Выбор и расчет оборудования для депарафинизации нефтяных скважин в условиях НГДУ "ЛН"

Анализ состава АСПО и условия их образования на нефтепромысловом оборудовании. Особенности глубиннонасосного оборудования. Техника и оборудование, применяемое для депарафинизации скважин в условиях НГДУ "ЛН". Расчет на прочность стеклопластиковых штанг.

Рубрика Геология, гидрология и геодезия
Вид дипломная работа
Язык русский
Дата добавления 25.06.2010
Размер файла 996,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Штанги

Штанги предназначены для передачи возвратно- поступательных движений плунжеру насоса. Штанга представляет собой стержень круглого сечения с утолщенными головками на концах. Выпускаются штанги из легированной стали диаметром (по телу) 19,22,25 мм и длинной 8 метров. В ЦДН и Г №1 большое распространение получили штанги диаметром 19 и 22 мм (61 %), а также их комбинирование в двухступенчатые композиции.

Насосно-компрессорные трубы

Насосно-компрессорные трубы, применяемые для эксплуатации штанговыми насосами, изготавливаются в соответствии с ГОСТ 633-80. Они подразделяются на следующие виды:

- трубы гладкие

- остеклованные трубы

- трубы с оцинкованным покрытием

- трубы с полимерным покрытием

Для эксплуатации скважин штанговыми насосами применяются следующие виды труб: из них 211 - 4 %; остеклованные - 2,511 - 96 %; 2,511 - 78 %

Трубы всех типов исполнения, имеют длины:

1 группа - от 5,5 до 8,5 м

2 группа - свыше 8,5 до 10 м.

3.2 Техника и оборудование применяемое для депарафинизации скважин в условиях НГДУ «ЛН»

Для депарафинизации скважин в НГДУ “ ЛН” применяют различное оборудование. Краткое их описание и технические характеристики приведены ниже.

Наиболее часто применяют для депарафинизации скважин метод промывки. При промывке микробиологическим раствором, нефтедистиллятной смесью, дистиллятом используются автоцистерны и промывочные агрегаты.

Доставка промывочного раствора на скважину осуществляется в автоцистернах ЦР-7АП, АЦН-7,5-5334, АЦН-11-257, АЦ-15-5320/8350, АЦ-16П.

Таблица 9

Техническая характеристика автоцистерн

Автоцистерна

Транспортная база

Грузоподъемность, т

Наибольшая скорость передвижения с полной нагрузкой, км/ч

Тяговый двигатель-четырёхконтактовый дизель

Номинальная мощность

(при п=2100 мин-1), кВт

Вместительность цистерны

Центробежный насос

Подача (дм3/с) при напоре, м 70

48

Время заполнения жидкостью, мин

Наиб. мощн, потреб. насосом, кВт

Условн. диам. линии, мм

всасывающей

напорной

Всасывающее устройство

Высота всасывания, м

Рабочий агент

Размеры, мм

длина

ширина

высота

Масса, кг

полная

комплекта

АЦН-11-257

КрАЗ-257Б1А

12

68

ЯМЗ-238

176,5

11

9

9600

2500

2860

22600

11040

АЦН-7,5-5334

МАЗ-5334

7,2

85

ЯМЗ-236

132

7,5

12,5

21

6

15

100

50

Эжектор

5

6950

2500

2870

15325

7450

ЦР-7АП

КрАЗ-255

7,5

71

ЯМЗ-238

176,5

7,5

8590

2500

3070

19035

10980

Для промывки скважин применяются самоходные насосные агрегаты: цементировочный агрегат ЦА-320М, насосные установки УН1-100х200,

УН1Т-100х200. Все агрегаты имеют трубки высокого давления с цилиндрической резьбой для быстрой сборки и разборки нагнетательной линии.

Таблица 10

Техническая характеристика ЦА-320 М

Монтажная база

Силовая установка:

марка

тип двигателя

Наиб.мощн. при частоте вращ. вала дв-ля 2800мин-1, л.с.

Насос марки

Наибольшая подача насоса, л/с.

Наибольшее давление, МПа

Водопадающий насос

Наибольшая подача, л/с.

Наибольшее давление, МПа

Объём мерной ёмкости, м3

Диам.проходн. сечения коллектора, мм

приёмного

нагнетательного

Вспомогательный трубопровод

число труб

общая длина, м

Масса агрегата, кг

без заправки

заправленного

Габаритные размеры, мм

КрАЗ-257

5УС-70

ГАЗ-51

70

23

32

13

1,5

6,4

100

50

6

22

16970

17500

10425х2650х3225

3.3 Техника и оборудование при паротепловой обработке

При паротепловой обработке используются специальная техника и оборудование, парогенераторные установки: отечественная ППГУ-4/120М с максимальной производительностью пара 4 т/ч и рабочим давлением 12 МПа, заграничные “Такума” и КК.

Парогенераторная установка предназначена для выработки пара. Котлоагрегаты установок могут работать на природном газе или жидком топливе. Для предупреждения образования накипи на поверхности нагрева сырую воду перед подачей в котел осветляют и обессоливают в специальных фильтрах.

Таблица 11

Техническая характеристика парогенераторной установки ППГУ- 4/120М

Теплопроизводительность по отпускаемому пару, кВт/ч

Давление на выходе из парогенератора, мПа

максимальное

рабочее

Давление пара на выходе из установки. МПа

Степень сухости пара, %

Расход пара на скважину, кг/с

Установленная электрическая мощность, кВт

Вместимость осн. топливного бака, л

Вместимость бака воды. л

Метод деаэрации

Масса установки, кг

Масса блока парогенератора, кг

Габариты, мм

парогенератора

водоподготовки

2,32

13,2

6-12

0-12

80

0,55-1,11

75

1000

5000

термический

39700

29500

12080х3850х3200

6250х3850х3200

Установка ППУА-1200/100

Предназначена для депарафинизации скважин, промысловых и магистральных нефтепроводов, замороженных участков наземных коммуникаций в условиях умеренного климата. Можно использовать так же при монтаже и демонтаже буровых установок и при прочих работах для отогрева оборудования.

Включает в себя парогенератор, водяную, топливную и воздушную системы, привод с трансмиссией, кузов, электрооборудование и вспомогательные узлы. Оборудование установки смонтировано на раме, закрепленной на шасси автомобиля высокой проходимости КрАЗ-255Б или КрАЗ-257, и накрыто металлической кабиной для предохранения от атмосферных осадков и пыли.

Привод основного оборудования осуществляется от тягового двигателя автомобиля, управление работой установки - из кабины водителя.

