Теоретические основы технологических процессов охраны окружающей среды

Принципы интенсификации технологических процессов защиты окружающей среды. Гетерогенный катализ обезвреживания отходящих газов. Очистка газов дожиганием в пламени. Биологическая очистка сточных вод. Защита окружающей среды от энергетических воздействий.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 03.12.2012
Размер файла 57,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Загрязненные сточные воды очищают также с помощью ультразвука, озона, ионообменных смол и высокого давления, хорошо зарекомендовала себя очистка путем хлорирования.

4.2 Физико-химические методы очистки сточных вод с применением коагулянтов

Для обеспечения высокой степени очистки сточных вод в ряде случаев одной биохимической очистки производственных сточных вод недостаточно, поэтому в последние годы отмечено возрастающее применение физико-химических методов. Широкое распространение получили коагуляция и флотация. Реагентный способ очистки достаточно эффективен и прост. Этот способ можно применять практически при неограниченных объемах сточных вод.

Совместное использование коагулянтов и флокулянтов позволит еще более расширить использование этих реагентов для очистки сточных вод. Большие резервы интенсификации метода коагуляции и флокуляции связаны как с более глубоким исследованием механизмов явлений, сопровождающих эти процессы, так и с более эффективным использованием различных физических воздействий.

Данные зарубежных исследований показывают, что значительного повышения эффективности реагентного способа можно добиться оптимизацией технологии очистки, предусматривающей смешение реагентов с водой, а также подбором используемых коагулянтов и флокулянтов.

Эффективность реагентного способа очистки воды, в частности с использованием коагулянтов, можно повысить, установив долее строгий контроль за расходом реагентов в зависимости от количества загрязнений, присутствующих в сточных водах, и физико-химических характеристик этих загрязнений, в первую очередь от их заряда, характеризуемого x потенциалом. Внедрение автоматизированного контроля за расходом реагентов позволит повысить не только степень очистки воды, но и снизить расход реагентов.

Эффективность реагентного способа можно также повысить, применяя физические воздействия на обрабатываемую воду и водные системы (например, электрические и магнитные поля, ультразвук, радиацию и другие способы). Однако внедрение этих методов интенсификации коагуляции и флокуляции тормозится недостаточной изученностью процессов, протекающих на молекулярном и ионном уровне.

Очистка производственных сточных вод реагентным способом включает несколько стадий, основными из которых являются:

1) Приготовление и дозирование реагентов;

2) Смешение реагентов с водой;

3) Хлопьеобразование;

4) Отделение хлопьевидных примесей от воды.

4.3 Оптимизация дозы реагентов

Для технологии очистки воды и обезвреживания осадков большое значение имеет рациональное использование реагентов, так как годовой расход только флокулянтов составляет сотни тонн. Определение оптимальной дозы реагентов представляет собой весьма сложную задачу, так как в практике очистки воды возможно одновременное изменение ряда факторов, например состава и количества примесей.

Следует отметить, что при коагуляции примесей в объеме воды и при контакте с зернистой загрузкой оптимальная доза будет различной, так как кинетические условия коагуляции на поверхности фильтрующего материала значительно лучше, чем в объеме воды.

Эффективность процессов очистки воды в аппаратуре всех типов обусловлена прочностью и плотностью коагуляционной структуры.

Для тонкодисперсной суспензии с частицами заданного размера одним из основных критериев выбор а дозы коагулянта является прочность структуры.

Одновременного увеличения прочности и плотности коагуляцоинной структуры можно достичь комбинированным воздействием на структуру гидродинамических условий перемешивания и дозы коагулянта. Выбор оптимального режима очистки воды с использованием реагентов возможен на основе цепочечно-ячеистой модели коагуляционной структуры.

Представляет интерес определение оптимальной дозы реагента при добавлении его в воду электрохимическим способом. В этом случае наиболее легко оптимизировать процесс изменением плотности тока и продолжительности обработки в зависимости от количественного состава сточных вод.

Применяя известные методы математического моделирования можно определить оптимальный режим электрохимической обработки. Существующие устройства для автоматического дозирования реагентов дают возможность, как правило, поддерживать только их расход, установленный на основе предварительных исследований. Поддержание оптимальной дозы реагентов для соблюдения основных качественных параметров процесса коагуляции пока еще затруднен.

