Парогазовые установки

Оценка технико-экономической эффективности модернизации ГТУ-ТЭС с использованием парогазовой технологии. Экономическая целесообразность форсированного внедрения ПТУ при обновлении тепловых электростанций. Реконструкция паротурбинных электростанций.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 16.11.2010
Размер файла 122,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Результаты оценки коммерческой эффективности трех вариантов обновления ТЭС ЕЭС России Таблица 3

Вариант

1

2

3

Расход топлива по варианту, млн т. у.т.

в т.ч. газ/уголь

Экономия топлива по сравнению с вариантом 1, %

1646 918/728

-

1539 868/671 7

1321 735/586 25

Потребность в инвестициях по варианту, млрд дол. Дополнительный объем инвестиций по сравнению

с вариантом 1, %

8,3

-

9,6 16

12,5 51

Чистый дисконтированный доход по варианту, млрд дол.

-14,7

-1,2

7,1

при котором работы по восстановлению ресурса оборудования не обеспечивают повышение его тепловой экономичности. Самым экономичным с точки зрения расхода топлива является вариант 3 с максимальным объемом внедрения новой техники. За счет экономии газа, достигаемой при обновлении действующих паротурбинных ТЭС и составляющей около 7 млн т у.т. в год, можно обеспечить этим топливом как модернизированные ТЭС, так и новые парогазовые электростанции. В результате этого мощность ПГУ и ГТУ к 2010 году можно довести до 12...13млнкВт.

Безусловно, столь значительная экономия топлива в варианте 3 достигается за счет дополнительных инвестиций, в 1,5 раза больших по сравнению с вариантом 1. Это существенно осложняет возможность реализации прогрессивного варианта обновления. В соответствии с принятым критерием (максимум ЧДД) именно вариант 3 с максимальным внедрением технически нового и модернизированного оборудования является самым эффективным, в то время как реализация варианта 1 неэффективна вообще (ЧДД<0).

Для финансирования обновления ТЭС полностью за счет собственных средств наименьший рост тарифов предполагается в варианте 3: по сравнению с уровнем 2002 года он увеличится к 2010 году примерно в 2 раза (рис. 1). При менее эффективных вариантах обновления самоокупаемость возможна лишь за счет более интенсивного роста тарифов -- в 3-3,5 раза. Как известно, основными источниками собственных инвестиционных средств являются нераспределенная прибыль и амортизация. Прибыль как источник инвестиционных средств возможна лишь в прогрессивных вариантах 2 и 3 (рис. 2). Амортизационных средств в этом случае явно недостаточно. Поэтому в совокупности за счет собственных источников можно профинансировать лишь около 30% инвестиций в варианте 1 и значительно больше в прогрессивных вариантах 2иЗ -- 44и61% соответственно. Ввиду недостатка собственных средств для финансирования обновления, ИНЭИ РАН были рассмотрены и другие схемы инвестирования (рис. 3):

¦ обновление на 30% финансируется за счет собственных средств РАО «ЕЭС России», 70% - за счет привлечения долгосрочных банковских кредитов, при этом срок погашения кредита составляет 10 лет, а процентная ставка за кредит-5 и 10%;

¦ оборудование для обновления приобретается на условиях лизинга, а строительно-монтажные работы либо полностью финансируются за счет собственных средств, либо 30% -- за счет собственных средств и 70% -- за счет заемного капитала. Анализ схем финансирования показал, что реализовать прогрессивные варианты обновления 2 и З можно лишь при льготных условиях привлечения заемных средств (сроки возврата капитала более 10 лет и процентные ставки 5--10%). В варианте 1 из--за роста топливных затрат себестоимость производства электроэнергии превышает выручку от ее продажи. Поэтому погашение обязательств даже по льготным кредитам проблематично. Таким образом, результаты сравнения вариантов обновления ТЭС, ресурс которых будет выработан к 2010 г., показывают, что для оборудования на газе самым эффективным является его замена парогазовыми или газотурбинными установками, а для оборудования на угле -- замена модернизированным. При восстановлении ресурса преимуществом являются относительно низкие затраты и короткие сроки обновления. Но с экономической точки зрения реализация такого варианта неэффективна и способствует отставанию в развитии электроэнергетики. Поэтому на паротурбинных КЭС на газе рекомендуется установка крупных ПГУ единичной мощностью 325...540 МВт, на мелких ТЭЦ (с параметрами пара 90 ата и ниже) -- установка ГТУ с котлами-утилизаторами. Однако замена оборудования мелких ТЭЦ на ГТУ эффективна только в том случае, если их стоимость не превысит стоимость крупных газовых турбин более чем в 1,5 раза. При выборе способов обновления крупных ТЭЦ (130 ата) существует большая неопределенность. Это связано как с трудностью прогнозирования тепловых нагрузок на перспективу, так и с необходимостью оценки технических возможностей по размещению нового оборудования на старых площадках ТЭЦ. Замена крупных теплофикационных агрегатов, работающих на газе, на ПГУ более эффективна, чем установка их на паротурбинных КЭС, лишь в том случае, если загрузка ПГУ по тепловому графику составляет более 60%.

Комплексный подход к строительству и реконструкции электростанций с применением ПУ и ПГУ

Разработанный 000 «АГРИ-Консалтинг» подход при реализации инвестиционных проектов строительства газотурбинных электростанций позволяет решить все организационно-правовые вопросы, а также вопросы, связанные с информационно-технологическим обеспечением проекта с минимизацией административных и финансовых затрат.