Таблица 12

Техническая характеристика ППУА- 1200/100

Монтажная база

Максимальная температура 0С

Максимальное давление пара, МПа

Применяемое топливо

Максимальный расход топлива, кг/ч

Ресурс работы установки (по запасу воды на максимальной производительности) ч

Масса (с заправочными емкостями), кг

Шасси авт. КрАЗ 255Б или КрАЗ 257

310

10

Дизельное

83,2

3,5

19200 или 18380

Агрегаты АДПМ

Предназначены для депарафинизации скважин горячей нефтью. Агрегат, смонтирован на шасси автомобиля КрАЗ 255Б1А, включает в себя нагреватель нефти, нагнетательный насос, системы топливо и воздухоподачи к нагревателю, систему автоматики и КИП, технологические и вспомогательные трубопроводы.

Привод механизмов агрегата - от двигателя автомобиля, где размещены основные контрольно- измерительные приборы и элементы управления.

Таблица 13

Техническая характеристика агрегатов АДПМ-12/150 и 2АДПМ-12/150

Подачи по нефти м3

Максимальная температура нагрева

нефти 0С

безводной

Рабочее давление пара на выходе. МПа

Теплопроизводительность агрегата гДж

АДПМ-12/150

12

150

122

13

3,22

2АДПМ-12/150

12

150

122

13

3,22

Нефть, подвозимая в автоцистернах, закачивается насосом агрегата и прокачивается под давлением через нагреватель нефти, в котором она нагревается до необходимой температуры. Горячая нефть подается в скважину, где расплавляет отложения парафина и выносит их в промысловую систему сбора нефти

3.4 Подбор основного глубинно-насосного оборудования по скважине

Исходные данные:

Lп = 1200 м Ру = 1,6 МПа

Рпл = 16,8 МПа Gо = 8,4 м3/ т

Рзаб = 13,5 МПа св = 1170 кг/ м3 сн = 875 кг/ м3

в = 1,027

Д = 146 мм Насос - 225-ТНМ

К = 20,6 т/ сут·МПа Станок-качалка - СКД-6-2,5-2800

п = % Число качаний n = 5

dнкт = 73 мм = 2,5 Длина хода L = 2,5 м

Q = 19,0 м3/ сут.

Определяем планируемый отбор жидкости по уравнению притока при

п = 1:

Q = К·(Рпл - Рзаб)п, т/ сут, (5, стр. 130) (3.1)

где: К - коэффициент продуктивности, т/сут;

Рпл - пластовое давление, МПа;

Рзаб - забойное давление, МПа;

п. - показатель фильтрации при линейной зависимости Q = Р; п =1.

Q = 20,6·(16,8 - 13,5) = 68 т/ сут.

глубина спуска насоса Lп = 1200 м.

Плотность смеси при пв = 53%:

рсм = , кг/ м3 (5, стр. 130) (3.2)

где: сн - плотность нефти кг/ м3,

сг - плотность газа, кг/ м3

св - плотность воды, кг/ м3

nв - содержание воды в продукции скважины, %

в - объемный коэффициент смеси.

ссм = =1018 кг/ м3

Необходимая теоретическая производительность установки при коэффициенте подачи з = 0,6 - 0,8:

Qоб =, м3/ сут, (13, стр.195) (3.3)

где Qоб - планируемый отбор, т/ сут.

Qоб = == 45 м3/ сут.

4. По диаграмме области применения СКД6 и СКД8 определяем тип СК.

Lп = 900 м, Qоб = 45 м3/сут, dнасоса = 57 мм. По глубине спуска насоса и дебиту выбираем тип станка-качалки и диаметр насоса: СКД6-2,5-2800 - станок-качалка нормального ряда дезаксиальный, максимальная длина хода устьевого штока - 25 дм, номинальный крутящий момент на валу редуктора - 28 кН·м. Максимальное число качаний п = 14 в минуту.

5. Выбираем тип насоса:

НСН-1 - до 1200 м,

НСН-2 - от 1200 до 1500 м,

НСВ-1 - от 1500 до 2500 м,

НСВ-2 - свыше 2500 м.

Выбираем НСН-1, который спускается на глубину до 1200 м, поскольку Lп = 900 м.

6. Выбираем насосно-компрессорные трубы по диаметру насоса dн = 57 мм, выбираем dнкт = 73 мм.

7. По рекомендациям таблиц выбираем конструкцию штанг исходя из данных:

dн = 57 мм, Lп = 900 м. Конструкция колонны штанг одноступенчатая: диаметр штанг dш = 19 мм. Максимальная глубина спуска насоса при данной конструкции колонны Lп = 920 м, штанги изготовлены из стали 20НМ, нормализованной при [упр] = 90 МПа.

8. Число качаний балансира станка-качалки:

n = , кач/мин, (13. стр. 195) (3.4)

где Q - заданная фактическая производительность установки, т/ сут;

Fпл - площадь поперечного сечения плунжера;

S - длина хода полированного штока, м;

з = 0,8 - КПД станка-качалки;

1440 - число минут в сутках, 24·60 = 1440 мин;

ссм - плотность смеси.

n = == 4,855 5 кач/ мин.

9. Площадь поперечного сечения плунжера:

Fпл = , м2, (13. стр. 111) (3.5)

где dп - диаметр насоса, dп = 57 мм.

Fпл = = 0,00255 м2

10. Определяем необходимую мощность и выбираем тип электродвигателя для привода СК:

N = ,(13, стр. 133)(3.6)

где зн = 0,9 - КПД насоса;

зск = 0,82 - КПД станка-качалки;

з = 0,7 - коэффициент подачи насосной установки;

К = 1,2 - коэффициент степени уравновешенности станка-качалки;

Н - динамический уровень;

ссм - плотность смеси, кг/ м3;

n - число качаний в минуту;

Sшт - длина хода полированного штока, м;

Dпл - диаметр плунжера насоса

N ==33,88 кВт

11. По полученной мощности двигателя N = 33,88 кВт подбираем тип двигателя по справочнику АОП2 - 82 - 6. Параметры двигателя: номинальная мощность

Рн = 40 кВт; частота вращения вала 980 об/ мин; КПД - 91,5 %; cos = 0,89;

Мпуск / Мном = 1,8; Ммакс / Мn = 2,2; Iпуск / In = 7,5. (13, стр.255)

3.5 Определение экстремальных нагрузок, действующих на головку балансира

1. Вычисляем критерий Коши:

= , (13, стр.117) (3.7)

где n - число качаний балансира в минуту;

L - глубина спуска насоса, м;

а - скорость звука в колонне штанг, м/с - для одноступенчатой колонны, а = 4600 м/с;

= == 0,102

2. Максимальная нагрузка, действующая на головку балансира:

Ртах = Рж + Рш*, (13, стр. 117) (3.8)

где Рж - вес столба жидкости над плунжером;

Ршт - вес колонны штанг;

в - коэффициент потери веса штанг в жидкости;