4.4 Перемешивание сточных вод с реагентами

Приготовленный раствор через дозирующее устройство и смеситель вводят в воду. Перемешивание воды с реагентами целесообразно осуществлять в две стадии, причем первую стадию проводить в режиме, приближающемся к режиму идеального смешения, а вторую - в режиме идеального вытеснения по жидкой фазе. Это обусловлено тем, что на первой стадии должно быть обеспечено равномерное распределение реагента по всему объему очищаемых сточных вод, а на второй - создание условий, исключающих распад образовавшихся агломератов частиц загрязнений. Первый режим можно осуществить, например, а аппарате с интенсивно вращающейся мешалкой, а второй - в слое взвешенного осадка.

Как показывают результаты многих исследований, процесс перемешивания воды с реагентами, в частности с неорганическими коагулянтами, необходимо проводить с максимальной скоростью. Оптимизация режима смешения коагулянта с водой может привести к более эффективному использованию, а в некоторых случаях и к сокращению расхода коагулянта.

Эффективность мгновенного перемешивания заключается в изменении степени дисперсности продуктов гидролиза коагулянтов, абсорбирующихся на поверхности частиц загрязнений. При более интенсивном перемешивании увеличивается вероятность сорбции на поверхности частиц загрязнений мелких частиц продуктов гидролиза коагулянтов, что приводит к экономии коагулянта и одновременному увеличению прочности связи частиц в микрохлопьях.

При выборе режима смешения коагулянта необходимо учитывать состав и физико-химические свойства сточных вод, а также вводимых реагентов. Важность определения оптимальных параметров режима смешения обусловлена также большой ролью ортокинетической стадии коагуляции в процессах агрегации частиц загрязнений. Вероятность столкновений между коагулирующими частицами возрастает с увеличением интенсивности перемешивания. Однако при достижении определенного скоростного градиента образующиеся хлопья начинают разрушаться. Для применяемых коагулянтов значение скоростного градиента составляет примерно 20-70 с-1. В качестве критериальной оценки процесса смешения реагентов с водой наряду со скоростным градиентом применяют также произведение последнего на продолжительность смещения, введенное Кэмпом (критерий Кэмпа).

В направлении интенсификации перемешивания воды с реагентами развивается и разработка смесителей. Рекомендуется при выборе типа, конструкции и режима действия перемешивающих устройств на стадиях быстрого смешения воды с реагентами и медленного перемешивания воды в камерах хлопьеобразования учитывать закономерности коагуляционного структурообразования, определяющие начальные значения скоростного градиента, необходимость постепенного перемешивания и концентрации твердой и жидкой фаз на поверхности раздела.

Быстрое перемешивание реагентов с водой может быть достигнуто в смесителях с псевдоожиженной насадкой и предварительной электрообработкой смеси.

Электромагнитные смесители целесообразно применять прежде всего при контактировании воды с растворами электролитов, например с растворами кислот, щелочей, солей. Однако возможно перемешивание неэлектропроводимых реагентов, например полиакриламида с водой, в электромагнитных смесителях с псевдоожиженной или магнитоожиженной насадкой.

Наиболее просты в аппаратурном оформлении смесители, содержащие камеру электрообработки, в которой установлены два или несколько электродов. В результате воздействия электрического поля на растворы электролитов происходит эффективное смешение воды с коагулянтом, что позволяет существенно сократить время перемешивания, а также расход реагентов на очистку стоков. Электролиз проводят, как правило, в режимах без заметного выделения газов (кислорода и водорода)

Другим простейшим вариантом электромагнитного перемешивания является использование генераторов магнитного поля, устанавливаемых на участке трубы, где одновременно подают воду и раствор коагулянта (электролита). Такие смесители весьма просты и их легко установить практически на любом участке технологической линии. Кроме того, смесители с использованием постоянных магнитов могут быть установлены в помещениях любой категории.

Высокая интенсивность очистки достигается в электромагнитных смесителях с магнитоожиженной насадкой, состоящей из ферромагнитных частиц.

В тех случаях, когда недопустимо загрязнение очищаемой воды примесями железа, вместо смесителей с магнитоожиженной насадкой можно применить электромагнитные смесители типа статора асинхронного двигателя с использованием в качестве насадки многоосетевого ротора с подвижными элементами.