С. Костин, А. Пак - 000 «АГРИ-Консалтинг»

В последние десятилетия в России наблюдается существенное увеличение спроса на энергетические ресурсы, особенно в Центральной части. Это связано с ростом темпов производства и увеличением потребления электроэнергии (рис. 1).

Сооружение новых электростанций с комбинированным циклом производства тепловой и электрической энергии, а также техническое перевооружение и реконструкция существующих весьма актуальны в настоящее время. Особенно это касается малых городов России.

Строительство новых электростанций на основе газотурбинных установок (ГТУ) -- одно из приоритетных направлений развития систем энергогенерации мощностью от 4 до 90 МВт. Это позволяет обеспечить экономию топлива, решить проблемы теплоснабжения, экологии и сохранения водных ресурсов. Производство основной доли тепловой энергии осуществляется без затрат топлива -- за счет утилизации тепла уходящих газов, отработавших в газотурбинных установках при производстве электроэнергии. Стоимость газотурбинного оборудования, по сравнению с другими технологиями (рис. 2), относительно невелика. Его применение позволяет построить и ввести в эксплуатацию объект за 1-2 года.

В качестве показательного примера можно привести проект строительства ГТУ-ТЭЦ «Луч» в г. Белгороде. Там будет установлено два газотурбинных энергоблока мощностью по 25...30 МВт с паровыми котлами-утилизаторами и водогрейной котельной для покрытия пиковых тепловых нагрузок мощностью 90 Гкал. Годовая производительность такой станции составит 400 млн. кВт*ч электроэнергии. Инвестиционная стоимость проекта -- ИЗО млн. рублей. Консультантом по комплексному сопровождению проекта выступает российская консалтинговая фирма ООО «АГРИ-Консалтинг» (Москва). Имея в своем арсенале штат высококвалифицированных специалистов, обладающих большим опытом работы в профильных структурах, фирма является одной из ведущих в этом сегменте отрасли.

Поскольку реализация инвестиционных проектов по строительству теплоэлектростанций предполагает комплексный подход, специалисты ООО«АГРИ-Консалтинг» предлагают разработанную методику решения всего спектра вопросов, возникающих при возведении объектов.

Предпроектная подготовка и административное согласование

На первом этапе проводится маркетинговое исследование рынка тепловой и электрической энергии региона по следующим критериям: потребность, основные производители и потребители, технические характеристики оборудования и требования к нему. Разрабатывается и утверждается на административном уровне схема энерго- и теплоснабжения региона на заданный период и концепция развития на определенную перспективу. При разработке концепции выбирается наиболее приемлемая технология исполнения требуемых объектов генерации и проводится исследование рынка оборудования, соответствующего выбранной технологии (теплоэлектростанция, парогазовая установка, газотурбинная установка, газопоршневой агрегат и т.д.). Параллельно проводится маркетинговое исследование по поиску источников финансирования, подготовка плана и графика реализации проекта. Подписывается соглашение о сотрудничестве между администрацией региона и РАО «ЕЭС России», проводится согласование с региональной энергетической комиссией.

Корпоративные процедуры

Финансово емкие проекты требуют от заказчика принятия серьезных решений. Проект должен пройти все корпоративные процедуры и проверки на предмет его инвестиционной привлекательности. Предложение о начале реализации проекта выносится на заседание Правления компании (или Совета директоров) заказчика. Затем проводится разработка технико-экономического обоснования проекта и технических требований к нему на основании утвержденных схем энергоснабжения. Согласовывается и утверждается инвестиционный бизнес-план, источники финансирования, залоговое имущество (в случае привлечения кредита). Утверждаются сроки и ответственные лица за проведение конкурсных процедур по выбору проектировщика, поставщиков оборудования и подрядчиков.

Проведение конкурсных процедур по реализации проекта

Конкурсные процедуры, направленные на снижение инвестиционных затрат, проводятся в следующей последовательности:

¦ выбор источника финансирования (лизинг, проектное финансирование, кредитная линия, размещение облигационного займа, акционерное инвестирование, форфейтинг и т.п.). Основной критерий выбора -- «стоимость» привлеченных денег;

¦ выбор генерального проектировщика;

¦ выбор генерального поставщика основного оборудования (включая обслуживание). Отбор ведется по стоимости жизненного цикла оборудования;

¦ выбор генерального подрядчика и поставщика вспомогательного оборудования (на основе оценки показателей цена/качество).

Проведение конкурсного отбора позволяет снизить реальную стоимость проекта по отношению к предварительной инвестиционной стоимости на 10... 30%.

Реализация проекта по результатам конкурсов

Данный этап включает проектирование, производство и поставку оборудования, строительство, монтаж, наладку и запуск его в эксплуатацию. Специалисты ООО «АГРИ-Консалтинг» координируют действия всех участников проекта в период строительства объекта и его работы и гарантийный период.

Сегодня основная задача ООО «АГРИ-Консалтинг» -- обеспечить поддержку технологическому и экономическому развитию предприятий энергетической отрасли. Преимущества применения комплексного подхода, предлагаемого ООО «АГРИ-Конса.1тинг», при реализации инвестиционных проектов высокого уровня сложности:

¦ единое управление всем циклом выполнения проекта с координацией действия всех участников -- заказчик, акционеры, государственные и местные органы власти, проектировщик, подрядчик, поставщик, консультанты, эксперты:

¦ минимизация административных и финансовых затрат, связанных с применением технологий комплексного проведения открытых конкурсных торгов на международном уровне;

¦ проведение всего напора работ, связанных с информационным и технологическим обеспечением проекта;

Отработка технических решений на собственных электростанциях - залог надежной работы оборудования у заказчика.

