Гигиенические критерии оценки и классификация условий труда

Гигиенические критерии оценки условий труда при воздействии химического фактора и факторов биологической природы. Оценка условий труда при воздействии аэрозолей преимущественно фиброгенного действия, не ионизирующих электромагнитных полей и излучений.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид контрольная работа
Язык русский
Дата добавления 21.04.2009
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Гц

±(2-200 кВ/м)

± 10

авт., б

- // -

2.3

Магнитометр феррозондовый МФ-1 (нанотесламетр)

Магнитная индукция

Гц (постоянное геомагнитное поле)

10- 200000 нТл

±0,5

авт., Эс

РПКБ, Московская обл., Раменское

2.4

Тесламетр

Ф-4354/1

Магнитная индукция

Гц (постоянное магнитное поле)

150- 1500 мТл

±2,5

авт., б

262003, г. Житомир, ул. Ко-товского, З, ПО «Элекроизмеритель»

2.5

Тесламетр

Ф 4355

Магнитная индукция

Гц (постоянное магнитное поле)

100- 1500 мТл

±2,5

авт., б, Эс

- // -

2.6

Тесламетр

Ш1-8

Магнитная

индукция

Гц (постоянное магнитное поле)

0,01-1,6 Тл

+ 10

авт., Эс

- // -

2.7

Измеритель напряженности электрического поля, ИНЭП-50

Напряженность ЭП

50 Гц

0,5-50 кВ/м

± 10

авт.

Опыт. пр-во, СибНИИЭ, г. Новосибирск

2.8

Измеритель напряженности электрического поля, ПЗ-1М

Напряженность ЭП

50 Гц

0,1-100 кВ/м

±5-50

авт.

ЛИОТ, СПб

2.9

Измеритель напряженности электрического поля ПЗ-25, ПЗ-26

Среднеквадратичное значение напряженности. Обеспечивает

селективное измерение с полосой частот 10, 20, 50 Гц

ЭП: 0,02- 20 кГц

50- 12000 В/М

2,5 дБ

авт.

603057 Н. Новгород, ул. Бектова, 13 СКБ «РИАП»

Продолжение приложения 8

1

2

3

4

5

6

7

8

2.10

Миллитесламетр портативный модульный МПМ-2

Магнитная индукция

Гц (постоянное магнитное поле); 40-200 Гц

0,01- 199,9 мТл

0 Гц-± (2,5-5); 40-200 Гц-± (5-7)

авт., б,

Эс

Москва, ВНИИФТРИ

2.11

Измеритель магнитной индукции промышленной частоты ИМП-50

Магнитная индукция

50 Гц

0,01 мкТл-10 мТл

±10

авт.

Москва, ВНИИОФИ

2.12

Измеритель напряженности магнитного поля ИНМП-50

Напряженность МП

50 Гц

1-10000 А/м

±10

авт., Эс

Опыт. пр-во, СибНИИЭ, г. Новосибирск

2.13

Микротесламетр Г-79

Магнитная индукция

0,02-20 кГц

0,02- 1000 мкТл

±5

авт., Эс

3-д Микропровод, г. Кишенев

2.14

Миллитесламетр Ф-4356

Магнитная индукция

45-1000 Гц

0,1-100 мТл

+4-6

Эс

262003, г. Житомир, ул. Ко-товского, 3 ПО «Электроизмеритель»

2.15

Измеритель напряженности ближнего

поля NFM-1

Среднеквадратичное значение напряженности электрического и магнитного полей

ЭП: 50 Гц ЭП: 0,06-

300 МГц

МП: 0,1-

10 МГц

ЭП:2- 40 кВ/м; ЭП:

2-1500В/М;

МП: 1-10 А/м

±20

авт., б

Германия, «Прецитроник»

2.16

Измеритель ближнего электромагнитного поля «ЭЛОН»

Среднеквадратичное значение напряженности электрического и магнитного полей

ЭП: 50 Гц; ЭП: 0,06-300 Мгц:

МП: 0,06- 10 МГц

ЭП: 2- 40 кВ/м; ЭП: 2-1500В/М;

МП:1- 10 А/м

±20

авт., б

127490, Москва, ул. Пестеля, 8, к. 282 «Октава+»

2.17

Комплект приборов для контроля излучений от ПЭВМ и ВДТ

Напряженность ЭП

Магнитная индукция

Электростатический потенциал

ЭП: 5 Гц-2 кГц

2-400 кГц

МП: 5 Гц-2 кГц

2 кГц-400 кГц

1-200 В/м

10-2000нТл

0,05-20 кВ

±10

±10

±20

авт., Эс

ГНПП «Циклонтест»,

г. Фрязино, Моск. обл.

2.1.8

Измеритель электрического и магнитного полей

В&Е-метр

Напряженность ЭП

Магнитная индукция

ЭП: 5 Гц-2 кГц

2 кГц-400 кГц

МП:5Гц-2 кГц

2-400 кГц

0,5-500 В/м

5 нТл-

50 мкТл

±10

авт.

127490, Москва, ул. Пестеля, 8, к. 282 «Октава+»

Продолжение приложения 8

1

2

3

4

5

6

7

8

2.19

Комплект приборов для измерений электромагнитных излучений от ВДТ (ЕММ-4, ВММ-3, ВММ-5)

Напряженность ЭП

Магнитная индукция

Электростатический потенциал

ЭП: 5 Гц- 2

кГц 2 кГц- 400 кГц;

МП: 5Гц-2 кГц; 2 кГц-400 кГц

0,06- 2000 В/м

40 нТл - 2 мТл

±5

авт, сеть

Швеция, пост.: 127490, Москва, ул. Пестеля, 8, к. 282 «Октава+»

2.20

Измеритель напряженности поля ПЗ-16 (ПЗ-15,ПЗ-17)

Среднеквадратичное значение

напряженности

ЭП: 0,01-300 МГц;

МП: 0,01-30 МГц

ПЗ-16:ЭП:

1-1000 В/м;

МП: 0,5-16 А/М;

ПЗ-15.ПЗ-17:

ЭП:1-3000 В/м;

МП: 0,5-500 А/м

ЗдБ

авт.

603057, Н. Новгород, ул. Бектова, 13, СКВ «РИАЛ»

2.21

Измеритель напряженности поля ПЗ-21

Среднеквадратичное значение напряженности

ЭП:0,01-300 МГц;

МП: 0,01-30 МГц

ЭП: 1- 1000 В/м;

МП: 0,5-16 А/М

3 дБ

авт.

- // -

2.22

Измеритель напряженности поля ПЗ-22 (ПЗ-17/1,ПЗ-22/2, ПЗ-22/3, ПЗ-22/4)

Среднеквадратичное значение напряженности Энергетическая экспозиция

ЭП:0,01-300 МГц

МП: 0,01-300 МГц

ЭП. 1-3000 В/м

МП: 0,1-

500 А/м

2,5 дБ

авт.