S - длина хода полированного штока, м;

n - число качаний балансира в минуту;

- коэффициент, учитывающий вибрацию штанг;

3. Коэффициент потери веса штанг в жидкости:

в = , (13, стр. 115) (3.9)

где сшт = 7850 кг/ м3 - плотность штанг;

сж = 875 кг/м3 - плотность нефти;

в = = 0,89

4. Коэффициент, учитывающий вибрацию штанг:

= = 5,850 (5, стр. 193) (3.10)

tg = 5,850 = 0,1025;

5. Вес колонны штанг в жидкости:

Ршт = qср*L (13, стр.115 ) (3.11)

q ср = q*g, (13, стр. 115) (3.12)

где q = 2,35 кг - масса 1 м штанг d = 19 мм;

g = ускорение свободного падения;

qср = 2,35*9,81 = 23,05

Ршт = 23,05*900 = 20745 Н

6. Вес жидкости в трубах:

Рж = Fпл*L*ссм* g, (13, стр. 115) (3.13)

где Fпл - площадь сечения плунжера;

Рж = *900*1018*9,81 = 22923,4 Н

Ртах = = 42114 Н 42кН

7. Минимальная нагрузка на головку балансира:

Ртiп = Ршт* (5, стр.193) (3.14)

Рmin = 20745*= 17923.6 Н 17 кН

Определяем максимальное напряжение цикла:

тах = , МПа, (13, стр. 123) (3.15)

где fшт - плошадь поперечного сечения штанг dшт = 19 мм

ѓшт = , м2,

ѓшт = = 2,8*10-4 м2

тах = = 150,4 МПа

Минимальное напряжение цикла:

тin = МПа; (13, стр. 123) (3.16)

тin = = 64 МПа

10. Амплитудное напряжение цикла:

а = МПа, (13, стр. 123) (3.17)

а = = 43,2 МПа

11. Среднее напряжение цикла:

ср = , МПа (13, стр.122) (3.18)

ср = = 107,2 МПа

12. Приведенное напряжение цикла:

пр = , МПа (13, стр. 123) (3.19)

пр = = 80,6 МПа

Полученное значение приведенного напряжения удовлетворяет требованиям используемой колонны штанг диаметром d = 19 мм с приведенным напряжением пр = 90 МПа, из условия пр пр.

3.6 Расчет на прочность стеклопластиковых штанг

С целью определения нагрузок, возникающих в точке подвеса штанг, произведём расчет на прочность комбинированной колонны из стальных и стеклопластиковых штанг. Расчет будем вести согласно “Методики расчета колонны штанг из композиционного материала для ШСНУ”, разработанной ВНИИнефтемаш 24.07.1994.

Исходные данные для расчета:

Номер скважины № 1696

Глубина подвески насоса Ннас = 1200м

Длина хода сальникового штока = 0,9 м

Число качаний балансира п = 5мин-1

Средняя масса 1м колонны СПНШ тспнш = 1,05 кг

Средняя масса 1м колонны стальных штанг тст = 2,35 кг

Диаметр плунжера Дпл = 32 мм

Диаметр штанг шт = 19 мм

Внутренний диаметр НКТ Двн = 62 мм

Плотность жидкости ж = 1090 кг/м3

1. Для вычисления максимальной нагрузки в точке подвеса штанг Ртах воспользуемся формулой Слоннеджера

Ртах=(Ршт + Рж )*(1 + *п/137), Н (5, стр. 193) (3.20)

где: Ршт - вес колонны штанг, Н

Рж - вес столба жидкости, Н

- длина хода сальникового штока, м

п - число ходов, мин-1

2. Вычислим вес колонны штанг Ршт

Рштнас* *(тспнш* + *тст)= 1200 * 9,81 * (1,05*0,5 + 0,5 * 2,35) = 20012,4 Н

3. Найдем вес столба жидкости Рж

Рж=плнас* ж * (13, стр.121) (3.21)

где : пл= /4*Дпл2=/4*(32*10-3) 2=8,01*10-4 м2

Рж=8,01*10-4*1200*1090 *9,81=10314,5 Н

Вычислим Ртах;

Ртах=(20012,4 + 10314,5)*(1 + 0,9 *5/137)=31323 Н

4. Минимальное усилие в точке подвеса штанг при ходе вниз

Рт1пшт1 (1 - *п/137), Н (5, стр. 193) (3.22)

где: Ршт1- вес колонны штанг в жидкости

Ршт1нас** (*1спнш+ *1ст) (13, стр.127) (3.23)

здесь: 1спнш - вес 1м СПНШ в жидкости

1ст - вес 1м стальных штанг в жидкости

Ршт1=1200*9,81*(*0,71+ *2,09)=16480,8 Н

Рт1п=16480,8*(1 -0,9*5/137)=15939,5 Н

5. Для определения напряжений, действующих в точке подвеса штанг, воспользуемся следующими формулами:

шт=/4*шт2= 0,785*(19*10-3)2= 2,84*10-4 м2 (5, стр. 195) (3.24)

тах= Ртах/ шт = 31323/2,44*10-4=110,3 мПа (5, стр. 195) (3.25)

т1п= Рт1п/ шт = 15939,5/2,84*10-4=56,1 мПа (5, стр. 195) 3.26)

а=(тах -т1п)/2= (110,3-56,1)/2=27,1 мПа (5, стр. 195) (3.27)

пр= = = 54,7 Мпа (5, стр. 195) (3.28)

Как видно из вычислений, приведенное напряжение, действующее в точке подвеса штанг равно 54,7 МПа.

Так как по предельно допустимым приведенным напряжениям для стеклопластика у нас нет значений, то воспользуемся минимальным значением предельно допускаемых приведенных напряжений для стали марки 40. В пользу стеклопластиковых штанг говорит также, что разрушающее напряжение при растяжении у них больше, чем у стальных: 760 МПа у стеклопластика и 610 МПа у стали.

пр=70мПа- приведенное напряжение для стали

Полученное пр=54,7 мПа свидетельствует о возможности использовать в качестве материала для штанг стеклопластик.

Для приведения эксперимента было подобранно 9 скважин. Для определения эффективности использования стеклопластиковых штанг скважины были оборудованы счетчиками активной и реактивной электрической мощности.

Ниже в таблице № 14 приведены результаты расчетов.

