблення, передавання, збереження та аналіз інформації про стан земель, прогнозування їх змін і розроблення наукового обґрунтувальних рекомендацій для прийняття рішень щодо запобігання негативним змінам стану земель та дотримання вимог екологічної безпеки. Моніторинг земель є складовою частиною державної системи моніторингу довкілля.

Завданням моніторингу земель є періодичний контроль динаміки основних гнунтових процесів у природних умовах і при антропогенних навантаженнях, прогноз еколого-економічних наслідків деградації земельних ділянок з метою запобігання або усунення дії негативних процесів. До завдань монітор гину земель відносяться: довгострокові систематичні спостереження за станом земель, аналіз екологічного стану земель, своєчасне виявлення змін стану земель, оцінка цих змін, прогноз і вироблення рекомендацій про попередження і усунення наслідків негативних процесів, інформаційне забезпечення ведення державного земельного кадастру, землекористування, землеустрою, державного контролю за використанням і охороною земель, а також власників земельних дільниць.

За літературними даними зона істотного забруднення ґрунтового покриву навколо промислових підприємств охоплює територію в напрямку пануючих вітрів до 20 - 30 км, а з інших боків - 10-15 км. В 2008 році розпочато обстеження сільгоспугідь на вміст важких металів в ґрунті навколо ВАТ «Рівнеазот». У викидах цього підприємства залежно від сировини можуть знаходитись солі важких металів. За десятки років у відвалах підприємства накопичилось тисячі тонн промислових відходів, основним з яких є фосфогіпс.

Дослідження показали, що вміст ртуті в орному шарі ґрунту за всіма напрямками не перевищує ГДК (2,1 мг/кг). Максимальні значення цього елементу складають 0,05 мг/кг. Розподіл забруднення рівномірний незалежно відстані та напрямку і не пов'язане з викидами підприємства.

Рівні забруднення ґрунтів кадмієм значно вищі як ртуттю, але не перевищують допустимих значень (3,0 мг/кг), Забруднення ґрунтів кадмієм найбільше на відстані 1 км. Максимальні значення відмічаються у південно-східному, північно-східному та північно-західному напрямках і складають 2,05- 2,28 мг/кг.

Вміст свинцю в ґрунті складає 3,48-20,6 мг/кг і не перевищує ГДК (30 мг/кг). В східному, північному, північно-східному та північно-західному напрямках він зменшується з віддаленістю від підприємства. За іншими напрямками спостерігається зворотна тенденція. Максимальні значення відмічаються на відстані 2,5 км в південно-східному і південно-західному напрямках, на відстані 5 і 10 км в південному напрямку.

Вміст цинку в ґрунті складає 0,98 - 16,68 мг/кг, значно нижче гранично-допустимих значень (100,мг/кг). При цьому, відмічається збільшення концентрації елементу з віддаленістю від підприємства в південному та південно-східному напрямку, де спостерігаються максимальні значення.

Що стосується забруднення ґрунтів міддю, слід відмітити, що вміст її в ґрунті складає 2,5 - 33,55 мг/кг (ГДК - 55 мг/кг). Слід відмітити, що концентрація елементу зростає лише в північно-східному і південно-західному напрямку. Максимальні рівні зустрічаються на віддалі 2,5 та 10 км від підприємства в південному та північно-східному напрямку.

Список використаних джерел та літератури

1. Белюк С.А., Блохіна Н.М., Билолипський В.О. та ін. Методика моніторингу земель, що перебувають в кризовому стані. - Харків, 1998.

2. Бiлявський Г.О.Основи загальної екологiї: Пiдручник/ Г.О.Бiлявський, М.М.Падун, Р.С.Фурдуй. -- К.: Либiдь, 1993. -- 304 c.

3. Боков В.А. Основы экологической безопасности: Учеб. пособие/ В.А.Боков, А.В.Лущик. -- Симферополь: СОНАТ, 1998. -- 224 c.

4. Герасимчук А.А. Основи екологiї: Опор. курс лекцiй: Навч. посiб./ А.А.Герасимчук, Ю.I.Палеха. -- К: Укр.-фiн. iн-т менедж. i бiзнесу, 1999. -- 68 c.

5. Джигирей В. С. Екологія та охорона навколишнього природного середовища: Навч. посіб. -- К.: Знання, 2000.

6. Довідник з агрохімічного та агроекологічного стану ґрунтів/ за редакцією Б.С. Носко та ін.. - К.: Урожай, 1994.

7. Закон України «Про охорону земель» // Відомості Верховної Ради (ВВР), -- 2003// № 39 -- С.349.

8. Екологічний енциклопедичний словник / Під заг. ред. І.І.Дедю. - Кишинів, 1990.

9. Екологія: Навч. посібник, 2-е вид. - Львів: «Новий світ», 2004.

10. Інструкція до аналізатора ртуті «Юлія-2».

11. Корсак К. В., Плахотнік О. В. Основи екології. -- 2-ге вид. -- К.: МАУП, 2000.

12. Методика агрохімічної паспортизації сільськогосподарського призначення /за редакцією член-кор. УААН С.М. Рижука. - К., 2003.

13. Методика суцільного ґрунтово-агрохімічного моніторингу сільськогосподарських угідь / за редакцією О.О.Созінова, Б.С. Прістера. - К., 1994. - С.51.