4.5 Отделение взвешенных частиц от воды

Очистка воды от взвешенных коагулированных частиц является многостадийным процессом, включающим, по крайней мере, образование агрегатов и отделение их от воды. Процесс начинается с образования агрегатов частиц, затем происходит их распад, переход агрегатов в осадок, выпадение агрегатов частиц из осадка снова в жидкую фазу, выпадение монодисперсных частиц из жидкости в осадок, минуя стадию агрегатообразования. Процесс отделения агрегатов частиц от воды называется отстаиванием.

Для отделения скоагулированных частиц примесей от воды используют также флотацию или фильтрацию. Отстаивание представляет собой экстенсивный процесс, однако, являясь универсальным методом, позволяет очищать сточные воды различного состава. Интенсификация процесса отстаивания связана как с улучшением седиментационных характеристик скоагулированных частиц примесей, так и с оптимизацией конструкций отстойников.

В последнее время для очистки сточных вод все чаще используют флотацию. Преимущество ее - достаточно высокая эффективность извлечения примесей из воды. процесс флотации зависит как от свойств частиц, так и от их размера, а также от ряда физико-химических свойств осветляемых токсидисперсных суспензий, включая и сточные воды. все это приводит к определенным трудностям внедрения флотационного способа очистки вод.

Использование реагентов при флотации позволяет в ряде случаев добиться высоких показателей очистки. В практике флотационного разделения суспензий известно достаточно много способов насыщения жидкости пузырьками газов (воздуха). Однако для очистки сточных вод наибольший интерес представляет способ напорной флотации с образованием пузырьков газа в жидкости при снижении давления, электронный способ аэрирования сточных вод, способ подачи сжатого воздуха через фильтры (пневматический), электролитический способ.

В последние годы для электролитической очистки жидкостей применяют электрофлотаторы и электрокоагуляторы. Действие электрофлотационных аппаратов основано на принципе аэрации жидкости и пузырьками газов, образующимися при электролизе воды. Высокая интенсивность метода электрофлотации обусловлена получением тонкодисперсных пузырьков электролизных газов и незначительным перемешиванием в камере электрофлотационого аппарата. За рубежом известны аппараты для одновременного проведения электрокоагуляции и электрофлотации. Известны аппараты в которых совмещены электрохимическая обработка и электрофлотация, а также аппараты, совмещающие электрохимическую обработку и напорную флотацию.

4.6 Биологическая очистка сточных вод

Биологическая очистка сточных вод представляет собой результат функционирования системы активный ил - сточная вода, характеризуемой наличием сложной многоуровневой структуры. Биологическое окисление составляющее основу этого процесса, является следствием протекания большого комплекса взаимосвязанных процессов различной сложности: от элементных актов обмена электронов до сложных взаимодействий биоценоза с внешней средой.

Результаты исследований показывают, что характерной особенностью сложных многовидовых популяций, к которым относятся и активный ил, является установление в системе динамического равновесия, которое достигается сложением множества относительно небольших отклонений активности и численности отдельных видов в ту или иную сторону от их среднего уровня.

4.7 Аэробный и анаэробный метод

Аэробный метод основан на использовании аэробных микроорганизмов, для жизнедеятельности которых необходим постоянный приток кислорода и температура в пределах 20…40°С. При аэробной очистке микроорганизмы культивируются в активном иле или в виде биопленки. Активный ил состоит из живых организмов и твердого субстрата. Живые организмы представлены бактериями, простейшими червями и водорослями. Биопленка растет на наполнителе биофильтра и имеет вид слизистых обрастаний толщиной 1…3 мм и более. Биопленка состоит из бактерий, простейших грибов, дрожжей и других организмов.

Аэробная очистка происходит как в природных условиях, так и в искусственных сооружениях.

Очистка в природных условиях происходит на полях орошения, полях фильтрации и биологических прудах.

Поля орошения - это специально подготовленные для очистки сточных вод и агрокультурных целей площади. Очистка протекает под действием почвенной микрофлоры, солнца, воздуха и под влиянием растений. В почве полей орошения находятся бактерии, дрожжи, водоросли, простейшие животные. Сточные воды содержат в основном бактерии. В смешанных биоценозах активного слоя почвы возникают сложные взаимодействия микроорганизмов, в результате чего сточная вода освобождается от содержащихся в ней бактерий. Если на полях не выращиваются сельскохозяйственные культуры, и они предназначены только для биологической очистки сточных йод, то они называются полями фильтрации.