- // -

2.23

Измеритель плотности потока энергии

ПЗ-18 (ПЗ-19, ПЗ-20)

Среднее значение ППЭ

0,3-39,65 ГГц

ПЗ-18:

(0,32-

10) мкВт/см2;

(3,2-10) мВт/см2; ПЗ-19,

ПЗ-20

(0,32-10) кВт/см2;

(20-100) мВт/см2

2дБ

авт., Эс

- // -

2.24

Измеритель плотности потока энергии миллиметрового диапазона длин волн ПЗ-23

Среднее значение ППЭ

37,6-118,1 ГГц

0,5-2000 мкВт/см2

2-3 дБ

авт.

- // -

2.25

Измерители низкочастотных электрических и магнитных полей типа EFA

Напряженность ЭП

Магнитная индукция

ЭП, МП:

5 Гц-30 кГц

ЭП:

0,1 В/м- 100 кВ/м

МП:

5 нТл-

10 мТл

±3-5

авт.

«Wandel & Goltermann» Германия

Продолжение приложения 8

1

2

3

4

5

6

7

8

2.26

Измерители высокочастотных электрических и магнитных полей типа EMR

Напряженность ЭП

Напряженность МП

Плотность потока энергии

ЭП: 100кГц- 3 ГГц

МП: 1 МГц-30 МГц

ЭП: 1- 1000 В/м

МП: 0,015- 15 В/м

ЭМИ: 0,0025-2,5 кВт/м2

±1дБ

авт.

«Wandel& Goltermann» Германия

2.27

ИЛД-2

Энергетическая экспозиция, облученность

Длина волны: 0,63 мкм,

0,69 мкм,

1,06 мкм.

Диапазон длительности импульсов 10-8-102.

Максимальная частота повторения импульсов

500Гц

ЭЭ: 1,410-9

- 1 Дж/см2

Облученность

1,410-7 -

10 Вт/см2

--

Эс

400048, Волгоград, Нижне-Украинская, 24, з-д «Эталон»

2.28

ИЛД-2М

Энергетическая экспозиция, облученность

Длина волны: 0,49 мкм, 1,15мкм,

10,6 мкм.

Диапазон длительности импульсов

10-8-10-2

10-6-10-2

Максимальная частота

повторения

импульсов -

500 Гц, 25 Гц

ЭЭ -1,410-9 -10-5Дж/см2

10-5-10-1 Дж/см2

Облученность

110-3 -

1 Вт/см2

--

Эс

400048, Волгоград, Нижне-Украинская, 24, з-д «Эталон»

2.29

Аргус-03

Облученность

0,25-10 мкм

1- 2000 Вт/мг

±6%

г. Москва, ВНИИОФИ

3. Шум и вибрация

п/п

Наименование

(тип) прибора,

устройства

Краткая техническая характеристика

Назначение

Адрес

поставщика

Пределы измерений, производительность, единица измерения

Питание*

Масса,

кг

1

2

3

4

5

6

7

3.1.

Шумомер малогабаритный (ВШМ-201)

25-130;дБ

авт., б,

3-2,2В

0,5

Измерение уровня звука

347900,г. Таганрог, Биржевой спуск, 8

3.2.

Шумовиброинтегра-тор логарифмирующий (ШВИЛ-01)

20-170:дБ

авт., б, Эс-220 В; 50 Гц

1,5

Измерение эквивалентных уровней непостоянных шумов и локальной вибрации

194100,г. С.Петербург, Новолитовская ул., д. 15

Продолжение приложения 8

1

2

3

4

5

6

7

3.3.

Измеритель шума и вибрации (ВШВ-003-М2)

22-140;дБ

авт., б, Эс-220 В; 5 Вт

4,5

Измерение шума, инфразвука, обшей и локальной вибрации

347900, г. Таганрог, Биржевой спуск,8

3.4

Шумомер-виброметр диагностический (ШВД-001)

30-140;дБ

авт., акк; 10 Вт; исполнение искробезопасное

5,0

Измерение уровней вибрации и шума. Диагностирование горношахтного оборудования

140004, Люберцы-4, Моск. обл., ИГД им. А.А. Скочинского, фирма «Динамик»

3.5

Шумомер-виброметр интегрирующий (ШВИ)

30-140; дБ

авт., акк; 10 Вт; исполнение искробезо-пасное

4,0

Измерение корректированных и эквивалентных уровней шума и вибрации

- // -

3.6

Аппаратура фирмы «Брюль и Кьер», Дания, для измерений в диапазоне частот до 100000 Гц, в т. ч. дозиметры

7-150; дБ

авт., б

Измерение инфразвука, ультразвука, шума, локальной и общей вибрации (постоянных, не постоянных спектров, эквивалентного уровня доз и др.)

Представительства фирмы: 103287, Москва, Петровско-Разумовский проезд, 29

* Эс - электросеть, авт. - автономное, акк. - аккумулятор, зу - зарядное устройство, б - батарея, В - напряжение, Вт - потребляемая мощность, мр - механическое ручное.

4. Микроклимат

№ п/п

Наименование(тип) прибора, устройства

Краткая техническая характеристика

Назначение

Адрес

поставщика

Пределы измерений, производительность, единица измерения

Питание*

Масса, кг

1

2

3

4

5

6

7

4.1 Психрометры аспирационные:

4.1.1.

МВ-4М

-30-50; °С

10-100; %

авт., мр

1.1

Измерение температуры и влажности воздуха

241000, г. Смоленск, Сафоновский з-д «Гидромедприбор»

4.1.2

М-34

-30-50, °С 1

0-100, %

Эс-220 В: 50 Гц

1,2

То же

Тот же

4.1.3

ПБУ-1М

0-45, °С

40-80, %

авт. , мр

0,35

То же

г. Клин.

Моск.обл п/о «Термоприбор»

4 1.4

Тип 452

авт.

0,5

Измерение температуры, влажности, скорости движения воздуха

Фирма «Тесто» (Германия) Тел. в Москве 2123839, факс 2123838

* Эс - электросеть, авт. - автономное, акк. - аккумулятор, зу - зарядное устройство, б - батарея, В - напряжение, Вт - потребляемая мощность, мр - механическое ручное.

Продолжение приложения 8

1

2

3

4

5

6

7

4.2. Анемометры:

4.2.1

Крыльчатый АСО-3

0,3-5,0; м/с

авт., мр

0.45

Измерение скорости движения воздуха

г. Москва, з-д «Гидромедприбор»

4.2.2

Крыльчатый АП-1м

0,5-40м/с

авт.