Ю.С. Бухолдин, В.М. Олефиренко -ОАО «Сумское НПО им. М.В. Фрунзе»

Ориентируясь на перспективный рынок энергетических установок, ОАО «Сумское НПО им. М.В. Фрунзе» отрабатывает новые технологии энергопроизводства и создает на предприятии генерирующее оборудование с использованием различных тепловых схем.

Приоритетным направлением деятельности ОАО «Сумское НПО им. М.В. Фрунзе» (далее НПО, объединение) является выпуск оборудования для нефтяной и газовой промышленности. Это компрессорные агрегаты с газотурбинным приводом -- для линейных и дожимных КС, для закачки газа в ПХГ; газлифтные, сайклинг-процесса; комплектные компрессорные станции для магистральных газопроводов, а также установки переработки нефти и газа и др.

Предприятие осуществляет полный комплекс работ: проектирование, изготовление, монтаж, пуско-наладку -- вплоть до строительства «под ключ» комплексных производственных объектов. При необходимости предприятие обучает персонал заказчика и обеспечивает эксплуатационное обслуживание в гарантийный и постгарантийный период.

Накопленный опыт и имеющийся производственный и научно-технический потенциал объединения позволил приступить к освоению нового направления в своей деятельности -- созданию электро и теплогенерирующих газотурбинных установок.

Анализ рынка газотурбинных электростанций, проведенный на предприятии, выявил перспективность энергетических установок мощностью 6...25 МВт. При осуществлении утилизации тепла выхлопных газов газотурбинного двигателя эффективность подобных электростанций значительно возрастает. Причем, если имеется достаточно стабильный потребитель тепла (горячей воды или пара), в энергоустановке в экономически обоснованных случаях возможно применение ГТД с более низким кпд за счет повышения ее тепловой мощности.

Учитывая потребности рынка, было принято решение о создании двух газотурбинных установок:

-ЭГТУ-16 -- когенерационной, с утилизатором тепла экономайзерного типа;

- ПГУ-20 - парогазовой установки.

В качестве газотурбинного привода в обеих энергетических установках применен двигатель НК-16СТ мощностью 16 МВт производства ОАО «Казанское моторостроительное производственное объединение» (КМПО). Приводом второго генератора в ПГУ-20 служит конденсационная паровая турбина, спроектированная и изготовленная в объединении.

Установки полностью обеспечивают собственные нужды НПО в электроэнергии, а также служат для испытания вновь создаваемого энергетического оборудования и являются демонстрационными образцами для потенциальных заказчиков. Наличие вблизи энергоустановок необходимых коммуникаций (трансформаторная подстанция, газопровод давлением 2,5 МПа, котельная с соответствующей инфраструктурой) существенно снизило капитальные вложения в строительство ЭГТУ и ПГУ.

Паровой котел, паровая турбина, программные регуляторы топлива для ГТД и ПТ, высоковольтное оборудование передачи выработанной электроэнергии в сети разработаны совместно со специализированными научно-исследовательскими и проектными организациями.

Унификация ряда элементов, конструктивно схожих с узлами ГПА, и опыт параллельного проектирования позволили с минимальными издержками и в кратчайшие сроки (менее одного года) создать ЭГТУ-16. В марте 2001 года установка была запущена в эксплуатацию.

В дальнейшем, с учетом опыта, приобретенного в ходе создания ЭГТУ-16, в объединении была спроектирована и построена парогазовая установка суммарной электрической мощностью 20 МВт. Ввод в эксплуатацию ПГУ-20 происходил в два этапа: в марте 2003 г. запущена газотурбинная установка ЭГТУ-16ПК с утилизационным паровым котлом К35/2,0-300450, в июне того же года -- паротурбинная установка УПГ-4К. Принципиальная схема ПГУ-20 представлена на рисунке.

Топливный газ подается в газотурбинный двигатель, силовая турбина которого через редуктор вращает ротор генератора. На выхлопном тракте ГТД установлен утилизационный паровой котел. Пар, вырабатываемый в котле, направляется в конденсационную паровую турбину, являющуюся приводом второго генератора установки. Отработавший в турбине пар доохлаждается оборотной водой в конденсаторе К. Полученный конденсат через деаэратор направляется в котел.

Предусмотрен режим работы установки в теплофикационном режиме, при котором полученный пар направляется в котельную и далее -- потребителям. Эффективность использования топлива при этом составляет более 80%.

Основные технические характеристики ЭГТУ-16 и ПГУ-20 представлены в табл. 1.

В ЭГТУ-16 за счет тепла выхлопных газов ГТД в утилизаторе тепла

Основные технические характеристики энергетических установок Таблица 1

ЭГТУ-16

ПГУ-20

Мощность электрическая номинальная, МВт

16

20

Мощность тепловая, Гкал/ч

21

23

Электрический кпд, %

25

40

Эффективность использования топлива, %

80

80 (в ког. режиме)

Расход воды(пара) через КУ, т/ч

480

(32,6)

Температура воды/пара, °С

70/115

70/385

Давление воды(пара), МПа

0,6

(2)

мощностью 21 Гкал/ч производится нагрев воды, которая направляется потребителям через коллектор котельной. Регулирование температуры сетевой воды осуществляется при помощи жалюзи, установленных в газоходе перед утилизатором.

Выработка электроэнергии на обеих энергоустановках обеспечивается генераторами Т-20-2УЗ производства ОАО «Привод». Паровая турбина является приводом генератора ТГ-6-2ДУЗ (ОАО «Электротяжмаш»). Для согласования частот вращения силовых турбин ГТД (5300 об/мин) и паровой турбины (8910 об/мин) с частотой генераторов (3000 об/мин) применены редукторы собственного производства.