Биологические пруды - это каскад прудов, состоящий из 3…5 ступеней, через которые с небольшой скоростью протекает осветленная или биологически очищенная сточная вода. Такие пруды предназначены для биологической очистки сточных вод или доочистки сточных вод в комплексе с другими очистными сооружениями.

Очистка в искусственных сооружениях поводится в аэротенках и на биофильтрах. Более широкое применение нашли аэротенки.

Аэротенки - это железобетонные резервуары, представляющие собой открытые бассейны, оборудованные устройствами для принудительной аэрации. Глубина аэротенка - 2…5 м.

Анаэробный метод очистки протекает без доступа воздуха. Его в основном используют для обезвреживания твердых осадков, которые образуются при механической, физико-химической и биологической очистке сточных вод. Эти твердые осадки сбраживаются анаэробными бактериями в специальных герметичных резервуарах, которые называются метантенками В зависимости от конечного продукта брожение бывает спиртовое, молочнокислое, метановое и др. Для сбраживания осадков сточных вод используется метановое брожение.

4.8 Контакто-стабилизационный метод

Для очистки промышленных стоков часто применяется контактно-стабилизационный метод очистки сточной воды. В результате исследований установлено также, что такой метод может применяться как для очистки смеси городских сточных вод и поверхностного стока, так и только для поверхностного стока при его раздельной подаче на очистные сооружения. Очистка сточных вод с применением этого метода целесообразна при наличии станций аэрации, имеющих в своем составе аэробные стабилизаторы для обработки избыточного активного ила. Контактно-стабилизационный метод представляет собой модифицированный биологический процесс, при котором в ходе аэрирования стоков в течение короткого периода времени очищаемой воды и стабилизированного активного ила происходит изъятие основной массы органических и минеральных загрязнений. Как показали исследования, очистка стоков при контактном методе занимает порядка 15 минут (период аэрации). Эффект очистки составляет в среднем по БПК20 60-80%, по ХПК - от 70 до 80% и по взвешенным веществам - от 60 до 90%. Увеличение периода аэрации до 45-60 минут практически не дает дополнительного эффекта.

4.9 Системы очистки сточных вод на биофильтрах

Кроме контактной стабилизации для биологической очистки применяются биофильтры, вращающиеся биоконтакторы и очистные лагуны. Применение высокоэффективных сооружений искусственной биологической очистки в биофильтрах и вращающихся биоконтакторах обеспечивают высокий эффект очистки по БПК6 и взвешенным веществам порядка 85-95%, но требует устройств регулирующих емкостей. Эффект очистки поверхностного стока в лагунах различных типов (окислительные пруды, аэрируемые пруды, пруды с высшей водной растительностью и т.д.) колеблется по БПК6 от 30 до 90%, по удалению взвешенных веществ на входе - от 20 до 92%.

4.10 Механическая очистка сточных вод

К механическим способам очистки сточных вод можно отнести фильтрование, осаждение, и флотацию стоков.

Метод осаждения может использоваться, например, для очистки сточных вод от взвешенных веществ. Фильтрация сточных вод при помощи данного метода можно организовать двумя различными способами: либо под действием силы тяжести - при отстаивании сточных вод, или же под действием центробежной силы. Установки, очищающие сточные воды такими способами, как правило, могут удалять нерастворимые взвеси размером более нескольких долей милиметра. При фильтрации сточных вод нередко используют многоступенчатые отстойники. При этом частично очищенная на первой ступени сточная вода под напором подается в следующие отстойники.

Другим методом очистки производственных сточных вод и загрязненных вод другого происхождения от крупнодисперсных субстанций является метод флотации. Суть данной методики состоит в переносе загрязняющих агентов на поверхность обрабатываемых сточных вод при помощи воздушных пузырьков. Как результат флотации, образуются пенные образованя, содержащте загрязнителиводы, которые, затем, удаляются особыми скребками. Пузырьки воздуха для флотации могут быть получены механическими спосабами - при помощи турбин или форсунок, при помощи электрофлотации воды и другими способами.