1,0

Тоже

г.Москва, тел.: 11-03-25

4.2.3

Чашечный МС-13

1,0-30; м/с

авт., мр

0,4

- // -

Тот же

4.2.4

Кататермометр шаровой

0,05-2,0; м/с

авт., мр

0,05

- // -

193036, г. С.-Петербург, 2-я Советская ул., д. 4. Мастерские НИИ ГТ и ПЗ

4.25

Термоанемометр ТАМ-1

0,1-2,0; м/с

авт., б

0,9

- // --

197022, г. С-Петер-бург, п/я В-8354

4.3. Актинометры:

4.3.1

Инспекторский

350-14000; Вт/м2; 0,5-20; кал/см2 мин

авт., мр

1.0

Измерение теплового облучения

4.3.2

Инспекторский усовершенствованной модификации

140-3500; Вт/м2; 0,2-5,0; кал/см2 мин

авт., мр

1,0

То же

4.3.3

Средство измерений интенсивности теплового облучения И МО-5

10-7000 Вт/м2

авт., б

1,9

- // -

НПО «Химмаштех-нология». 125212, Москва, ул. Вы-боргская.16

4.3.4

Неселективный радиометр «Аргус З»

1-2000 Вт/м2

авт., б

0,7

- // -

ВНИИ оптико-физических измерений Госстандарта России, тсл.(095)4373183, факс(095)4375522

4.3.5

Многоканальный универсальный радиометр-фотометр «Аргус»

0,001-2000 Вт/м2

1-200000

1-200000

1-100

авт., б

0.8

Энергетическая освещенность (инфракрасное и ультрафиолетовое излучение), Вт/м2;

Освещенность, лк; Яркость, кд/м2;

Коэффициент пульсации

ВНИИ оптико-физических измерений Госстандарта России, г. Москва тел.(095)4373183, факс (095) 4375522

1

2

3

4

5

6

7

4.4 Шаровой термометр

4.4.1

Шаровой термометр, тип 90

0-50; °С

30-100; °С

авт., мр

--

Оценка совместного действия параметров микроклимата (температура, скорость движения воздуха, тепловое излучение). ТНС-индекс

103767, Москва, Петровка, 27. Центр «Выставка-Сервис»

4.4.2

Микротермометр МТ-57М

10-40; °С

авт., б

2,0

Определение температуры поверхности

С.-Петербург, ул. Салтыкова-Щедрина, д. 41. Мастерские ГИДУВ

4.4.3

Монитор тепловой нагрузки, модель 1219

20-120; °С

авт., б

6,0

Интегральная оценка тепловой нагрузки среды

«Брюль и Къер» Представительство фирмы: 103287, Москва, Петровско-Разумовский пр. 29 тел:2123834, факс 2123838

5. Химический фактор

п/п

Наименование (тип) прибора, устройства

Краткая техническая характеристика

Назначение

Адрес

поставщика

Пределы измерений, производительность, единица измерения

Питание

Масса, кг

1

2

3

4

5

6

7

5.1

Газовый хроматограф ФГХ-1, портативный

чувствительность 0,1 мг/м3

акк,

Эс-220В,

1,2

Определение ацетона, пропилового спирта, гексана, этилацетата, бутилового и изобути-лового спирта,бензола, толуола,бу-тилацетата и изобу-тилацетата, пер-хлорэтилена, пара-, ортоксилола, ди-хлоргексанона

129347, Москва, ул. Проходчиков, 10-1-191, НПП «Экан»

т. 323-92-77, 182-92-96

5.2

Жидкостный хроматограф «Миллихром-4»

чувствительность 10-11; г

Эс-220 В. 50 Гц

70,0

Анализ органических соединений

302000, г. Орел, Наугорское ш.,40. АО «Научприбор»,

т. 41-56-87

Продолжение приложения 8

1

2

3

4

5

6

7

5.3

Газовый хроматограф. Модель 500М

чувствительность 1,8l0-12 г; г/с

Эс-220 В, 50 Гц

48,0

Анализ органических и неорганических соединений

606000, г. Дзержинск. Нижегородская обл., АО

«Цвет»,

т. 57-54-69

5.4

Спектрофотометр СФ-56

Спектральный диапазон

190-1100 нм

Эс-220 В,

50 Гц

60,0

То же

194044, г. С.-Петербург, ул. Чугунная, 20, АО «ЛОМО»

т. 248-52-01

5.5

Спектрофотометр СФ-66 (снабженный ЭВМ)

Тоже

Тоже

Тоже

Тоже

Тот же

5.6

Универсальный газоанализатор для анализа отработавших газов двигателей.

ГИАМ-57. Имеет семь модификаций

СО: 0-15 г/мэ

СН: 0-1500 ррм по пропану

СО2:0-16 %

Х:0-0,5 %

2:0-500 ррм

Эс-220 В; пост. ток -12В

10,0

Измерение СО, суммы углеводородов (СН) (по гекса-ну), СО2, NOХ, SО2

214020, г. Смоленск, ул. Бабушкина, 3. ПО «Аналитприбор»

5.7

Дымомер переносной с микропроцессором СМОГ-1

0-10 м-показатель ослабления;

0-100 % по шкале затемнения

Эс-220 В; пост. ток -

12 В и 24 В

15,0

Контроль дымности отработавших газов дизельных двигателей

Тот же

5.8

Газоанализаторы АНКАТ:

- // -

5.8.1

7601

0-1; мг/м3

Эс-220 В

15,0

Измерение микро-концентраций озона

5.8.2

7654 (восемь модификаций)

2: 0-10

2: 0-20

H2S: 0-20

СО: 0-50; мг/м3

авт., б,

Эс-220 В

3,0

Инспекционный контроль содержания в воздухе рабочей зоны СО, SО2, SО2, H2S

5.8.3

7671

0-5; мг/мэ

авт., б

3,0

Контроль содержания хлора в воздухе рабочей зоны

5.9

Газоанализатор «Палладий-3»

3

Эс - 220 В, пост. Ток -12В

5,0

Контроль загрязнения (СО) атмосферы и воздуха рабочей зоны. Световая, звуковая и электрическая сигнализация превышения ПДК

ул. Бабушкина, 3. 10 «Аналитпри-бop»

5.10

Индикаторные трубки

г/м3

мр

-

Экспрессное измерение содержания SO2, NO + NO2, CO ив воздухе, дымовых газах, промвыбросах

614007, г. Пермь, ул. Н. Островского, д. 60.

ВНИИИОС-уголь

Продолжение приложения 8

1

2

3

4

5

6

7

5.10.1

ТИ SO2 - 0,06

0,005-006

5.10.2

ТИ SO2 - 0,7

005-0,7

5.10.3

ТИ SO2 - 10

0,5-10,0

5.10.4

ТИ NO+NO2 - 1

0,1-10

5.10.5

ТИ NO+NO2 - 5

0,5-5,0

5.10.6

ТИ СO - 2,5М

0,1-2,5

5.10.7

ТИ СO - 2,5ПОЗ

0,1-2,5

6. Биологический фактор

№п/п

Наименование (тип) прибора, устройства

Краткая техническая характеристика

Назначение

Адрес

поставщика

Пределы измерений, производительность, единица измерения

Питание

Масса, кг

1

2

3

4

5

6

7

61

Импактор воздуха микробиологический «Флора-100»

Расход воздуха 150--200дмl/мин Миним. определяемая концен-трация- 0,5 КОЕ/м3. Макс. определяемая концентрация до 2106 KOE/м3

Эс-220В, 50 Гц. пост. ток, акк., 12В

2,5

Отбор проб микробиологических аэрозолей из воздуха для определения концентрации микроорганизмов на чашках Петри с использованием плотных агари-зованных питательных сред

123424, Москва, Волоколамское ш., д.75 ГОС НИИ биологического приборостроения

7. Световая среда

7.1

Люксметр

«Аргус-01»

1200000 лк

авт.