Паровая турбина К-4-17,5 мощностью 4 МВт (фото 2) была разработана и изготовлена специалистами Сумского НПО. Паровая турбина выполнена трехступенчатой, двухпоточной: 1-я ступень -- радиальная, 2-я и 3-я -- осевые. Расчет и проектирование проточной части турбины были осуществлены совместно со специалистами СПбГПУ (г. Санкт-Петербург).

Водогрейный утилизатор тепла УТ-25 для ЭГТУ-16 и паровой котел К35/2,0-300-450 для ПГУ-20 также изготовлены Сумским НПО. Паровой котел-утилизатор был разработан совместно со специалистами ОАО «Укрэнергочермет» (г. Харьков).

Паровой котел барабанного типа выполнен газоплотным, вертикальным, с принудительной циркуляцией рабочего тела. Преимущественное применение гладких труб в теплообменниках позволило обеспечить требуемый уровень сопротивлений проточной части котла-утилизатора «по газовой стороне». Для увеличения теплосъема экономайзер парового котла выполнен из оребренных труб собственного производства.

Для обеспечения водно-химических режимов работы энергоустановок используется система химводо-подготовки, существующая в заводской котельной. Для запуска котла-утилизатора также применяется пар, вырабатываемый в котельной.

При создании энергетических установок были скомбинированы блочно-контейнерная компоновка газотурбинной части (аналогичная ГПА) и капитальные здания, в которых размещены турбогенераторы, распределительное устройство и паровая турбина.

Блок управления обеими установками размещен в отдельно стоящем здании. АСУ ТП спроектирована специалистами предприятия на базе программно-технических средств Fanuk (GE). Совместно с фирмой Advantek International разработаны программные регуляторы топлива, обеспечивающие поддержание постоянной частоты вращения силовой турбины ГТД. Регулировка мощности привода осуществляется за счет изменения расхода топливного газа (с поддержанием постоянной частоты вращения силовой турбины двигателя). Программные регуляторы топлива, установленные в ЭГТУ, обеспечивают надежную работу энергоустановок как при выдаче электроэнергии в локальную сеть, так и при параллельной работе с энергосистемой. Эксплуатация ЭГТУ-16 и ПГУ-20 позволила довести все входящее в их состав оборудование и приобрести опыт, необходимый для тиражирования отработанных технических решений.

В табл. 2 приведены данные о наработке установок и количестве произведенной электрической и тепловой энергии.

На предприятии проработан ряд схем энергоустановок с использованием газотурбинных приводов различного типа. Одним из первых двигателей, на базе которого планируется выпуск серийных энергоблоков когенерационного цикла, станет НК-16-18СТ производства ОАО «КМПО». В настоящее время решается вопрос о совместном создании ГТУ-ТЭЦ в г. Казани. Четыре газотурбинных энергоблока в составе единой электростанции предполагается смонтировать на территории районной котельной «Азино». Тепло будет направлено в коммунальные тепловые сети. Высокая эффективность использования топлива в энергоустановках когенерационного цикла достигается при полном использовании вырабатываемого тепла, как правило, в холодное время года. При невостребованности всего потенциального тепла выхлопных газов (в летний период) общий коэффициент использования топлива падает.

Создание когенерационных установок экономически целесообразно при наличии стабильных потребителей тепла, горячей воды или пара. При их отсутствии более предпочтительно сооружение парогазовых установок, основное назначение которых -- выработка электроэнергии. Одной из основных задач при создании собственного энергокомплекса для предприятия является разработка и испытание утилизационных энергоустановок для компрессорных станций с газотурбинными приводами компрессоров природного газа. Традиционные утилизационные схемы с применением воды в качестве рабочего тела в паротурбинном цикле не приветствуются газовиками и нефтяниками, особенно в условиях Севера. Учитывая это, в ОАО создается экспериментальная турбогенераторная установка с замкнутым рабочим циклом на низкокипящей среде (пентан). В установке нагрев пентана до газообразного состояния производится за счет тепла выхлопных газов газотурбинного привода ЭГ ТУ-16. Затем газообразный пентан под давлением подается в турбину, являющуюся приводом генератора. Отработавший в турбине пентан конденсируется и подается в теплообменники для нагрева и перевода в газообразное состояние; цикл повторяется. Все оборудование, в том числе пентановая турбина, насосы, теплообменники, арматура и т.д., разработано и изготавливается в ОАО. Запуск пентанового энергоблока в опытную эксплуатацию запланирован на IV квартал 2004 г. Установка предназначена прежде всего для организации научно-технического задела в области создания нового энергогенерирующего оборудования. Схема с энергоутилизирующей установкой на низко-кипящих рабочих телах может использоваться при надстройке газотурбинных ГПА. Электроэнергии, производимой такими энергоблоками на компрессорной станции, будет достаточно для покрытия собственных нужд КС.

Создание собственных газотурбинных установок суммарной электрической мощностью 36 МВт в ОАО «Сумское НПО им. М.В. Фрунзе» решило проблему бесперебойного электроснабжения и сэкономило значительные средства, ранее уходившие на закупку электроэнергии. Ближайшая задача предприятия -- решение энергетических проблем заказчика.

Эксплуатационные показатели энергоустановок ОАО «Сумское НПО им. М.В. Фрунзе» (на 1.05.04) Таблица 2

Тип установки

Наработка, ч

Произведено электроэнергии, млн кВт»ч

Произведено тепловой энергии, тыс. Гкал

ЭГТУ-16

25000

362

472

ПГУ-20

10000

160

99

в т.ч. ЭГТУ-16ПК

10000

146

99

УПГ-4К

4000

14

-

Конденсационная парогазовая электростанция для надежного энергоснабжения промышленных потребителей.