Пожалуй, самым широко используемым в настоящее время методом очистки сточных воды от крупнодисперсных агентов является процесс фильтрации стоков через пористые материалы или сетки с нужным пространственным рейтингом фильтрации. Очистка сточных вод с использованием указанных процессов важна, если необходимо использование оборотной воды.

4.11 Очистка сточных вод процеживанием и отстаиванием

Процеживание. Важной и обязательной мерой очистки и подготовки воды для последующей очистки является удаление из сточных вод крупных загрязнений. Для этого в составе всех очистных сооружений проектируются решетки. Они выполняются из ряда металлических стержней, расположенных параллельно друг другу и создающих плоскость с прозорами, через которую процеживается вода.

Для устройства решеток применяются стержни прямоугольной с закругленной лобовой частью, круглой и других форм. Толщина стержней равна 6-10 мм. Ширина прозоров между стержнями обычно принимается 16 мм. Скорость движения воды в прозорах решеток принимается равной 0,8-1,0 м/с.

Размер решеток определяется из условия обеспечения в прозорах решеток оптимальной скорости 0,8-1,0 м/с при максимальном расходе сточных вод.

Для удаления более мелких взвешенных веществ, а также ценных продуктов, применяют сита, которые могут быть двух типов: барабанные или дисковые. Сито барабанного типа представляет собой сетчатый барабан с отверстиями 0,5-1,0 мм. При вращении барабана сточная вода фильтруется через его внешнюю или внутреннюю поверхность в зависимости от подвода воды снаружи или внутрь. Задерживаемые примеси смываются с сетки водой и отводятся в желоб. Производительность сита зависит от диаметра барабана и его длины, а также от свойств примесей. Сита применяют в текстильной, целлюлозно-бумажной и кожевенной промышленности.

Отстаивание. Отстаивание применяют для осаждения из сточных вод грубодисперсных примесей. Осаждение происходит под действием силы тяжести. Для проведения процесса используют песколовки, отстойники и осветлители. В осветлителях одновременно с отстаиванием происходит фильтрация сточных вод через слой взвешенных частиц.

Как правило, сточные воды содержат взвешенные частицы различной формы и размера. Такие воды представляют собой полидис-персные гетерогенные агрегативно-неустойчивые системы. В процессе осаждения размер, плотность и форма частиц, а также физические свойства системы изменяются. Кроме того, при слиянии различных по химическому составу сточных вод могут образовываться твердые вещества, в том числе и коагулянты. Эти явления также оказывают влияние на форму и размеры частиц. Все это усложняет установление действительных закономерностей процесса осаждения.

Песколовки. Их применяют для предварительного выделения минеральных и органических загрязнений (0,20-0,25 мм) из сточных вод. Горизонтальные песколовки представляют собой резервуары с треугольным или трапецеидальным поперечным сечением. Глубина песколовок 0,25-1,00 м. Скорость движения воды в них не превышает 0.3 м/с. Разновидностью горизонтальных песколовок являются песколовки с круговым движением воды в виде круглого резервуара конической формы с периферийным лотком для протекания сточной воды. Осадок собирается в коническом днище, откуда его направляют на переработку или в отвал. Применяются при расходах до 7000 мі/сут. Вертикальные песколовки имеют прямоугольную или круглую форму, в них сточные воды движутся с вертикальным восходящим потоком со скоростью 0.05 м/с.

Конструкцию песколовки выбирают в зависимости от количества сточных вод, концентрации взвешенных веществ. Наиболее часто используют горизонтальные песколовки.

Отстойники. Различают отстойники: горизонтальные, вертикальные, радиальные, тонкослойные (трубчатые, пластинчатые).

Горизонтальные отстойники. Они представляют собой прямоугольные резервуары, имеющие два или более одновременно работающих отделения Вода движется с одного конца отстойника к другому.

Осветлители. Их применяют для очистки природных вод и для предварительного осветления сточных вод некоторых производств. Используют, в частности, осветлители со взвешенным слоем осадка, через который пропускают воду, предварительно обработанную коагулянтом.

Воду с коагулянтом подают в нижнюю часть осветлителя. Хлопья коагулянта и увлекаемые им частицы взвеси поднимаются восходящим потоком воды до тех пор, пока скорость выпадения их не станет равной скорости восходящего потока - сечение 1-1. Выше этого сечения образуется слой взвешенного осадка, через который фильтруется осветленная вода. При этом наблюдается процесс прилипания частиц взвеси к хлопьям коагулянта. Осадок удаляется в осадкоуплотнитель, а осветленная вода поступает в желоб, из которого ее направляют на дальнейшую очистку.