0,25

Измерение освещенности

119361, г. Москва, ул. Озерная, д. 46 ВНИИОФУ Госстандарта России

7.2

Яркомер

«Аргус-02»

1200000 кд/м2

авт.

0,35

Измерение яркости

- // -

7.3

Пульсметр

«Аргус-07»

1100 %

авт.

0,25

Измерение коэффициента пульсации освещенности

- // -

Приложение 9 (Обязательное)

Методика контроля содержания вредных веществ в воздухе рабочей зоны

1. Общие требования

1.1. Настоящая методика регламентирует порядок осуществления санитарного контроля за содержанием вредных веществ химической биологической природы, аэрозолей преимущественно фиброгенного действия в воздухе рабочей зоны: выбору мест (точек) отбора, периодичности, оценке и форме представления результатов в целях получения сопоставимых данных по загрязнению воздуха рабочей зоны, оценки его влияния на состояние здоровья работающих, установления необходимости использования средств индивидуальной защиты органов дыхания.

1.2. Контроль содержания вредных веществ проводится при сравнении измеренных концентраций с их предельно допустимыми значениями гигиеническим законодательством установлены следующие вилы ПДК:

* Среднесменная предельно допустимая концентрация - ПДКСС - предельная концентрация, усредненная за 8-часовую рабочую смену;

* Максимальная предельно допустимая концентрация - ПДКМ - максимальная концентрация, возникающая при ведении технологического процесса, усредненная при отборе проб за промежуток времени, равный 15 мин.

* Максимальная предельно допустимая концентрация веществ опасных для развития острого отравления (с остронаправленным механизмом действия, раздражающие вещества), - ПДКМП - максимальная концентрация, которая должна быть измерена за возможно более короткий промежуток времени, как это позволяет метод определения данного вещества.

* Вещества с остронаправленным механизмом действия - это вещества, опасные для развития острого отравления при кратковременном воздействии вследствие выраженных особенностей механизма действия: гемолитические, антиферментные (антихолинэстеразные ингибиторы ключевых ферментов, регулирующих дыхательную функцию и вызывающих отек легких, остановку дыхания, ингибиторы тканевого дыхания), угнетающие дыхательный и сосудодвигательные центры и др.

Среднесменные концентрации необходимы для расчета индивидуальной экспозиции, выявления связи изменений состояния здоровья работающих с их профессиональной деятельностью. При этом учитывается верхний предел колебаний концентраций (максимальные концентрации). Для веществ раздражающих и с остронаправленным механизмом действия при оценке связи выявленных нарушений в состоянии здоровья с условиями труда используют максимальные концентрации.

Результаты измерений максимальных концентраций прежде всего необходимы для инспекционного контроля за условиями труда, выявления неблагоприятных гигиенических ситуаций, решения вопросов о необходимости использования средств индивидуальной защиты, оценки технологического процесса, оборудования, санитарно-технических устройств.

1.3. Так как контроль за соблюдением максимальных концентраций проводится с целью недопущения значительных подъемов концентраций за короткий промежуток времени, отбор проб осуществляется на тех рабочих местах и с учетом технологических операций, при которых возможно выделение в воздушную среду наибольшего количества вредного вещества.

Пример: у аппаратуры и агрегатов в период наиболее активных химических и термических процессов (электрохимических, пиролитических и др.); в местах наиболее вероятных источников выделения при движении жидкостей и газов (насосные, компрессорные и др.): на участках при загрузке, выгрузке, транспортировании, затаривании химических веществ, а также на участках размола, сутки сыпучих материалов, при отборе проб на технологические анализы; в трудно вентилируемых участках.

Для веществ, имеющих два норматива - ПДКСС и ПДКМ, контролируют и не допускают превышения как средней за смену, так и максимальной концентраций.

Примечания.

1. Аэрозоли преимущественно фиброгенного действия (АПФД) следует контролировать по среднесменным концентрациям, т. к. их ПДК являются среднесменными (Дополнение 1 к ГН 2.2.5.686-98 «Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны»).

2. Для вредных химических веществ, не относящихся к раздражающим и к веществам с остронаправленным механизмом действия и имеющих один норматив - ПДКМ, также следует определять фактические среднесменные и максимальные концентрации (сравнивая их с ПДКМ).

3. За смену кратковременных (в течение 15 мин) подъемов концентраций (не выше максимальных ПДК) не должно быть более четырех, а перерывы между ними - не менее 1 ч.

1.5. В случае одной величины норматива - ПДКМ или ОБУВ - концентрация вещества за любой 15-минутный промежуток времени смены не должна превышать этой величины. Для веществ, опасных для развития острого отравления, концентрацию, измеренную за более короткий (чем 15 мин) отрезок времени, установленный методом контроля данного вещества, сравнивают с нормативом - ПДКМ.

1.6. Для решения вопроса о полноте контроля на предприятии для каждого рабочего места врач (или специалист, проводящий контроль) составляет перечень веществ, которые могут выделяться в воздух рабочей зоны при ведении технологического процесса. С этой целью работодатель предоставляет следующую информацию:

- сведения об используемых в производстве химических веществах (химический состав, молекулярная масса, летучесть и др.), их соответствие сертификатам, ТУ, ГОСТам;

- о химических реакциях на всех этапах технологического процесса, возможности образования промежуточных и побочных продуктов, качественном составе продуктов деструкции, гидролиза, пиролиза и других возможных превращений;

- возможность сорбции химических веществ на частичках пыли, строительных конструкциях, оборудовании и последующей десорбции.

На основании полученных материалов, с учетом технологического регламента, выявляют операции технологического процесса, при которых в воздушную среду производственных помещений (участков с открытым размещением оборудования) могут выделяться вредные вещества (пары, газы, аэрозоли).

1.7 При выделении в воздушную среду нескольких химических веществ или сложной смеси известного и относительно постоянного состава контроль загрязнений воздуха допускается проводить как по ведущей (определяющей клинические проявления интоксикации), так и наиболее характерной для данной смеси компоненте

Ведущий производственный фактор - фактор, специфическое действие которого на организм работника проявляется в наибольшей мере при комбинированном или сочетанием действии ряда факторов.

В случае, когда в воздушную среду выделяется сложный комплекс веществ не полностью известного состава (что обусловлено, как правило, процессами термоокислительной деструкции, гидролиза, пиролиза и др.), работодатель представляет информацию об идентификации выделяющихся компонентов по результатам хромато-масс-спектрометрии или других современных методов исследований. На основании анализа расшифровки состава газовыделений выявляются гигиенически значимые (ведущие и наиболее характерные) компоненты, по которым будут проводить контроль воздуха.

1.8. При выборе конкретных методов контроля необходимо руководствоваться методическими указаниями на методы определения вредных веществ в воздухе рабочей зоны, утвержденными Миндравом России (до 1996 года - Госкомсанэпиднадзором России). Аппаратура и приборы, используемые при санитарно-химических исследованиях, подлежат поверке в установленном порядке.