А.И. Виноградов, Н.Р. Джапаридзе, В.В. Макаревич -ЗАО «МР-Энерго-Строй»

В последние десятилетия во всем мире для надежного энергоснабжения предприятий нефтяной и газовой, а также других отраслей промышленности широко применяются передовые газотурбинные и парогазовые технологии. Такие энергоисточники сооружаются и в России, и в других странах СНГ.

Компанией МР-Энерго-Строй разработано предложение по строительству под ключ электростанции для одного из нефтеперерабатывающих заводов (НПЗ). Она должна обеспечивать электроэнергией действующее предприятие и вновь сооружаемый комплекс глубокой переработки нефти. На предприятии существуют потребители электрической нагрузки первой и особой категории (ПУЭ п. 1.2.17) по надежности, и их энергоснабжение должно быть бесперебойным.

Реконструкция НПЗ должна проводиться в три этапа, и в зависимости от них будут изменяться электрические нагрузки предприятия.

По требованию Заказчика была принята схема конденсационной ПГЭС. Предусматривалось также наличие резервной установки, т.е. 60 МВт -- рабочая мощность ПГЭС и 20 МВт - резерв. В настоящее время электроснабжение завода осуществляется от энергосистемы, теплоснабжение -- от собственной котельной.

МР-Энерго-Строй разработало схему ПГЭС на базе ГТУ типа «Циклон» производства Siemens. Установки снабжены паровыми котлами-утилизаторами (ПКУ) с дожигающими устройствами и конденсационными паровыми турбинами. Котлы и турбины -- отечественного производства.

ГТУ «Циклон» являются современными и мощными промышленными газовыми турбинами. От отечественных энергоустановок, созданных на базе конвертированных авиационных или судовых ГТД, их отличает незначительное снижение электрического кпд (не более 3,5%) на частичных нагрузках (разгрузка -- до 75%). При этом уменьшение располагаемой теплоты уходящих из ГТУ газов несущественно и практически не влияет на выработку тепловой энергии за счет утилизации.

Возможность работы газотурбинной энергоустановки «Циклон» в режимах частичной нагрузки с практически неизменным электрическим кпд стала определяющим фактором при выборе основного оборудования для данных условий.

Поскольку температура уходящих газов ГТУ «Циклон», как и других типов газовых турбин, зависит от температуры наружного воздуха и уменьшается при ее снижении, то в качестве расчетного был принят зимний режим работы ПГЭС, при tHB = -30°С, характеризующийся минимальной выработкой тепловой энергии в утилизационном котле.

На ПГЭС предусмотрено размещение 4 блоков ГТУ с ПКУ с дожигающим устройством. Принята схема ПГЭС с поперечными связями. От паровой магистрали питаются две паровые турбины (ПТ). Общая (установленная) электрическая мощность ПГЭС составляет около 71,6 МВт.

Электрические нагрузки предприятия по этапам и их обеспечение Таблица 1

Этап

Вводимая установлен, мощность NycT ПГУ-КЭС, МВт

Нормальный режим работы

Ремонтный и авар. режим работы

Кол-во установок

Требуемая мощность, Ns, МВт

Обеспечение, МВт

Кол-во установок

Требуемая мощность

'"1-й кат.

Обеспечение, МВт

% загрузки ГТУ

% загрузки

I

38,7

3-ГТУ

29,524

30,186

2

24,592

25,8

78%

100%

II

61,6

4-ГТУ 1-ПТ

54,964

55

4

50,032

50,16

87,2%

103%

III

71,6

4-ГТУ 2-ПТ

62,270

62,3

5

57,338

58,7

82%

100%

Размещение неработающей (резервной) энергоустановки не предусмотрено -- принята схема электростанции с использованием «ненагруженного» резерва.

Схемы с энергоустановками, находящимися в «холодном» резерве, существенно увеличивают эксплуатационные затраты. Каждый пуск ГТУ значительно увеличивает время наработки газовой турбины (в эквивалентных часах). Запуск газовой турбины занимает от 3 до 15 минут (фактическое время), пуск парового котла-утилизатора -- на порядок дольше, что недопустимо при обеспечении питания потребителей 1-й категории надежности.

Схемы с использованием «горячего» резерва, когда резервные установки постоянно находятся в режиме холостого хода, являются более динамичными и надежными, но также требуют дополнительных капиталовложений в ГТУ. Время набора номинальной мощности установки с режима холостого хода меньше продолжительности ее пуска из холодного состояния. Но длительность нагружения котла-утилизатора до номинальных параметров пара существенно превышает нормативное время перерыва в энергоснабжении потребителей 1-й категории.

МР-Энерго-Строй предлагает использование «ненагруженного» резерва, т.е. работа всех ГТУ на 80-85% от номинальной мощности, паровых турбин -- на полной мощности. Требуемая для паровых турбин выработка пара в котлах-утилизаторах обеспечивается за счет дожигания топлива.

Общее количество энергогенерирующих установок ПГЭС составляет шесть единиц: четыре ГТУ и две ПТ. При аварийном или плановом останове одного из шести энергоисточников оставшиеся в работе газовые турбины автоматически выводятся на режим номинальной мощности (загрузка 100%) в течение 2-3 секунд, и ПГЭС полностью покрывает нагрузку потребителей 1-й категории.