4.12 Очистка сточных вод фильтрованием

Фильтрование применяют для выделения из сточных вод тонкодиспергированных твердых или жидких веществ, удаление которых отстаиванием затруднено. Разделение проводят при помощи пористых перегородок, пропускающих жидкость и задерживающих диспергированную фазу. Процесс идет под действием гидростатического давления столба жидкости, повышенного давления над перегородкой или вакуума после перегородки.

Фильтрование через фильтрующие перегородки. Выбор перегородок зависит от свойств сточной воды, температуры, давления фильтрования и конструкции фильтра.

Фильтровальные перегородки, задерживающие частицы, должны обладать минимальным гидравлическим сопротивлением, достаточной механической прочностью и гибкостью, химической стойкостью и не должны набухать и разрушаться при заданных условиях фильтрования.

Для фильтрования используют различные по конструкции фильтры. Основные требования к ним: высокая эффективность выделения примесей и максимальная скорость фильтрования.

Процесс фильтрования состоит из трех стадий: 1) перенос частиц на поверхность вещества, образующего слой; 2) прикрепление к поверхности и 3) отрыв от поверхности.

По характеру механизма задерживания взвешенных частиц различают два вида фильтрования: 1) фильтрование через пленку (осадок) загрязнений, образующуюся на поверхности зерен загрузки; 2) фильтрование без образования пленки загрязнений. В первом случае задерживаются частицы, размер которых больше пор материала, а затем образуется слой загрязнений, который является также фильтрующим материалом. Во втором случае фильтрование происходит в толще слоя загрузки, где частицы загрязнений удерживаются на зернах фильтрующего материала адгезионными силами.

Фильтры с зернистым слоем подразделяют на медленные и скоростные, открытые и закрытые. Высота слоя в открытых фильтрах равна 1 -2 м, в закрытых - 0,5-1,0 м. Напор воды в закрытых фильтрах создается насосами.

Медленные фильтры используют для фильтрования некоагулированных сточных вод. Они представляют собой бетонные или кирпичные резервуары с дренажным устройством, на котором расположен зернистый слой. Скорость фильтрования в них зависит от концентрации взвешенных частиц: до 25 мг/дм» принимают скорость фильтрования 0,2-0.3 м/ч; при 25-30 мг/дм - 0,1-0,2 м/ч. Достоинством фильтров является высокая степень очистки сточных вод. Недостатки: большие размеры, высокая стоимость и сложная очистка от осадка.

Скоростные фильтры могут быть двух типов: однослойные и многослойные. У однослойных фильтров фильтрующий слой состоит из одного и того же материала, у многослойных - из различных материалов.

Сточную воду в фильтр подают внутрь фильтра, где она проходит через фильтрующий материал и дренаж и удаляется из фильтра. После засорения фильтрующего материала проводят промывку подачей промывных вод снизу вверх. Дренажное устройство выполняют из пористо-бетонных сборных плит. На нем размещают фильтрующий материал (в 2-4 слоя) одного гранулометрического состава. Общая высота слоя загрузки равняется 1,5-2 м. Скорость фильтрования принимается равной 12-20 м/ч.

В многослойных скоростных фильтрах фильтрующий слой состоит из зерен разных материалов, например, из слоя антрацита и песка. Верхние слои имеют зерна большего размера, чем нижние. Конструкция этих фильтров мало отличается от конструкции однослойных. Они имеют более высокую производительность и большую продолжительность фильтрования.

Выбор тина фильтра для очистки сточных вод зависит от количества фильтруемых вод, концентрации загрязнений и степени их дисперсности, физико-химических свойств твердой и жидкой фаз и от требуемой степени очистки.

Промывку фильтров, как правило, производят очищенной водой (фильтратом), подавая ее снизу вверх. При этом зерна загрузки переходят во взвешенное состояние и освобождаются от прилипших частиц загрязнений. Может быть произведена водо-воздушная промывка, при которой сначала зернистый слой продувают воздухом для разрыхления, а затем подают воду. Интенсивность подачи воздуха изменяется в пределах 18-22 дмі /(м2с), а воды - 6-7 дмі(мІс). Возможна и трехэтапная промывка. Сначала слой продувают воздухом, а затем смесью воздух-вода; на последнем этапе - водой. Продолжительность промывки 5-7 мин.