1.9. Контроль воздуха осуществляют при характерных производственных условиях (ведение производственного процесса в соответствии с технологическим регламентом) с учетом:

- особенностей технологического процесса (непрерывный, периодический), температурного режима, количества выделяющихся вредных веществ и др.;

- физико-химических свойств контролируемых веществ (агрегатное состояние, плотность, давление пара, летучесть и др.) и возможности превращения последних в результате окисления, деструкции, гидролиза и др. процессов;

- класса опасности и биологического действия вещества;

- планировки помещений (этажность здания, наличие межэтажных проемов, связь со смежными помещениями и др.);

- количества и вида рабочих мест (постоянные и непостоянные);

- реального времени пребывания работающих на производственном участке в течение рабочей смены.

1.10. Отбор проб воздуха проводят в зоне дыхания работника, либо с максимальным приближением к ней воздухозаборного устройства (на высоте 1,5 м от пола).

1.11. Нарушение технологического процесса, неисправное состояние или неправильная эксплуатация оборудования и всех предусмотренных средств предотвращения загрязнения производственной атмосферы (вентиляция, укрытия) должны быть устранены, либо отмечены в протоколе измерения. После устранения нарушения или неисправности вновь проводят измерение концентраций.

2. Контроль соответствия максимальным ПДК

2.1. В соответствии с п. 1.3 определяют участки и операции, при которых возможно наибольшее выделение вредных веществ в воздух рабочей зоны. Для новых и ранее не изученных производств необходимо стремиться к более полному охвату рабочих мест с постоянным и временным пребыванием работающих. Полученные результаты в комплексе с данными по оценке технологического процесса, оборудования, вентиляционных устройств определяют тактику контроля за максимальными концентрациями (рабочие места, технологические операции, во время которых производится отбор проб, периодичность отбора).

2.2. Контроль воздушной среды на производственном участке, характеризующимся постоянством технологического процесса, значительным количеством идентичного оборудования или одинаковых рабочих мест, на которых выполняются одни и те же операции, осуществляется выборочно на отдельных рабочих местах (но не менее 20 %), расположенных в центре и по периферии помещения.

2.3. При проведении планового ремонта технологического, санитарно-технического оборудования, при реконструкции производства (если часть оборудования продолжает эксплуатироваться) проводится контроль воздуха рабочей зоны на основных местах пребывания работающих.

2.4. Длительность отбора одной пробы воздуха определяется методом анализа и зависит от концентрации вещества в воздухе рабочей зоны.

2.5. При контроле за максимальными концентрациями, если метод анализа позволяет отобрать несколько (2 - 3 и более) проб в течение 15 мин, вычисляют среднеарифметическую (при равном времени отбора отдельных проб) или средневзвешенную (если время отбора проб разное) величину из полученных результатов, которую сравнивают с ПДКМ.

2.6.В случае, если метод контроля вещества предусматривает длительность отбора одной пробы за время, превышающее 15 мин, это следует рассматривать как исключение, и результат каждого измерения сравнивают с установленной для него ПДКМ.

2.7. При возможном поступлении в воздух рабочей зоны вредных веществ с остронаправленным механизмом действия должен быть обеспечен непрерывный контроль с сигнализацией превышения ПДК. Для веществ раздражающего действия максимальные концентрации оцениваются за время, предусмотренное методом контроля конкретного вещества.

2.8. Для остальных веществ периодичность контроля устанавливается в зависимости от характера технологического процесса (непрерывного, периодического), класса опасности и характера биологического действия химических веществ, стабильности производственной среды, уровня загрязнения, времени пребывания обслуживающего персонала на рабочем месте по согласованию с учреждениями санэпидслужбы. В зависимости от класса опасности вредного вещества рекомендуется следующая периодичность контроля: для веществ I класса опасности - не реже 1 раза в 10 дней; II класса - 1 раз в месяц; III класса - 1 раз в 3 месяца; IV класса - 1 раз в 6 месяцев.

2.9. Величины максимальных концентраций за смену можно установить и при определении среднесменных концентраций графоаналитическим методом (раздел 5 настоящей методики).

3. Контроль за соблюдением среднесменных ПДК

3.1. Контроль за соблюдением среднесменной ПДК проводится применительно к определенной профессиональной группе или конкретному работнику. Для характеристики профессиональной группы среднесменную концентрацию определяют не менее чем у 10 % работников данной профессии.

3.2. Среднесменные концентрации измеряют как для рабочих основных профессий, так и для вспомогательного персонала, которые по характеру работы могут подвергаться действию вредных веществ (слесари, ремонтники, электрики и др.).

3.3. Измерение среднесменных концентраций приборами индивидуального контроля проводится при непрерывном или последовательном отборе в течение всей смены, но не менее 75 % ее продолжительности, при условии охвата всех производственных операций, включая перерывы (нерегламентированные), пребывание в операторных и др. При этом количество отобранных за смену проб зависит от концентрации вещества в воздухе и определяется методом контроля. Для достоверной характеристики воздушной среды необходимо получить данные не менее чем по трем сменам.

3.4. Среднесменную концентрацию можно определить на основе отдельных измерений с учетом всех технологических операций (основных и вспомогательных) и перерывов в работе. Количество проб при этом зависит от числа технологических операций, их длительности, но, как правило, должно быть не менее пяти. В этом случае среднесменная концентрация рассчитывается как концентрация средневзвешенная во времени смены (раздел 4 настоящей методики) или определяется на основе обработки результатов пробоотбора графоаналитическим методом (раздел 5 настоящей методики).

3.5. Периодичность контроля среднесменных концентраций устанавливается по согласованию с учреждениями санэпидслужбы и, как правило, должна соответствовать периодичности медицинского осмотра. При изменении техпроцесса, оборудования, санитарно-технических устройств среднесменную концентрацию следует измерить вновь.

4. Расчетный метод определения среднесменной концентрации

4.1. Все операции технологического процесса, их длительность (включая нерегламентированные перерывы), длительность отбора каждой пробы и соответствующие ей концентрации вносят в таблицу П.9.1 (графы 1, 2, 3, 4 соответственно) Если работник в течение смены выходит из помещения или находится на участках, где заведомо нет контролируемого вещества, то в графе 2 отмечают, чем он был занят, а в графе 5 ставят «0» В графу 5 вносят результаты произведения концентрации вещества на время отбора пробы.

4.2. В графу 6 вносят результаты расчета средней концентрации для каждой операции (К0):

К1, К2 ... Кn - концентрации вещества;

t1, t2 tn - время отбора пробы.

4.3. По результатам средних концентраций за операцию 0) и длительности операции (Т0) рассчитывают среднесменную концентрацию СС) как средневзвешенную величину за смену:

К01, К02 ... К0n - средняя концентрация за операцию;

Т01, Т02 Т0n - продолжительность операции.

4.4. В графу 8 вносят статистические показатели, характеризующие процесс загрязнения воздуха рабочей зоны в течение смены

4.5. Минимальная концентрация (КМИН) - минимальная концентрация, определенная в течение всей рабочей смены.

4.6. Максимальная концентрация (КМАКС) - максимальная концентрация, определенная в течение всей рабочей смены.