Таблица № 14

Результаты анализа работы СПНШ

Нагрузка на головку балансира кН

1696

9288А

15470

12428а

26769

26504

16942

24356

26480

Стеклопластик

Стек+сталь

Сталь

Потр. мощн с учетом веса штанг, кВт

Стеклопластик

Стек+сталь

Сталь

Умень. веса %

Умень. потребляемой мощности

21,4

31,3

38,5

18,3

23,2

33

20,5

28,1

35,9

17,1

20,6

24,2

22

19

10,6

12,7

18,5

2,9

3,3

4,5

31

26

21,6

29,2

37,8

18,2

22,4

32,9

22,7

31,4

17,5

24,1

30,6

12,6

17,6

24,6

21

28

12,6

17,1

27,9

5,6

7

10,5

38

32

17,1

22,1

29,9

10,3

11,8

14,3

26,1

17,5

22,5

33,3

39,4

18,5

24,6

33,1

15,4

27

11,9

15,7

26,5

3,9

4.8

7,3

40

34

Сравнивая результаты можно сделать вывод, что нагрузка на головку балансира станка-качалки уменьшилась в среднем на 20-25 % при условии комплектации колонны штанг из стеклопластика и стали.

4. СПЕЦИАЛЬНАЯ ЧАСТЬ

4.1 Выбор оборудования для подачи реагента (ингибитора)

Существуют два основных способа подачи реагента в обрабатываемую систему: непрерывное (периодическое) дозирование и разовая обработка.

Наиболее эффективным способом является непрерывное дозирование, обеспечивающее постоянный контакт реагента с обрабатываемой системой и частично предупреждающее образование АСПО. Однако этот способ требует обвязки специального оборудования на устье каждой скважины (насос - дозатор, емкость для реагента, поршневой насос для смешения, манифольд и др.).

Реагент в затрубное пространство постоянно подается устьевыми дозаторами УДЭ и УДC конструкции НПО Союзнефтепромхим и СКТБ ВПО Союзнефтемашремонт.

УДЭ и УДC можно применять также для борьбы с солеотложением, коррозией оборудования нефтяных скважин и внутрискважинной деэмульсации нефти.

Электронасосная дозировочная установка УДЭ в зависимости от дозировочного насоса имеет четыре типоразмера: УДЭ 0,4/6,3; УДЭ 1/6,3; УДЭ 1,6/6,3; УДЭ 1,9/6,3. Установки комплектуются специальными дозировочными насосами: НД 0,4/6,3 К14В; НД 1/6,3 К14В; НД 1,6/6,3 К14В; НД 1,9/6,3 К14В. Они обеспечивают максимальные подачи реагента 0,4; 1; 1,6 и 1,9 л/ч при максимальном давлении нагнетания 6,3 МПа. Потребляемая мощность насоса 0,5 кВт, масса 32 кг.

Установка имеет бак на 450 л; габаритные размеры установки 1230х690х1530 мм, масса 220 кг, рабочая температура 223 - 318 К.

Принцип работы УДЭ заключается в следующем. Реагент из бака 5 через фильтр 6 по всасывающему трубопроводу 11 поступает в плунжерный насос - дозатор 13 и по нагнетательному трубопроводу 14 подается в затрубное пространство скважины. Подача регулируется изменением длины хода плунжера.

Наибольшее число установок эксплуатируется в ПО «Татнефть». Дозировочные установки изготавливаются Лениногорским заводом «Нефтеавтоматика», а дозировочные насосы - Свесским насосным заводом.

Рис. 4 Дозировочная установка УДЭ. 1- дозировочный блок, 2 - электроконтактный манометр, 3- указатель уровня, 4- заливная горловина, 5 - бак, 6 - фильтр, 7 - рама, 8 - сливной вентиль, 9, 10, 15 - вентили, 11 - всасывающий трубопровод, 12 - обратный клапан, 13 - электронасосный агрегат, 14 - нагнетательный трубопровод, 16 - кожух.

Комплектная дозировочная установка УДС с приводом от станка- качалки располагается на СК. Её нагнетательный трубопровод присоединяется к затрубному пространству скважины, а рычаг дозировочного насоса посредством гибкой тяги к балансиру СК. Подача устанавливается регулятором длины хода плунжера насоса и изменением мест крепления тяги к рычагу насоса и к балансиру СК. Подача дозировочного насоса составляет 0,04-0.63 л/с; давление нагнетания 6,3 МПа; вместимость бака 250 л, габаритные размеры 1500 х 730 х 735 мм, масса 145 кг.

По сравнению с другими дозировочными установками УДС-1 обеспечивает большую точность регулирования подачи, имеет более простую конструкцию, она безопасна (снабжена предохранительным устройством и не питается электрическим током) и удобна в эксплуатации.

Рис. 5 Дозировочная установка УДС. 1 - указатель уровня, 2 - горловина, 3 - бак, 4 - манометр, 5 - предохранительный клапан, 6 - вентиль, 7 - кожух, 8 - насос дозировочный, 9 - обратный клапан, 10 -трехходовой клапан, 11 - фильтр, 2 - рама.

Периодическое дозирование может осуществляться при использовании перечисленного выше оборудования или с помощью специального устройства для ввода реагента под давлением, первый случай имеет те же недостатки что и непрерывное дозирование. Во втором случае затрубное пространство перекрывают задвижкой 3, открывают вентиль 6 для сброса газа из емкости 4, снимают заглушку 5, закрывают вентиль 6, заливают реагент в емкость 4, закрепляют заглушку и открывают задвижку 3; регент поступает в затрубное пространство.

Рис. 6 Принципиальная схема устройства ввода реагента в затрубное пространство по давлением: 1 - устьевая арматура, 2 - выкидная задвижка,

- задвижка затрубного пространства, 4 - резервуар для реагента, 5 - заглушка, 6 - вентиль.

При этом способе подачи реагента обслуживание упрощается, но снижается эффективность действия реагента.

4.2 Конструктивный расчет элементов устройства для ввода реагента в затрубное пространство под давлением

4.2.1 Расчет корпуса резервуара для реагента

Определим габаритные размеры корпуса резервуара:

При внутреннем диаметре корпуса резервуара D = 300 мм = 0,3 м,

и расходе реагента Q = 50 л = 0,05 м3,

высота резервуара будет равна Н = Q/ D2/4) = 0,05/(3,140,32/4) = 0,71 м, принимаем Н = 0,75 м.

Корпус резервуара работает в условиях статических нагрузок под внутренним избыточным давлением. Расчет на прочность и устойчивость проводится по ГОСТ14249-89.

Толщину стенок определяем по формулам:

SR = PD/2-P S SR+C (12, стр. 8) (4.1)

Допускаемое внутреннее избыточное давление:

SCDS-C); (12, стр. 8) (4.2)

где Р - давление в корпусе резервуара, Р = 6,3 МПа; SR - расчетное значение толщины стенки, мм; D - внутренний диаметр резервуара, D =300 мм; - допускаемое напряжение (зависит от марки стали и рабочей температуры),

= 230 МПа. Марку стали выбираем в зависимости от свойств перерабатываемой среды и коррозионной стойкости материала корпуса, используем сталь марки 35 ХМ, допускаемые напряжения для выбранной стали при рабочей температуре t = 20 C = 230 МПа (таблица 3.1, стр. 48. ГОСТ 14249-89).