Кроме того, завод резервируется сетями РАО ЕЭС. Таким образом, несмотря на незначительное снижение кпд установок, предлагается надежная, гибкая и динамичная (быстрый сброс и набор нагрузки) схема энергоснабжения потребителей завода. Потребители 1-й категории при этом получают двойное резервирование. Для обеспечения трехкратного резервирования особой группы первой категории предусматривается установка аккумуляторных батарей.

Строительство электростанции, как и реконструкцию завода, предполагается осуществить в три этапа (табл. 1). На первом этапе планируется ввод трех ГТУ с паровыми котлами-утилизаторами, на втором -- ввод одной ГТУ с ПКУ и одной ПТ, на третьем этапе -- ввод последней паровой турбины.

Покрытие нагрузок 1-й категории (24,592 МВт первый этап, 57,338 МВт -- третий этап) на первом и третьем этапах не составляет проблем. На первом этапе, при выводе из строя одной из трех газовых турбин, мощность двух оставшихся ГТУ автоматически доводится до 100%. На третьем этапе, при выводе из строя ПТ (10 МВт), 100%-я мощность оставшихся установок составит 61,6 МВт (> 57,338 МВт). При выводе из строя ГТУ (12,9 МВт) 100%-я мощность оставшихся установок составит 58,7 МВт (> 57,338 МВт), но при этом необходимо увеличить количество дожигаемого топлива для обеспечения паром двух паровых турбин.

На втором этапе исполнения проекта планируемая мощность для обеспечения потребителей 1-й категории составляет 50,032 МВт. При выводе из строя паровой турбины, 100%-я мощность оставшегося оборудования составляет 61,6 МВт (> 50,032 МВт). Этим обеспечивается не только 1-я категория, но и полная нагрузка завода.

При выходе из строя ГТУ 100%-я мощность составит 48,7 МВт (< 50,032 МВт), поэтому оборудование будет работать с некоторой перегрузкой. В зимнее время за счет снижения температуры наружного воздуха увеличение мощности ГТУ возрастает до 14,126 МВт, и ее дефицит для потребителей 1-й категории полностью покрывается. В летний период дефицит покрывается за счет перегрузки паровых турбин на 10% от номинальной мощности, что является допустимым в течение длительного времени для турбин такого типа. Дополнительная выработка пара достигается за счет дополнительного дожигания топлива ПКУ.

Основные технические характеристики оборудования и ПГЭС Таблица 2

Газотурбинная установка (при tHB= +15°C и 100%-м нагружении)

Тип

Cyclone

Производитель

Компания Alstom

Мощность электрическая, МВт

12,9

Расход природного газа (при Qhp=48200 кДж/кг), кг/с

0,755

Температура выхлопных газов, °С

560

Расход выхлопных газов, кг/с

49,0

КПД, %

34,5

Количество, шт.

4

Паровой котел-утилизатор (при tHB = -30°С)

Тип

Горизонтальный

Параметры свежего пара: - давление, кг/см2 - температура, °С

14 250

Производительность с дожитом, т/ч

33-34

Паровая турбина

Тип

К-10-1,3

Производитель

ОАО «Невский завод»

Параметры свежего пара: - давление, кгс/см2 - температура, °С

13 220

Расход пара через турбину, т/ч

65,0

Номинальная электрическая мощность, МВт

10,0

Количество, шт.

2

Ввиду отсутствия отечественных серийно выпускаемых котлов для ГТУ «Циклон» проведен предварительный расчет паропроизводительности ПКУ на основе метода тепловых балансов. Расчеты ПКУ, паровой турбины и тепловой схемы ПГЭС выполнены научно-исследовательской лабораторией «Газотурбинные и парогазовые ТЭС» Московского энергетического института под руководством к.т.н. Бурова В.Д.

В качестве ПКУ принят комбинированный горизонтальный котел-утилизатор, вырабатывающий пар с параметрами 14 кгс/см2/250°С.

Регулирование тепловой мощности КУ предусмотрено как за счет байпасирования высокотемпературных выхлопных газов ГТУ, так и за счет дожигания топлива.

В ПГЭС принята тепловая схема с поперечными связями (рис. 1). Все ПКУ выдают острый пар в обитую магистраль, куда подсоединены паровые турбины. Питательная вода после деаэраторов также подается в общестанционный коллектор питательной воды и далее на экономайзер ПКУ.

Предлагаемая технологическая схема ПГЭС позволяет сооружать и вводить в эксплуатацию оборудование как очередями, так и поагрегатно.

В качестве основного топлива ПГЭС принят природный газ по ГОСТ 5542-87, который подается из газопровода высокого давления 25 кгс/см2 (изб).

В качестве аварийного топлива ПГЭС предусмотрено жидкое (дизельное) топливо по ГОСТ 305-82. Пополнение расходных резервуаров жидкого топлива осуществляется по трубопроводу от склада готовой продукции НПЗ.

В состав предлагаемой ГТУ «Циклон» электрической мощностью 12,9 МВт (16,1 МВА) входит электрогенератор на напряжение 6,3 кВ с бесщеточной системой возбуждения, режим работы -- с изолированной нейтралью. Охлаждение генератора -- воздушное, разомкнутого цикла.

Паровые турбины типа К-10-1,3 производства ОАО «Невский завод» (С.-Петербург) оснащены отечественными генераторами Т-12-2 (ОАО «Привод», г. Лысьва).

Главной схемой ПГЭС предусмотрена работа шести генераторов на 2-секционное общестанционное комплексное устройство 6 кВ: четыре генератора с приводом от ГТУ (по две на каждую секцию -Gl, G2, G3. G4); два генератора с приводом от ПТ (G5, G6) устанавливаются на разные секции. Для выравнивания нагрузок на секции к каждой из них подключается по одному генератору от паровой турбины и по два генератора от ГТУ.