4.7. Среднесменная концентрация (КСС) - средневзвешенная концентрация за всю рабочую смену, рассчитанная в соответствии с п. 4.2

4.8. Медиана (Me) - безразмерное среднее геометрическое значение концентрации вредного вещества, которая делит всю совокупность концентраций на две равные части. 50 % проб выше значения медианы, а 50 % - ниже. Медиана рассчитывается по формуле:

К1, К2 ... Кn - концентрации вещества в отобранной пробе;

t1, t2 tn - время отбора пробы.

4.9. Стандартное геометрическое отклонение (g), характеризующее пределы колебаний концентраций (аналогично п. 5.8). g рассчитывается по формуле:

КСС - среднесменная концентрация;

Me - медиана.

Таблица П.9.1

Определение среднесменной концентрации расчетным методом

Ф.И.О. ______________________________________________________

Профессия __________________________________________________

Предприятие _________________________________________________

Цех, производство _____________________________________________

Наименование вещества ________________________________________

Наименование и краткое описание этапа производственного процесса (операции)

Длительность операции, Т, мин

Длительность отбора пробы, t, мин

Концентрация вещества в пробе, К, мг/м'

Произведение концентрации на время, K-t

Средняя концентрация за операцию, Ко, мг/м3

Статистические показатели, характеризующие содержание вредного вещества в воздухе рабочей зоны в течение смены

Миним. концентрац. в течение смены (КМИН), мг/м3

Максим. концентрац. в течение смены (КМАКС), мг/м3

Среднесменная конц. (КСС), мг/м3

Медиана (Me)

Стандартное геометрическое отклонение (g)

5. Графоаналитический метод обработки данных контроля содержания вредных веществ в воздухе рабочей зоны

5.1. Операции технологического процесса, их длительность, длительность отбора каждой пробы и соответствующие им концентрации вносят в таблицу П.9.2.

5.2. Результаты измерений концентраций вещества в порядке возрастания вносят в графу 2 таблицы П.9.3, а в графе 3 отмечают соответствующую длительность отбора пробы. Время отбора всех проб суммируется и принимается за 100 %.

Примечание. Для повышения достоверности информации о содержании химических веществ в воздушной среде рекомендуется соблюдение пропорциональности суммарного времени отбора проб на каждой операции ее продолжительности. Результаты отбора проб воздуха за несколько смен на одном рабочем месте при постоянном технологическом процессе при расчете среднесменной концентрации графоаналитическим методом в целях более полной характеристики загрязнения воздуха рабочей зоны вредным веществом можно объединить.

5.4. Определяют нолю времени отбора каждой пробы (%) в общей длительности отбора всех проб (1), принятой за 100 %. Данные вносят в графу 4 таблицы П.9.3.

5.5. Определяют накопленную частоту путем последовательного суммирования времени каждой пробы, указанной в графе 4, которая в сумме должна составить 100 % (графа 5).

5.6. На логарифмически вероятностную сетку (рисунок П.9.1) наносят значения концентраций (по оси абсцисс) и соответствующие им накопленные частоты (по оси ординат) в процентах. Через нанесенные точки проводится прямая.

5.7. Определяем значение медианы (Me) по пересечению интегральной прямой с 50 %-ным значением вероятности.

5.8. Определяем значение Х84 или Х16, которые соответствуют 84 или 16 % вероятности накопленных частот (оси ординат). Рассчитываем стандартное геометрическое отклонение g, характеризующее пределы колебаний концентраций:

Стандартное геометрическое отклонение, не превышающее 3, свидетельствует о стабильности концентраций в воздухе рабочей зоны и не требует повышенной частоты контроля; g более 6 указывает на значительные колебания концентраций в течение смены и необходимость увеличения частоты контроля среднесменных концентраций для данной профессиональной группы работающих (на данном рабочем месте).

5.9. Значение среднесменной концентрации рассчитывается по формуле:

5.10. Значения максимальных концентраций соответствуют значениям 97 % накопленных частот при 8-часовой продолжительности рабочей смены.

Таблица П.9.2

Результаты отбора проб воздуха для определения срсднесменных концентраций

Ф.И.О. __________________________________________________

Профессия ______________________________________________

Предприятие _______________________

Цех, производство________________

Наименование вещества ___________________________________

№ п/п

Наименование операции (этапа) производственного процесса

Длительность операции (этапа) производственного процесса, мин

Длительность отбора пробы, мин

Концентрация вещества, мг/м3

Таблица П.9.3

№ п/п

Концентрация в порядке ранжирования

мг/м3

Длительность отбора пробы,

t, мин

Длительность отбора пробы, % от 1

Накопленная частота, %

Статистические показатели и их значения

1

2

3

4

5

6

Среднесменная концентрация КСС, мг/м3

Максим. концентрация за смену КМАКС, мг/м3

Минимальная концентрация за смену КМИН, мг/м3

Медиана Me

Стандартное геометрическое отклонение, g

= 100 %

Пример определения среднесменных концентраций вредных веществ в воздухе рабочий зоны расчетным и графоаналитическим методами

Технологический процесс на исследуемом участке предприятия подразделяется на 4 этапа. Продолжительность смены - 8 ч. Продолжительность этапов технологического процесса составляла 70, 193,150 и 67 мин соответственно. Отбор проб воздуха производился в течение двух смен. В первую смену было отобрано 3 пробы на первом этапе, 2 пробы на втором, 2 на третьем и 1 на четвертом. Во вторую смену было отобрано по 2 пробы на каждом этапе.

1. Для расчета среднесменной концентрации вредного вещества в воздухе рабочей зоны графоаналитическим методом результаты отбора по всем сменам вносят в таблицы и П.9.2. и П.9.3. в соответствии с приложением 9 настоящего руководства.

Описание операций технологического процесса, их длительность, длительность отбора каждой пробы и соответствующие им концентрации вносят в таблицу П.9.2.

Результаты измерений концентраций вещества в порядке возрастания вносят в графу 2 таблицы П.9.3, а в графе 3 отмечают соответствующую ей длительность отбора пробы. Время отбора всех проб суммируется и принимается за 100 %.

Определяем долю времени отбора каждой пробы (%) в общей длительности отбора всех проб (1), принятой за 100 %. Данные вносят в графу 4. Определяют накопленную частоту путем последовательного суммирования времени каждой пробы, указанной в графе 4, которая в сумме должна составить 100 % (графа 5).

На логарифмически вероятностную сетку (рис. П.9.2) наносят значения концентраций (по оси абсцисс) и соответствующие им накопленные частоты (по оси ординат) в процентах. Через нанесенные точки проводится прямая.

Определяют значение медианы (Me) по пересечению интегральной прямой с 50 %-ным значением вероятности.

Определяют значение Х84 или Х16 , которые соответствуют 84 или 16 % вероятности накопленных частот (оси ординат). Рассчитывают стандартное геометрическое отклонение g , характеризующее пределы колебаний концентраций:

;

Значение среднесменной концентрации рассчитывается по формуле:

Значения максимальных концентраций соответствуют значениям 97 % накопленных частот при 8-часовой продолжительности рабочей смены.

Результаты отбора проб воздуха для определения среднесменных концентраций.

Ф. И. О.: Петров А. И.

Профессия: машинист.

Предприятие: ЖБИ.