Для стыковых и тавровых двусторонних швов, выполняемых автоматической сваркой, коэффициент прочности сварочного шва =1.

Прибавка на коррозию С определяется по формуле:

С = VT, (12, стр. 8) (4.3)

где V - скорость коррозии (обычно принимают 0,1…0,2 мм /год), принимаем

V = 0,2 мм/год; Т - срок службы корпуса, принимаем Т = 12 лет.

С = 0,212 = 2,4 мм

SR = 6,3300/22301-6,3= 4,2 мм

S 4,2 +2,4 = 6,6 мм, принимаем S = 8 мм.

Полученное значение толщины стенки проверим на прочность по величине допускаемого внутреннего избыточного давления:

230182,43008-2,4) = 8,43 МПа.

6,3 МПа 8,43 МПА, Р , давление в корпусе резервуара при принятой толщине стенок не превышает допускаемое внутреннее избыточное давление, т. е. прочность стенок корпуса резервуара обеспечена..

4.2.2 Расчет толщины стенки крышки резервуара

Толщину стенки элептической крышки нагруженной внутренним давлением определяем по формуле:

SR = PD/2-0,5P S SR+C (12, стр.10) (4.4)

SR = 6,3300/22301-0,56,3 = 4,14 мм

S 4,14+2,4 = 6,54 мм, принимаем S = 8 мм.

Полученное значение толщины стенки проверим на прочность по величине допускаемого внутреннего избыточного давления по формуле:

SCDS-C); (12, стр. 10) (4.5)

23082,43008-2,4) =8,43 МПа ;

6,3 МПа 8,43 МПА, Р , давление на крышку резервуара при принятой толщине стенок крышки не превышает допускаемое внутреннее избыточное давление, т. е. прочность стенок крышки резервуара обеспечена.

4.2.3 Расчет толщины стенки конического днища

Толщину стенки конического днища с углом при вершине , нагруженного внутренним давлением рассчитываем по формулам:

Определяем толщину стенки цилиндрической части днища:

SR1 = PD/4 (12, стр.10) (4.6)

Где - коэффициент формы днища, при 16 и отношении Ra/D =0,1 (внутреннего радиуса отбортовки к диаметру днища) =3,2 , таблица 4.4 стр.49 ГОСТ14249-89.

SR 1= 6,33003,2/42301= 6,6 мм

Определяем толщину стенки конической части днища:

SR2 = P DР /(2-Р)1/cos1 (12, стр.10) (4,7)

Где DР = D-2Ra(1-cos1DSR 1 cos1sin1 (12, стр.10) (4.8)

DР = 300-230(1-0,53006,6 0,50,8666 = 215,5 мм

SR2 = 6,3215,5/(22301-6,3)1/0,5 = 6 мм

Из двух значений полученных по формулам (4,6), (4,7), выбираем наибольшее SR = 6,6 мм.

Определяем исполнительную толщину стенки

S = Smax+C = 6,6 +2,4 = 9 мм.

4.2.4 Расчет фланцевых соединений

Фланцевые соединения устанавливаем в местах крепления трубной арматуры с резервуаром для реагента. Соединение состоит из двух фланцев, болтов, гаек, шайб и прокладки, которую размещают между уплотнительными поверхностями. Фланцевые соединения стандартизованы для труб и трубной арматуры. Размеры фланцевого соединения подбираем в зависимости от диаметра трубы. При dn= 80 мм, принимаем болты М20, тогда наружный диаметр фланца будет соответственно равен Dn= dn+4,8(dб+2) = 80+4,8(20+2) = 186 мм.

Для уплотнения во фланцах, учитывая агрессивность среды реагента и рабочую температуру, применяем прокладку из паронита, толщиной 2 мм, (материал прокладки: паронит по ГОСТ 481-71). Размеры прокладки выбираются в соответствии с размерами фланца. Фланцы и прокладки подобранные по стандартам в расчете не нуждаются.

При конструировании фланцевого соединения выполняется проверочный расчет болтов в соответствии с ОСТ26-373-82.

1. Определим нагрузку, действующую на фланцевое соединение от внутреннего давления Рп = 6,3 МПа:

QD = 0,785 Dcp 2 Pп = 0,7851336,3 = 657,8 Н, (12, стр.13) (4.9)

Dcp = 0,5(Dn+ dn) = 0,5(186+80) = 133 мм средний диаметр прокладки.

2. Рассчитываем реакцию прокладки:

Rn = 2 DcpbomPn (12, стр. 13) (4.10)

где bo - эффективная ширина прокладки, bo= 0,6bп = 0,653 = 4,4 мм при ширине прокладки bп= 0,5(Dn- dn) = 0,5(186-80) = 53 мм 15 мм, m = 2,5 для прокладки из паронита

Rn = 23,14 1334,42,56,3 =57882 Н

Определяем болтовую нагрузку при сборке Рб1. Это значение выбираем наибольшим из трех:

Рб1 = Dcpboq (12, стр. 13) (4.11)

где q = 20 МПа для прокладки из паронита

Рб1 = 3,141334,420 =36750 Н

Рб1 = 0,4б20nбfб (12, стр. 13) (4.12)

где б20 = 130 Мпа, допускаемое напряжение для материала болта при 20 С; nб = 4, количество болтов;

fб = dб2/4 =3,14202/4 = 314 мм, площадь поперечного сечения болта.

Рб1 = 0,41304314 = 65312 Н

Рб1 = 1,2QD+Rn (12, стр. 13) (4.13)

Рб1 = 1,2657,8+57882 = 58671 Н,

т.о. окончательно принимаем наибольшее значение Рб1 = 65312 Н.

4. Проверим прочность болтов при монтаже по условию:

F = Рб1/( nбfб) б20 = 130 МПа (12, стр. 13) (4.14)

F = 65312/(4 314) = 52 МПа б20 = 130 Мпа, прочность болтов при монтаже соблюдается.

5. Проверим прочность болтов в период эксплуатации:

F = Рб2/( nбfб) б = 130 МПа (12, стр. 13) (4.15)

где б = 130 МПа, допускаемое напряжение для материала болта при рабочей температуре;

Рб2 - болтовая нагрузка в рабочих условиях,

Рб2 1,3 Рбmax = 1,365312 = 84906 Н.

F = Рб2/( nбfб) =84906/(4314) =67,6 МПа б = 130 МПа .

Условие прочности болтов в период эксплуатации выполняется.

5. ЭКОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ

5.1 Мероприятия по охране окружающей среды и недр в условиях НГДУ “ЛН”

Республика Татарстан характеризуется высоким промышленным потенциалом, богатыми природными ресурсами; нефтяные месторождения Татарстана расположены на территории 21 административного района республики и 3 районов соседних республик и областей с общей площадью более 30 тысяч кв.км.