Комплексное распределительное устройство КРУ -- 6кВ предназначено для приема и передачи электроэнергии от генераторов и состоит из ячеек К-105М внутренней установки. Электродинамическая стойкость КРУ принята 125 кА, с током отключения выключателей 40 кА. Элегазовые выключатели КРУ-6 расположены на выкатных тележках.

Главной схемой предусмотрено оперативное переключение двух энергоблоков G5 и G6 на одну из двух секций общестанционного КРУ-бкВ. По условиям динамической стойкости распределительного устройства допускается параллельная работа с энергосистемой не более трех энергоблоков мощностью 12,9 МВт.

При параллельной работе с энергосистемой часто возникают трудности в соблюдении динамической устойчивости работы энергоисточника. Для определения возможности параллельной работы энергоисточника (ПГЭС) и энергосистемы необходим расчет статической и динамической устойчивости -- подобные расчеты выполняются на стадии проекта.

Для защиты энергоисточника от аварийных ситуаций в энергосистеме, как правило, предусматривается установка делительной автоматики и быстродействующих защит, которые позволяют при возмущениях в сети отключиться от энергосистемы и работать автономно на сбалансированную нагрузку.

Все основное оборудование предполагалось устанавливать в главном корпусе. Компоновка главного корпуса на нулевой отметке приведена на рис. 2.

Благодаря широкому применению отечественного оборудования (паровые котлы, паровые турбины, другое вспомогательное оборудование и комплектующие), удельные капиталовложения в ПГЭС с зарубежными газотурбинными установками (ГТУ «Циклон», Siemens) составляют 870 $/кВт.

Предварительная оценка экономических показателей строительства электростанции (без учета инфляционных процессов) показала простой» срок окупаемости инвестиционного проекта около 6,3 года.

Для повышения тепловой и экономической эффективности конденсационной парогазовой электростанции ПКУ можно оснастить газовыми подогревателями сетевой воды. Такое техническое решение позволяет выработать на ПГЭС с комбинированными утилизационными котлами дополнительно 16...20 Гкал*ч тепловой энергии (горячей воды - 11О...7О°С).

Реконструкция паротурбинных электростанций - эффективный путь перевооружения энергетики.

Ю.И. Шаповалов - ОАО ТКЗ «Красный котельщик»

Современные газовые турбины работают с температурой газов на входе более 1ОООТ. Температура газов за турбинами достигает 600 С. Это открывает широкую перспективу реконструкции паротурбинных электростанций с использованием тепла выхлопных газов ГТУ. К одному из проектов, основанных на этом принципе, можно отнести реконструкцию котла ПК-38 для Березовской ГРЭС, осуществленную на таганрогском заводе «Красный котельщик».

В 1997 году предприятие «Бел-НИПИэнергопром» предложило таганрогскому заводу выполнить проект по реконструкции котла ПК-38 Березовской ГРЭС в низконапорный парогенератор для работы в парогазовом цикле.

В последние годы Березовская ГРЭС практически не работала. Удельный расход топлива на выработку 1 кВт*Ч на ней заметно превышал расход тепла на паротурбинных блоках сверхкритического давления (СКД), поэтому запускать в работ станцию при избытке мощности было нецелесообразно.

Руководство ГРЭС, Брестэнерго, Министерство энергетики Белоруссии искали способы восстановления ГРЭС с применением газотурбинных технологий.

Использование высокотемпературных газов газотурбинной установки возможно по многим схемам. Наиболее экономичной (по условиям затрат тепла на выработку 1 кВт*ч) признана парогазовая установка (ПГУ) по схеме: ГТУ -- котел-утилизатор -- паровая турбина. Топливо при этом сжигается только в камере сгорания ГТУ. Такая схема оборудования, и стоимость установленной мощности получается достаточно высокая.

Есть и второй, менее эффективный, но и менее затратный путь -- дожигание газов, содержащих большое количество кислорода, в топочных камерах энергетических котлов (ЭК). Это парогазовые установки сбросные (ПГУС). При схеме дожигания газотурбинная установка является надстройкой над существующим оборудованием паросиловой установки (ПСУ). При этой схеме можно сохранить практически всю ПСУ, несколько модернизировав котел.

При реализации схемы ПГУС возможны различные варианты, выбор которых зависит от местных условий и требований заказчика.

Именно второй вариант -- надстройка блоков газотурбинными установками и реконструкция блока ПСУ избрали специалисты «БелНИПИ-энергопром» для Березовской ГРЭС.

Приступая к работе, специалисты «Красного котельщика» принимали в расчет все факторы. На Березовской ГРЭС установлено 6 паротурбинных блоков по 150 МВт. Каждый блок состоит из паровой турбины производства НПО «Турбоатом» и двух прямоточных котлов ПК-38 производства «ЗиО-Подольск» производительностью 270 т/ч, Р=140 ат, с температурой перегрева пара 545°С. Блоки запущены в эксплуатацию в начале 1960-х годов и проработали более 250 тыс. часов.

Для надстройки были рассмотрены два типа газотурбинных установок: GT10 фирмы Alstom мощностью 23,5 МВт и UGT 25000 НПКГ «Зоря»-«Машпроект» мощностью 25 МВт. Отличие UGT 25000 от GT10 -- больший расход газов при более низкой их температуре.