Цех, производство: Цех № 3, производство бетонных изделий.

Наименование вещества: пыль цемента

Таблица П.9.2

№ п/п

Наименование операции (этапа) производственного процесса

Длительность операции (этапа) производственного процесса, мин

Длительность отбора пробы, мин

Концентрация вещества,

мг/м3

1

Этап 1

70

10

40,5

2

7

59,5

3

5

173,3

4

10

110,6

5

5

121,1

6

Этап 2

193

21

18,8

7

38

17,8

8

13

29,9

9

15

20,0

10

Этап З

150

10

39,4

11

30

14,2

12

11

23,7

13

10

23,3

14

Этап 4

67

15

21,5

15

16

11,8

16

40

4,0

Таблица П.9.3

п/п

Концентрация в порядке ранжирования, мг/м3

Длительность отбора пробы, t, мин

Длительность отбора пробы, % от 1

Накопленная частота, %

Статистические показатели и их значения

1

4,0

40

15,6

15,6

Среднесменная

концентрация

КСС = 25,5 мг/м3

2

11,8

16

6,3

21,9

3

14,2

30

11.7

33,6

4

17,8

38

14,8

48,4

5

18,8

21

8,2

56,6

Максимальная

концентрация

КМАКС = 105 мг/м3

6

20,0

15

5,9

62,5

7

21,5

15

5,8

68,3

8

23,3

10

3,9

72,2

9

23,7

11

4,3

76,5

Минимальная

концентрация

КМИН = 4,0 мг/м3

10

29,9

13

5,1

81,6

11

39,4

10

3,9

85,5

12

40,5

10

3,9

89,4

13

59,5

7

2,7

92,1

Медиана

Me = 15,0

14

110,6

10

3,9

96,0

15

121,1

5

1,9

97,9

Стандартное геометрическое отклонение

g = 2,8

16

173,3

5

2,0

99,9

1 = 256 (100 %) = 99,9 %

Таким образом, машинист цеха по производству бетонных изделий Петров А. И. подвергается воздействию пыли цемента, среднесменная концентрация которой составляет 25,5 мг/м3, что в 4,25 раза выше ПДК.

Логарифмически вероятностная координатная сетка

2. Для определения среднесменной концентрации расчетным методом заполняем таблицу П.9.1 в соответствии с требованиями раздела 4 прилож. 9 настоящего руководства.

Рассчитываем средние концентрации для каждой операции 01 - К04):

К1, К2 ... Кn - концентрации вещества;

t1, t2 tn - время отбора пробы.

По результатам определения средних концентраций за операцию 0) и длительности операции (Т0) рассчитывают среднесменную концентрацию СС) как средневзвешенную величину за смену:

К01, К02 ... К0n - средняя концентрация за операцию;

Т01, Т02 Т0n - продолжительность операции.

Определяем статистические показатели, характеризующие процесс загрязнения воздуха рабочей зоны в течение смены: минимальную концентрацию за смену (КМИН), максимальная концентрация за смену (КМАКС); медиану (Me); стандартное геометрическое отклонение g.

К1, К2 ... Кn - концентрации вещества в отобранной пробе;

t1, t2 tn - время отбора пробы.

КСС - среднесменная концентрация;

Me - медиана.

Таблица П.9.1

Определение среднесменной концентрации расчетным методом

Ф. И. О.

Профессия

Предприятие

Цех, производство

Наименование вещества

Наименование и краткое описание этапа производственного процесса (операции)

Длительность

операции (этапа производственного

процесса),

Т, мин

Длительность отбора разовой пробы, t, мин

Концентрация вещества в пробе, К, мг/м3

Произведение концентрации на время, К t

Средняя

концентрация за операцию, Ко, мг/м3

Статистические показатели, характеризующие процесс

пылевыделения за смену

Этап 1

70

10

40,5

405,0

91,9

Среднесменная концентрация

КСС = 27,9 мг/м3

7

59,5

416,5

5

173,3

866,5

10

110,6

1106,0

5

121,1

605,5

Этап 2

193

21

18,8

394,8

20,2

Минимальная концентрация в течение

смены КМИН = 4,0 мг/м3

38

17,8

676,4

13

29,9

388,7

15

20,0

300,0

Этап 3

150

10

39,4

394,0

21,5

Максимальная концентрация в течение смены КМАКС = 173,3 мг/м3.

Медиана Ме = 18,4

30

14,2

426,0

11

23,7

260,7

10

23,3

233,0

Этап 4

67

15

21,5

322,5

9,5

Стандартное геометрическое отклонение g = 2,6

16

11,8

188,8

40

4,0

160,0

Приложение 10 (Обязательное)

Методика контроля содержания микроорганизмов в воздухе рабочей зоны

1. Общие положения

1.1. Методика определяет требования к измерению в воздухе рабочей зоны концентраций микроорганизмов, живых клеток и спор, находящихся в составе товарных форм препаратов на предприятиях по производству препаратов методом биосинтеза, а также помещений общественных и промышленных зданий.

1.2. К использованию в технологических процессах допускаются штаммы микроорганизмов, разрешенные департаментом госсанэпиднадзора Минздрава России.

1.3. Контроль воздуха на содержание вредных веществ биологической природы - продуктов микробного синтеза (ферменты, витамины, антибиотики и др.) проводится так, как это принято для химических веществ.

2. Требования к отбору проб

2.1. Отбор проб воздуха для контроля содержания микроорганизмов проводится путем аспирации их из воздуха на поверхность плотной питательной среды.

2.2. Отбору проб должна предшествовать краткая характеристика микроорганизмов: указывается семейство, род, вид, штамм, морфологическая характеристика колоний на твердой питательной среде и оптимальные условия роста колоний на твердой питательной среде (РН, Т°).

2.3. Отбор проб воздуха проводят:

- при засеве инокуляторов в зоне дыхания и между инокуляторами;

- при отборе проб из инокуляторов;

- при засеве посевных аппаратов (при условии прямого засеивания);

- при отборе проб из посевных аппаратов у пробника и между посевными аппаратами;

- при отборе проб из ферментеров;

- при спуске культуральной жидкости из ферментеров в коагуляторы или прямо на фильтрацию.

Если в технологическом процессе имеет место сушка биомассы, то отбор проб проводится:

- при перемешивании;

- при выгрузке из сушильных аппаратов;

- при фасовке биомассы.

Перечисленные точки отбора ориентировочные и на каждом предприятии устанавливаются индивидуально с учетом данных валидации, характеристик процесса, методологии тестирования и т. п.

2.4. При текущем контроле в одном помещении число контрольных точек должно быть не менее трех

2.5. Для сравнительного анализа концентраций микроорганизмов в воздухе рабочей зоны отбор проб должен проводиться не реже 1 раза в неделю в аналогичный по интенсивности технологического процесса временной период

2.6. Объем пробы воздуха должен быть достаточным для обнаружения микроорганизмов Он устанавливается опытным путем с учетом характеристик используемого пробоотборника и концентрации микроорганизмов в тестируемой зоне

Примечание. Для импакторов и центрифужных пробоотборников одним из ограничивающих факторов является высыхание поверхности агара при больших объемах проб, а также возможность повреждения поверхности агарового слоя (растрескивание)

2.7 Отбор проб на содержание микроорганизмов проводят в рабочей зоне, высота установки прибора 1,5 м от уровня пола.