В 1997 году для предприятий Татарстана было отчуждено более 34 тыс. га. В последние годы в Татарстане увеличивается доля сернистых нефтей, газов и сероводородсодержащих пластовых вод, что усложняет экологическую обстановку. Разработка залежей вязкой нефти и битума с применением большой гаммы химических реагентов и тепловых методов тоже значительно усугубляют ситуацию. Приведенные данные показывают, на сколько высока ответственность нефтяников в деле охраны природы.

Разработаны методические основы оценки технологической нагрузки, проведено ранжирование территории по антропогенному воздействию на природу. В основу экологических программ были заложены результаты систематических исследований. В них обоснована и сформулирована постановка задачи, состоящей из следующих концепций:

свести до минимума вредное воздействие сопутствующих нефтедобыче процессов нарушения экологии;

добиться управляемости производственных процессов, чреватых экологически негативными последствиями; проводить регенерационные мероприятия, и, по максимуму, восстановить

среду нашего обитания до того состояния, которое было характерно для начала разработки нефтяных месторождений.

На территории НГДУ "ЛН" находится много населенных пунктов: города, деревни, рабочие поселки. Вокруг населенных пунктов устанавливаются санитарно-защитные зоны.

Многие из промысловых сооружений расположены в санитарно-защитных зонах населенных пунктов, родников и ручьев. Эти объекты являются потенциальными загрязнителями атмосферы, почв, грунтовых и подземных пресных вод при возможных авариях и разгерметизации. При бурении, добыче, сборе и транспортировке нефти имеет место загрязнение почв и грунтов. Основные площади замазученных земель располагаются обычно вдоль водопроводов, часто вдоль ряда скважин.

Все отходы предприятий по добыче нефти оказывают отрицательные воздействия на объекты окружающей среды и представляют угрозу здоровью населения, проживающего в нефтедобывающих районах. Поэтому на промысловых объектах необходимо более эффективно осуществлять технологические, санитарно-технические и организационные мероприятия по контролю за состоянием окружающей среды. Все эти мероприятия позволяют с наименьшим вредом для окружающей среды добывать и транспортировать нефть, быстро и без осложнений устранять причины и последствия загрязнения. В НГДУ "ЛН" осуществляются работы, направленные на улучшение экологической обстановки на территории деятельности предприятия.

5.2 Охрана атмосферного воздуха

За последние 5 лет выбросы в атмосферу загрязняющих веществ сократились с 22000 тонн до 4500 тонн в год. Это было достигнуто благодаря проводимой определенной работой в этом направлении в НГДУ.

Была проведена реконструкция канализационного хозяйства, на ЛОС и ГТП было ликвидировано 12 накопителей. Пущена в работу установка улавливания легких фракций УЛФ, что позволяет ежемесячно улавливать 500-550 тонн нефти.

Подготовка сточной воды переведена на УКНП на герметизированную систему.

Топливно-энергетический комплекс является основным загрязнителем атмосферного воздуха, на долю которого приходится 87% или 66 000 тонн вредных веществ в год.

По сравнению с 1999 годом валовые выбросы снизились на 21,3%

Таблица 15

Количество источников и объемы выбросов, поступающих в атмосферу от промышленных предприятий.

Промыш-

ленные комплексы

Кол-во источников выбросов вредных веществ

Условно обезврежено вредных веществ

Обьем выбросов, тыс м/год.

Доля выбросов %от общего

1999

2000

2001

1999

2000

2001

1999

2000

2001

Топливный

4301

4653

5200

29,8

25,5

21,0

97,8

92,4

66,0

87

Теплоэнерге-

ческий

-

67

66

-

-

-

-

1,3

2,4

3,2

Машиностро-

ительный

427

354

200

0,2

0,5

0,3

0,2

0,5

0,1

0,7

Строительный

207

309

250

5,8

4,6

3,1

3,8

2,5

2,3

3,0

Прочие

-

-

120

-

1,3

0,6

-

1,3

4,6

6,1

Всего по ремонту

7191

6270

5716

36,7

29,6

25,0

118,4

101,5

74,4

100

Сокращение выбросов достигнуто за счет уменьшения количества источников выбросов и ввода установок улова легких фракций углеводородов в НГДУ ЛН.

С целью уменьшения воздействия автотранспорта на окружающую среду необходимо:

- осуществить вынос крупных автотранспортных предприятий за черту города;

- наладить производство неэтилированного бензина;

применять нейтрализаторы для выхлопных газов и присадки к моторному топливу;

активизировать перевод автомашин на газовое топливо.

5.3 Охрана вод

Систематические наблюдения за состоянием поверхностных водоемов в нефтедобывающих районах юго-западной республики Татарстан были начаты ТатНИПИнефть в 1969 году. Осуществляются силами химико-аналитических лабораторий УПТЖ и НГДУ. С1991 года к этой работе были привлечены ТГРУ и КГУ. Под наблюдением находятся все реки и малые речки Лениногорского района. В пробах речной воды ежемесячно (НГДУ) и ежеквартально (УПТЖ) определяют содержание нефти (плавающей и эмульгированной), хлоридов, сульфатов, а так же рН, жесткость, общую минерализацию, потребность в кислороде БПК5, тип и концентрацию ПАВ, нитраты и другие.

В настоящее время на территории нефтепромыслов под наблюдением лаборатории охраны природы находятся 14 речек (ежедневно) и 69 родников (ежеквартально).

Благодаря проведенным в очагах загрязнения подземных вод комплексным эколого-гидрологическим исследованиям, источники загрязнения подземных вод в основном известны.

Разработаны мероприятия и методы предотвращения этих загрязнений.

5.4 Охрана земель

В результате упорядочения и более продуманного размещения сооружений, применение кустового и горизонтального бурения скважин значительно сократится отвод земель под нефтяные объекты. Так в начале 90-х годов под сооружениями и коммуникациями АО «Татнефть» находилось более 55 тыс. га, а в настоящее время -34 тыс. га, хотя фонд пробуренных скважин за этот период возрос в 1,3 раза.

Наряду с сокращением отвода земель за счет применения новых технологий бурения и разработки месторождений, нефтяникам уделяется большое внимание сохранения плодородия почв. В среднем сегодня возвращается прежним пользователям на 1500 га сельхоз. угодий АО «Татнефть».

Длительное время, нередко десятилетиями, хранились в открытых амбарах т.н. нефтешламы, оставшиеся в наследство от прошлого. Для утилизация создано совместное предприятие. Более полумиллиона тонн нефтешламов уже переработаны по технологии, разработанной учеными «ТатНИПИнефть», предприятием «Татойлгаз» совместно с Германией. Эта работа продолжается, а для предотвращения дальнейшего накопления шламов, загрязняющих природную среду, разработана технология без амбарного бурения с использованием передвижных буровых установок.