5. Защита окружающей среды от энергетических воздействий

В результате научно-технической революции широкое распространение получили процессы и приборы, представляющие собой источники электромагнитных излучений (ЭМИ), которое в настоящее время превратилось в «бушующий океан» ЭМИ, во много раз, превышающий естественный фон, создаваемый излучением Солнца. Электромагнитные излучения искусственного происхождения в совокупности с естественным солнечным оказывают значительное влияние на здоровье людей, а также на все живое в биосфере. Электромагнитные излучения производят биологическое действие на функционирование организма в целом, а также на отдельные его системы - иммунную, эндокринную, кроветворную и так далее, а также на органы чувств - глаза, уши, приводя к различным нарушениям и повреждениям. Исследователями установлено негативное влияние электромагнитных излучений высоковольтных линий электропередач на людей, проживающих вблизи этих линий.

А для защиты от таких энергетических воздействий они предлагается создание буферной зоны из плотных, густых лесонасаждений, включая высокие деревья типа кипариса и пирамидального тополя, между источниками ЭМИ и жилыми домами. Кроме того, жилые дома и источники ЭМИ должны иметь обязательно заземляющий контур. Подобные излучения создают телевизионные и радиоцентры (их передающие устройства), радиолокаторы (аэропортов, системы ПВО).

Источниками электромагнитного излучения непосредственно в жилом или производственном помещении, оказывающими негативное влияние на организм, считаются холодильники, телевизоры, компьютеры, радиоприемники, видеомагнитофоны, пылесосы, микроволновые печи и т. д. По силе воздействия некоторых домашних электромагнитных полей на организм человека специалисты считают их сопоставимыми с электромагнитными излучениями ЛЭП. Отмечены отрицательные воздействия компьютеров на здоровье людей при длительной работе, проявляющиеся в виде депрессии, стрессового состояния, головных болей, бессонницы, раздражения кожи, усталости глаз.

Переменное электромагнитное поле мониторов - мощный источник переменных электромагнитных и электрических полей высоких и низких частот.

По статистике проведенных исследований электрические поля высокой интенсивности в 7 раз повышают вероятность онкологических заболеваний, а также способствуют изменению структуры зубных пломб, что приводит к их разрушению и выделению ядовитых веществ. Для защиты от вышеуказанных воздействий необходимо применение фильтров класса «максимальная защита» (типа «МАХ-МР-196»). Кроме того, экологи рекомендуют размещение комнатных декоративных растений, цветов в помещениях, где работает различная электроаппаратура, в том числе и компьютеры. В обязательном порядке также необходимо подключение электроприборов (включая компьютеры) к заземляющему контуру жилых и производственных зданий.

Заключение

Промышленные отходы (ПО) и загрязнения, выделяющиеся в технологических циклах предприятий и при очистке производственных сточных вод, представляют наибольшую опасность, прежде всего для населения крупных промышленных центров и окружающих их регионов, создают трудности в работе городских коммунальных служб. В связи с этим в дальнейшем необходимо внедрение технологических процессов, дающих минимальные выбросы, при которых самоочищающаяся способность природы в достаточной степени будет препятствовать возникновению необратимых экологических изменений.

Под безотходной технологией понимается идеальная модель производства, в результате деятельности которого не происходит выбросов в окружающую среду, но в большинстве случаев она не может быть реализована в полной мере. Безотходное производство можно характеризовать всемерно возможной утилизацией образовавшихся в прямых технологических процессах отходов.

Малоотходная технология представляет собой промежуточную ступень безотходной и отличается от нее тем, что обеспечивает получение готового продукта с не полностью утилизируемыми отходами. Отходы представляют собой побочные продукты промышленного производства, выделяющиеся в процессе производства основных видов продукции и характеризующиеся определенными физико-химическими свойствами. Отходы производства и потребления, пригодные для переработки в товарную продукцию, относятся к вторичным материальный ресурсам.