3. Характеристика метода

3.1. Метод основан на аспирации микроорганизмов из воздуха на поверхность плотных элективных питательных сред (специфичных для данного микроорганизма) и подсчета выросших колоний по типичным морфологическим признакам.

3.2. В специфическую питательную среду добавляют вещества (этиловый спирт, нефтепродукты, антибиотики и т. п.) для подавления посторонней микрофлоры, в зависимости от особенностей изучаемого штамма.

3.3. Отбор проб проводится с концентрированном воздуха на чашке Петри с посевной средой.

Примечание.

1. Выбор питательной среды является важным фактором Базовой средой для бактерий является среда № 1 (по ГФ, изд. XI, вып. 2., с 200*) и среда № 2 (агар Сабуро) для дрожжей и грибов. Посевы на среде № I инкубируются при температуре от 30 до 35 °С в течение 48 ч, на агаре Сабуро - от 20 до 25 °С в течение 72 ч.

2. Перед исследованием разлитые на чашки Петри или на пластины питательные среды необходимо выдержать в термостате при температуре от 30 до 35 °С в течение 24 ч для подтверждения их стерильности. Проросшие чашки бракуют.

3. Ростовые свойства питательных сред должны быть проверены соответствующими тест-штаммами (для среды № I и среды № 2 по ГФ, изд. XI, вып 2, с. 208 «Требования к ростовым свойствам питательных сред»).

3.4 Предел измерения от 0,5 до до 2-106 КОЕ/м3.

3 5. Выявленные в процессе отбора пробы воздуха микроорганизмы подлежат обязательной макроскопической (форма, цвет, консистенция колоний) и микроскопической идентификации окрашенных по Грамму мазков Результаты исследований должны регистрироваться в документах, где указывают основные морфологические признаки: отношение к окраске по Грамму, наличие или отсутствие спорообразования, форма микроорганизмов (кокки, палочки, овоиды и т.п.).

В процессе идентификации микроорганизмов могут быть использованы биохимические тест-системы, идентификационные автоматизированные системы, а также любые современные методы идентификации микроорганизмов

4. Приборы и посуда

4 1. Для бактериологического анализа воздуха используют импактор воздуха микробиологический «Флора-100» (ТУ 64-098- 33-95)

Примечание. Современная отечественная модель - высокопроизводительный импактор «Флора 100» работает в автоматическом режиме, отбирает заданный объем воздуха и осаждает биологический аэрозоль на чашку Петри с плотной питательной средой. Импактор полностью заменяет широко используемый для контроля прибор Кротова и превосходит его по всем техническим характеристикам (точность определения, масса, габариты, скорость пробоотбора, автоматический контроль параметров пробоотбора и диагностики неисправностей).

Импактор «Флора-100» прошел государственные испытания и рекомендован Комитетом по новой технике (протокол № 7 от 26. 12. 95) к применению в медицинской практике.

4.2. Методику проведения контроля с использованием импактора «Флора-100» рекомендуется согласовывать с разработчиком импактора для уточнения времени аспирации в зависимости от особенностей контролируемой микрофлоры.

4.3. Прибор для бактериологического анализа воздуха, модель 818 ТУ 64-1-791 -77

4.4. Секундомер ГОСТ 9586-75

4.5. Чашки бактериологические, плоскодонные, стеклянные диаметром 100 мм ГОСТ 10937-75

4.6. Термостаты электрические суховоздушные, типа ТС, ТУ 64-1-1382-76

4.7. Пипетки мерные ГОСТ 1770-74

4.8. Колбы конические ГОСТ 1770-74

4.9. Весы аналитические ВЛА-200-М

4.10. Камера для стерильной сушки чашек Петри типа ЕМЗ 804-014СП

* Государственная Фармокопея СССР XI издания, вып. 2

5. Методика проведения контроля

5.1. Воздух аспирируют со скоростью от 20-30 до 150-200 л/мин на поверхность питательной (посевной) среды на чашках Петр.


Подобные документы

  • Исходные данные для проведения гигиенической оценки рабочего места. Оценка условий труда при воздействии химического фактора, аэрозолей преимущественно фиброгенного действия, по показателям световой среды и микроклимата. Системы кондиционирования воздуха.

    курсовая работа [421,6 K], добавлен 20.09.2011

  • Гигиеническая оценка условий труда при воздействии химического фактора и аэрозолей фиброгенного действия (пыли). Показатели световой среды, микроклимата и систем кондиционирования воздуха. Условия труда на предприятиях горно-промышленного комплекса.

    контрольная работа [305,3 K], добавлен 13.02.2012

  • Понятие вредных и опасных факторов производственной среды, их классификация и воздействие на человека. Сущность здоровья, работоспособности, напряженности и тяжести труда. Гигиенические нормативы условий труда и их виды (оптимальные, допустимые, вредные).

    презентация [1,9 M], добавлен 08.12.2013

  • Уменьшение генерации электростатических зарядов как один из распространенных средств защиты от статического электричества. Общая характеристика основных гигиенических особенностей условий труда при воздействии неионизирующих излучений на производстве.

    курсовая работа [2,7 M], добавлен 25.05.2015

  • Классификация вредных веществ по видам токсического воздействия и степени опасности. Методы санитарного контроля воздушной среды. Способы борьбы с пылью. Вентиляция и кондиционирование воздуха. Виды электромагнитного излучения и средства защиты от него.

    презентация [1,0 M], добавлен 08.12.2013

  • Гигиенические нормативы условий труда. Периоды изменения работоспособности в течение рабочей смены. Классификация условий труда. Меры, направленные на профилактику вредного и опасного действия факторов рабочей среды и трудового процесса на работников.

    лекция [9,2 M], добавлен 12.02.2014

  • Понятие условий труда и необходимость их улучшения на предприятиях. Классификация факторов составляющих уровень и состояние условий труда. Санитарно-гигиенические, психофизиологические и эстетические факторы. Общая характеристика категории тяжести труда.

    реферат [32,0 K], добавлен 28.03.2009

  • Анализ особенностей рабочего места столяра. Оценка воздействия на работника аэрозолей преимущественно фиброгенного действия (древесной пыли). Общая гигиеническая оценка условий труда на рабочем месте. Оценка локальной вибрации, шума, микроклимата.

    курсовая работа [2,5 M], добавлен 09.02.2014

  • Протокол инструментального исследования параметров микроклимата, химического фактора. Оценка условий труда по показателям тяжести и напряженности трудового процесса. Расчет доплат к тарифной ставке. Мероприятия и рекомендации по улучшению условий труда.

    курсовая работа [944,5 K], добавлен 10.04.2017

  • Понятие и классификация пыли. Гигиеническое значение физико-химических свойств пыли, характер воздействия на организм. Мероприятия по борьбе с пылью, их эффективность. Защита временем при воздействии аэрозолей преимущественно фиброгенного действия.

    контрольная работа [28,1 K], добавлен 02.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.