Из года в год в НГДУ «ЛН» уменьшаются площади нарушенных земель.

Это достигнуто за счет уменьшения аварийности на трубопроводах, а так же большой положительный эффект оказала остановка бригад ПРС, КРС и строительных организаций на период весенней распутицы. Кроме того, большая часть бригад ПРС в НГДУ «ЛН» переведены на колесный ход, что резко позволило уменьшить порчу земель.

Продолжаются работы по охране недр и окружающей среды:

а) Исследование и наращивание цемента за кондуктором;

б) Исследование и герметизация колонн;

в) Физическая ликвидация скважин в санитарно-защитных зонах населенных пунктов рек и ручьев, а так же в зонах питания родников.

5.5 Охрана труда и техника безопасности при удалении АСПО

При эксплуатации скважин для удаления АСПО применяется паропередвижная установка, при её работе должны выполняться следующие правила безопасности:

- паропередвижная установка (ППУ) на скважине устанавливается от устья на расстоянии не менее 25 метров с наветренной стороны так чтобы обеспечивался обзор для машиниста ППУ;

- обвязка выполняется бесшовными стальными трубами, испытанными на пробное давление Рпр=1,5Рраб;

- при пропаривании арматуры скважин, оборудования и трубопроводов, в которых ожидается повышение давления необходимо установить обратный клапан (непосредственно у установки или на любом стыке магистральных труб);

- на арматуре скважины, подвергаемой пропарке, необходимо предусматривать специальный патрубок с вентилем или задвижкой для подсоединения паропроводов от ППУ;

- при пропарке арматуры скважины, оборудования и трубопроводов надо знать максимальное рабочее давление, допускаемое для данного типа арматуры и не превышать его;

- для подачи пара в насосно - компрессорные трубы, уложенные на мостках, паропровод должен быть оборудован специальным наконечником, который должен соединятся к трубе на резьбе или накидным приспособлением на муфту.

Концы труб должны быть уложены со стороны устья в одной плоскости;

- пропарку с использованием шланга с наконечником, закреплённым на деревянном держаке, производить только наружных поверхностей труб, шланг и другого технологического оборудования;

- подача пара в пропарочные трубы должна быть постепенной до выхода пара из противоположного конца трубы, во избежание появления пробок;

- пуск пара производить только по сигналу с места присоединения паропроводов и после удаления людей на безопасное расстояние;

- пропарка штанг от замазученности и парафина производится с помощью шланга с наконечником, которые закреплены на деревянном держаке длинной не менее 1,5 м;

- очистка от парафина и замазученности насосов, арматурной площадки, отогрев территории от замазученности в зимнее время, разогрев парафина в амбарах, емкостях и колодцах, отогрев замерзшего грунта на территории скважины для заворота штопоров производиться с помощью шланга наконечником на конце закрепленных на держаке длинной 1,5-2,5 метра;

- очистка и пропарка от замазученности станка- качалки машинист производит с помощью шланга с наконечником прикреплённых к деревянному держаку длинной не менее 2,5 метра. В случае невозможности пропарки балансира из-за высоты, то бригада КРС устанавливает стеллажи или подготавливает лестницу с которой производится пропарка оборудования находящееся на высоте.

При подъёме на высоту свыше 1,5 метра необходимо применять предохранительный пояс от падения;

- разработка паропроводов производится после снижения давления пара до атмосферного и охлаждения труб;

- замазученность и парафин оставшийся на территории скважин и баз необходимо убирать.

При использовании удаления АСПО химическими методами необходимо соблюдать особые меры предосторожности и технику безопасности.

Среди химических реагентов, используемых для борьбы с АСПО, имеются токсичные, взрывоопасные, с низкой температурой вспышки. Поэтому при работе с такими реагентами должны соблюдаться особые меры предосторожности.

На территории (или в помещении) для хранения и применения газового бензина запрещается обращаться с открытым огнем; искусственное освещение должно быть выполнено во взрывобезопасном исполнении.

Ремонтные работы на резервуарах, сосудах должны производиться инструментами, не дающими при ударе искру. Технологическое оборудование и коммуникации для транспортирования газового бензина должны быть заземлены.

Запрещается перекачивание газового бензина при помощи сжатого воздуха. Содержание паров газового бензина в воздухе рабочей зоны должно составлять не более 300мг/м3.

При разливе бензина облитые части машины должны быть насухо протерты, а пролитый на пол или на землю бензин - засыпан песком. Последний необходимо собрать в отдельную тару и вывезти из территории или помещения. Указанные работы должны производиться в фильтрующем противогазе марки А (коробка коричневого цвета).

Сосуды, смесители, коммуникации, насосные агрегаты должны быть герметичны.

Помещение должно быть снабжено общеобменной механической вентиляцией согласно действующим нормам.

При работе с газовым бензином применяют индивидуальные средства защиты: противогаз и спецодежду.

Запрещается использовать газовый бензин для мытья рук и чистки одежды.

Рабочие места должны быть оборудованы источником острого пара, песком, пенным или углекислотными огнетушителями, кошмой, асбестовой тканью.

Аналогичные меры предосторожности должны соблюдаться и при использовании других углеводородных растворителей.

6. ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКИЙ РАЗДЕЛ

6.1 Технико-экономическая оценка методов борьбы с АСПО по НГДУ “ ЛН”

Анализ затрат на борьбу с АСПО в НГДУ «ЛН” показал, что наиболее экономичными из механических методов являются внедрение штанг с центраторами - депарафинизаторами НГДУ «ЛН” в комплекте с плавающими скребками центраторами завода “Радиоприбор” и штанг с наплавленными скребками центраторами производства НГДУ «ИрН”.

В НГДУ «ЛН” используется сочетание различных методов борьбы с АСПО. Применение комбинации методов затрудняет экономические расчеты и приводит к увеличению затрат. Так, применение дополнительных мероприятий на фонде скважин, оборудованных остеклованными НКТ и НКТ с полимерным покрытием БМЗ, привело к удорожанию методов в 2,7 и более раза, оборудованных штангами с наплавленными центраторами-депарафинизаторами НГДУ «ЛН” и с плавающими скребками центраторами завода “Радиоприбор” в сочетании с остеклованными НКТ - в 3,2 раза.

Анализ затрат, применяемых в НГДУ «ЛН” методов борьбы с АСПО, приведен в таблице 16

Таблица 16

Оценка фактических затрат на борьбу с асфальто-смолопарафиновыми отложениями в НГДУ «ЛН” в ценах 2002 года

Затраты на одну скважину в год

Исполнитель

Затраты на выполнение мероприятия, руб.