При создании и реализации малоотходной и безотходной технологии используются различные методы и технологические процессы инженерной экологии, включая механические, физико-химические, химические, термические и биологические процессы: осаждения и разделения гетерогенных систем, коагуляции и электрокоагуляции, флокуляции, сорбции, катализа, конденсации, флотации, жидкостной экстракции, ионного обмена, окисления и восстановления, биохимического окисления и разложения, пиролиза, огневого обезвреживания и др.

Список литературы

среда защита газ катализ

1. Бочкарев В.В. Теоретические основы технологических процессов охраны окружающей среды. Учебное пособие. Том. политехн. ун-т Томск, 2002. - 126 с.

2. Ветошкин А.Г. Теоретические основы защиты окружающей среды. Учебное пособие. - Пенза: Изд-во ПГАСА, 2002. - 290 с.

3. Белоусов В.В. Теоретические основы процессов газоочистки. - М.: Металлургия, 1988. - 254 с.

4. Родионов А.И., Клушин В.Н., Торочешников Н.С. Техника защиты окружающей среды: учебное пособие. - М.: Химия, 1989. - 511 с.

5. Очистка производственных сточных вод: учебное пособие / Под ред. С.В. Яковлева. - М.: Стройиздат, 1985. - 335 с.

6. Пальгунов П.П., Сумароков М.В. Утилизация промышленных отходов. - М.: Стройиздат, 1990. - 352 с.

Размещено на Allbest.ru


Подобные документы

  • Учет и управление экологическими рисками населения от загрязнений окружающей среды. Методы очистки и обезвреживания отходящих газов ОАО "Новоросцемент". Аппараты и устройства, используемые для очистки аспирационного воздуха и отходящих газов от пыли.

    дипломная работа [113,0 K], добавлен 24.02.2010

  • Правовая основа охраны окружающей среды. Состояние природных объектов, формирующих созданную человеком окружающую среду. Контроль в области охраны окружающей среды. Внедрение экологически безопасных современных технологических процессов и оборудования.

    реферат [28,0 K], добавлен 09.10.2012

  • Проблема охраны окружающей среды. Внедрение высокоэффективных систем защиты водоемов от загрязнений. Очистка промышленных стоков и подготовка воды для технических и хозяйственно-питьевых целей. Процесс биологической очистки, характеристика ее стадий.

    презентация [7,2 M], добавлен 25.02.2015

  • Очистка газов от SOx. Процесс с использованием CuO/CuS04, катализаторы. Угольное топливо с добавками извести. Методы обезвреживания отходящих газов. Очистка отходящих газов от аэрозолей. Адсорбционные и хемосорбционные методы очистки отходящих газов.

    реферат [24,7 K], добавлен 23.02.2011

  • Принципы природопользования и охраны окружающей среды в Беларуси. Общее понятие о методах и методике экологического исследования. Государственное управление природопользованием: сущность, методы и функции. Правовое регулирование охраны окружающей среды.

    дипломная работа [58,8 K], добавлен 25.11.2012

  • Виды загрязнения окружающей природной среды и направления ее охраны. Принципы работы очистного оборудования и сооружений. Объекты и принципы охраны окружающей природной среды. Нормативно-правовые основы ее охраны. Природоохранная деятельность предприятий.

    реферат [37,9 K], добавлен 26.04.2010

  • Понятие и роль биотехнологий, используемых для очистки различных загрязнений окружающей среды: переработки отходов, защиты атмосферы, рекультивация, очистки вод, переработки отходов растительности, охраны земель, очистка почв от нефти и нефтепродуктов.

    курсовая работа [218,6 K], добавлен 17.06.2013

  • Промышленные и биологические катализаторы (ферменты), их роль в регуляции технологических и биохимических процессов: Применение адсорбционно-каталитических методов для обезвреживания токсичных выбросов промышленных производств, очистки сточных вод.

    курсовая работа [588,9 K], добавлен 23.02.2011

  • Основные этапы формирования природоохранной концепции. Характеристика компонентов природопользования. Задачи и способы защиты окружающей среды. Методы очистки воды. Нерациональное и рациональное природопользование. Принцип "экологичное — экономично".

    контрольная работа [21,9 K], добавлен 04.05.2011

  • Экономические и правовые основы охраны окружающей среды. Проект основ государственной политики в области экологического развития РФ на период до 2030 года. Деятельность в области охраны окружающей среды в зарубежных странах и межстрановое сотрудничество.

    дипломная работа [1,9 M], добавлен 13.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.