14. Методические указания по определению тяжелых металлов в почвах сельхозугодий и продукции растениеводства. - М.: ЦИНАО, 1989. - С.62.

15. Мякишев І. Проблеми українського ґрунтознавства. - Чернівці, 2001.

16. Основи ґрунтознавства. - Чернівці, 1999.

17. Основи екології: Навч. Посібник - 2-е видання. - К.: МАУП, 2000.

18. Охорона ґрунтів: Навч. посібник / М.К.Шикула, О.Ф.Гнатенко, Л.Р. Петренко, М.В. Капштик. - К.: Знання, 2001. - 398 с.

19. Панас P. M. Ґрунтознавство: навчальний посібник. - Львів: "Новий Світ - 2000", 2006. - 372 с.

20. Патика М.В. Відновлення здоров'я ґрунту //Матеріали міжнародної науково-практичної конференції «Оптимізація агроландшафтів: раціональне використання, рекультивація, охорона». -- Дніпропетровськ, 2-4 червня 2003. -- С. 45-47.

21. Петров К. М. Общая экология: Взаимодействие общества и природы: Учеб. пособие для вузов. -- 2-е изд., стер. -- СПб.: Химия, 1998.

22. Про затвердження Положення про моніторинг земель: Постанова... 20 серп. 1993 р. № 661 // Уряд. кур'єр. - 1993. - № 136 - 137. - С. 11.

23. Про суцільну агрохімічну паспортизацію земель с. - г. призначення: Указ... 2 груд. 1995 р. № 1118 // Уряд. кур'єр. - 1995. - 14 груд. - С. 7.

24. Чернова Н. М., Былова А. М. Экология.-- М.: Просвещение, 1988.

25. Экология города: Учебник для вузов/ Под ред. Ф.В.Стольберга. -- К.: Либра, 2000. -- 464 c.

26. Эффективность сельскохозяйственного природопользования/Отв. ред. П. Ф. Веденичев. -- К., 1982.

27. Якість ґрунтів та сучасні стратегії удобрення /за редакцією Д. Мельничука, Дж. Хофман, М. Городнього. - К.: Арістей, 2004.


Подобные документы

  • Аналіз моніторингу навколишнього середовища (ґрунтів та рослинної продукції), який проводив Хмельницький обласний державний проектно-технологічний центр охорони родючості ґрунтів і якості продукції. Фактори накопичення та міграції радіонуклідів в ґрунті.

    курсовая работа [1,4 M], добавлен 22.12.2010

  • Вивчення проблеми забруднення сільськогосподарських земель в зоні впливу автомагістралей. Гідрометеорологічні особливості території. Методика комплексної оцінки перерозподілу важких металів в геосистемах. Отримання екобезпечної аграрної продукції.

    статья [7,2 K], добавлен 11.02.2014

  • Моніторингове дослідження територій. Проведення моніторингу забруднення ґрунтів Рівненської та Житомирської областей. Заходи з охорони земель. Оцінка ліхеноіндикаційною зйомкою забруднення чадним газом автомобільним транспортом квадрату № В1 міста Херсон.

    курсовая работа [127,5 K], добавлен 20.11.2013

  • Характеристика впливу важких металів на біологічні об’єкти. Поняття та токсикологічна характеристика деяких важких металів. Сучасні методи аналізу: хімічні та фізико-хімічні. Отримання та аналіз важких металів із стічних вод підприємств методом сорбції.

    курсовая работа [373,0 K], добавлен 24.06.2008

  • Особливості поведінки фтору в агроекосистемах. Визначення вмісту фтору в ґрунті, рослинах, фосфоритах потенціометричним методом з екстракцією зразків. Розподіл фтору за профілем ґрунтів. Вплив зрошення на процеси нагромадження та міграції фтору.

    реферат [24,0 K], добавлен 20.01.2011

  • Поняття та токсикологічна характеристика важких металів. Шляхи потрапляння металів у водойми, їх вплив на екологічну систему. Аналіз показників кількості заліза, свинцю, ртуті, кадмію, цинку, міді в Дніпродзержинському та Запорізькому водосховищах.

    научная работа [2,1 M], добавлен 02.02.2014

  • Аналіз раціонального комплексу експрес-методів еколого-геологічного моніторингу забруднення довкілля нафтою і нафтопродуктами. Дослідження природи локальних температурних аномалій у приповерхневих шарах, пов’язаних із забрудненням ґрунтів нафтопродуктами.

    автореферат [52,5 K], добавлен 22.11.2011

  • Атмосфера промислових міст та забруднення повітря викидами важких металів. Гостра інтоксикація ртуттю: причини, симптоми та наслідки. Основні джерела забруднення миш’яком, його вплив на організм людини. Способи захисту від впливу важких металів.

    реферат [66,1 K], добавлен 14.10.2013

  • Джерела забруднення водного середовища важкими металами, форми їх міграції у природних водах, їх доступність та токсичність для гідробіонтів. Видові особливості накопичення важких металів у органах і тканинах риб верхів'я Кременчуцького водосховища.

    курсовая работа [122,6 K], добавлен 15.10.2012

  • Поняття екологічного моніторингу як засобу спостереження за станом навколишнього середовища. Його класифікація та особливості розвитку в регіонах Україні. Український досвід впровадження наукового моніторингу у системі спостережень за станом ґрунтів.

    курсовая работа [40,9 K], добавлен 27.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.