Количество мероприятий

Всего, руб.

Затраты на дополнительные мероприятия

Всего, руб.

1. Механические методы

1.1. Скребки, центраторы

-центраторы+остеклв. НКТ

НГДУ «ЛН”

52004

0,2

10401

9406

19807

-центраторы+остеклв. НКТ + магн. депарафинизатор

НГДУ «ЛН”

61044

0,2

12209

12209

центраторы скр центраторы

НГДУ «ЛН”

10540

0,2

4108

4108

1.2. НКТ с

“БМЗ”

44616

0,092

4105

8006

12111

1.3. Остеклованные НКТ

НГДУ «ЛН”

35664

0,2

7133

-

7133

остеклованные НКТ пром-ки дистиллят нефть)

НГДУ «ЛН”

35664

0,2

7133

12010

19143

остеклв. НКТ (микробиоло-гич. обр)

НГДУ «ЛН”

35664

0,2

7133

10667

17800

остеклв. НКТ (магн. депарафинизатор)

НГДУ «ЛН”

44704

0,2

8941

4003

12944

2. Химические методы

2.1Применение растворителей

НГДУ «ЛН”

-дистиллят

7254

2

14508

14508

-дистиллят + нефть

6672

2

13344

13344

2.2 Применение ТНПХ - 1А

939

5

4695

4695

3. Тепловые методы

3.1. Применение АДП

НГДУ «ЛН”

- нефть

7057

2

14114

14114

4. Физические методы

4.1.Применение магнитных депарафинизаторов

НГДУ «ЛН”

9040

0,092

832

832

5. Микробиологические методы

5.1. Микробиология

“Татнефтемико”

6667

2

13334

13334

В 2002 году произошло уменьшение количества ремонтов по причине АСПО в подземном оборудовании на 6,9 % по сравнению с предыдущим годом. Тенденция снижения этого показателя наблюдается с 1999 года. В тоже время общее количество ремонтов на девонском фонде в 2002 году увеличилось на 36,1%.

Все ремонты по причине запарафинивания были проведены на фонде скважин, эксплуатируемом УШГН. По методам борьбы с АСПО, применяемым на скважинах, ремонты распределились следующим образом:

- 45 ремонтов (55,6 % от общего количества ремонтов по причине АСПО) проведено на скважинах, оборудованных остеклованными НКТ (показатель ремонтов);

- 0,140),- 26 ремонтов (32,1 %) проведено на скважинах, оборудованных штангами с наплавленными центраторами депарафинизаторами НГДУ «ЛН” в сочетании с остеклованными НКТ (показатель ремонтов - 1,115);

- 3 ремонта (3,7 %) проведено на скважинах, оборудованных штангами со скребками- центраторами НГДУ «ИрН” (показатель ремонтов - 1,115);

- 8 ремонтов (9,9 %) проведено на скважинах, на которых основным или дополнительным методом борьбы с АСПО являются промывки (показатель ремонтов - 0.016);

7 ремонтов (9,9 %) произведено на скважинах, на которых в качестве основного или дополнительного метода борьбы с АСПО применялись магнитные депарафинизаторы (показатель ремонтов - 0,517).

6.2 Организация профилактических работ на нефтепромысла и службе ПРС по борьбе с АСПО

Для борьбы с АСПО в НГДУ «ЛН” ежегодно разрабатываются организационно - технологические мероприятия, направленные на внедрение технических средств, а также предусматривается комплекс работ по контролю за работой парафинящего фонда скважин. Такие мероприятия на 2001 год включают в себя следующие направления

Технические мероприятия

Запуск установки по наплавке центраторов на штанги.

Изготовление скребков центраторов и наплавка их на штанги.

Внедрение скребков центраторов.

Оборудование скважин лифтами с остеклованным покрытием.

Оборудование скважин НКТ с полимерным покрытием.

Проведение шаблонирования НКТ.

Обработка скважин нефте - дистиллятной смесью.

Организационные мероприятия

Разработка мероприятий по каждой скважине.

Учет экономических затрат по каждой скважине.

Ежемесячный контроль за выполнение мероприятий по борьбе с АСПО.

Осуществление постоянного контроля за технологией внедрения центраторов на скважинах.

Обмен опыта специалистов на родственных предприятиях.

Работа по предупреждению отложений от АСПО ведется непосредственно в бригадах по добыче нефти под руководством технологических служб. Технологические службы обеспечивают разработку графиков промывок скважин от запарафинивания и осуществляют контроль за их выполнением. Этой группой также ведется постоянный анализ работы скважин, осложненных АСПО и осуществляется выполнение намеченных мероприятий.

В таблице № 17 приведен график обработки НДС на 2001 год по ЦДН и Г № 1.

Таблица № 17

Месяцы

№№ скважин

Тип насоса

% воды

ж

н

Периодичность

Дата последней обработки

Дата послед ПРС

Лифт центра

0503а

н-32

5

7

6

4

ОПРС

07.00

с-830

опрс

1714а

н-32

10

7

3

4

02.00

11.98

г-700

нд

нд

1719б

н-32

5

1

0,8

4

ОПРС

07.00

п-1300

нд

1819д

н-32

60

5

1,7

4

08.99

07.98

г-700

нд

нд

1825в

н-32

59

5

1,7

4

01.01

02.00

г-800

нд

нд

1828а

н-32

-

4

3,4

4

09.00

09.00

г-1300

нд

1828д

н-32

5

4

3,3

4

09.00

12.99

г-650

нд

1835а

н-32

70

10

2,6

4

07.00

02.99

с-560

нд

нд

1929

н-32

-

6

5

4

09.00

07.99

г-1300

нд

нд

1929в

н-32

-

4

3,4

4

06.00

08.00

п-1300

ПРС

нд

1934д

н-32

5

5

4

4

12.00

11.99

с-800

нд

нд

1936д

н-32

6

3

2,4

4

03.00

12.98

п-1300

нд

нд

1938д

н-32

7

6

4

7

07.00

12.98

п-1300

нд

5061

н-32

52

6

2,4

4

07.00

06.99

п-1300

пропу э/к

9267а

н-44

60

8

2,7

5

09.00

08.00

с-800

нд

нд

9288а

н-44

56

20

8

6

04.00

09.00

г-600

нд

нд

9331

н-32

56

3

1

5

08.99

08.99

с-600

нд

нд

9339а

н-32

60

3

1

4

01.01

08.97

п-1300

нд

нд

9355а

н-32

5

3

2,4

4

01.00

07.99

г-700

нд

нд

9467б

н-43

70

8

2

4

12.00

10.99

г-800

нд

нд

9476

н-32

5

2

1,6

4

01.01

01.00

с-860

нд

нд


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.