Для таганрогских котлостроителей работа осложнялась еще и тем, что ранее ТКЗ не проектировал предполагает применение нового в блок ПГУС -- Парогазовая установка на Березовской ГРЭС и не изготавливал прямоточные котлы на давление 140 атмосфер. По сравнению с прямоточными котлами СКД, серийно изготавливаемыми заводом, они имеют свою специфику. В первую очередь это касается «навивки» экранов топочной камеры, которая на котле ПК-38 выполнена из спиральных лент с высоким тепловосприятием в нижней радиационной части.

В короткий срок на предприятии был разработан проект реконструкции котла ПК-38 в низконапорный парогенератор при применении как GT10, так и ГТГ-25.

Основные технические требования, реализованные в этом проекте:

¦ количество газов ГТУ соответствовало расходным характеристикам котла по газовой стороне;

¦ поверхности нагрева, расположенные ниже входной ступени промежуточного пароперегревателя, -- экономайзер и воздухоподогреватель -- удалены. На их место установлены новые поверхности нагрева: экономайзер, газовый подогреватель воды высокого давления, газовый подогреватель воды низкого давления, выполненные из труб с продольным оребрением, что позволяет эксплуатировать котел на газе и на мазуте. При реконструкции блока дополнительные поверхности нагрева котла частично замещают регенерацию высокого и низкого давления турбины (расчеты выполнялись совместно с НПО «Турбоатом» для оптимизации поверхностей нагрева и режимов работы паровой турбины);

¦ количество горелок увеличено в полтора раза. Это необходимо для поддержания скоростного режима в горелках при работе в широком диапазоне нагрузок при температуре окислителя (воздуха либо газов) от 50 до 515°С;

¦ переделан воздушный тракт, так как температура газов за ГТУ превышает 500°С, что значительно выше температуры горячего воздуха. Также изменено количество горелок;

¦ для снижения выбросов NOX на реконструированном котле применена схема ступенчатого сжигания газа;

¦ установлены вентиляторы дополнительного воздуха (ВДВ) и смеситель для смешения этого воздуха с газами ГТУ, так как для номинальной нагрузки котла содержания кислорода в выхлопных газах турбин недостаточно;

¦ переделана нижняя радиационная часть (НРЧ) котла для размещения новых горелок и схемы ступенчатого сжигания газа. В связи с увеличением тепловосприятия водяного экономайзера установлена защита НРЧ во избежание попадания на вход закипевшей воды;

¦ при работе на мазуте в режиме ПСУ установлен калорифер для подогрева воздуха до 180? C;

¦ блок может работать как в режиме ПГУС, так и раздельно. Для этого на тракте от ГТУ к низконапорному генератору установлен быстродействующий пускозащитный клапан. При останов дымососов на генераторе клапан с максимальной скоростью отключает ГТУ от котла, переводя его на выхлоп в атмосферу;

Опыт эксплуатации газопаротурбинной установки ГПУ-16К с впрыском пара

Ю.Н. Бондин, В.А. Кривуца, С.Н. Мовчан, В.И. Романов

ГП НПКГ «Зоря»-«Машпроект»

В.Н. Коломеев - ДК «Укртрансгаз»

А.П. Шевцов - НУК им. адмирала Макарова

К августу 2004 года наработка газоперекачивающей установки ГПУ-16К на магистральном газопроводе «Прогресс» составила 1600 часов. Результаты эксплуатации установки, работающей по технологии «Водолей», подтвердили правильность заложенных при проектировании технических решений.

Общая характеристика

Газоперекачивающая установка ГПУ-16К мощностью 16 МВт с газотурбинным приводом, работающим по циклу с энергетическим и экологическим впрыском пара и дальнейшей его конденсацией, применена на КС «Ставищенская». После проведения монтажных и пусконаладочных работ ГПУ-16К в ноябре 2003 года была предъявлена Государственной комиссии и передана в опытно-промышленную эксплуатацию.

В состав ГПУ-16К, тепловая схема которой приведена на рис. 1, входят:

¦ контактная газопаротурбинная установка КГПТУ-16К (разработана и изготовлена НПКГ «Зоря»-«Машпроект»);

¦ центробежный нагнетатель газа НЦ-16;

¦ вспомогательные технологические системы (ВТС);

¦ системы автоматического управления ГПТУ-16К и ВТС.

Установка КГПТУ-16К («Водо-лей-16») включает газотурбинный двигатель, котел-утилизатор и контактный конденсатор. Такая схема позволяет увеличить эффективность использования топлива и снизить затраты на химводоподготовку за счет утилизации тепла и массы отработавшей газопаровой смеси.

Основная особенность установки в том, что она может работать с замкнутым циклом по воде. Пар и газообразная смесь проходят через установленный на выходе из котла-утилизатора контактный конденсатор, где газообразная смесь охлаждается до температуры конденсации. Предварительно охлажденная в холодильнике вода подается через фильтр в оросительное устройство конденсатора. Полученный из газопаровой смеси конденсат сливается самотеком (вместе с охлаждающей водой) в резервуар хранения.

Положительный эффект работы установки заключается в способности генерировать дополнительное количество пресной воды, образующейся в результате химической реакции окисления углеводородного топлива при сжигании в камере сгорания.

В газотурбинном двигателе, входящем в состав КГПТУ-16К, был выполнен ряд доработок, в основном по камере сгорания и турбинам. В каждую жаровую трубу и топливную форсунку камеры сгорания был организован подвод энергетического и экологического пара. При этом основные элементы камеры сгорания остались без изменения. Доработка турбин была направлена на согласование их пропускных способностей с увеличенными расходами рабочего тела. Основные геометрические размеры проточной части турбин сохранены, и обеспечены необходимые запасы устойчивости компрессоров.

Газотурбинный двигатель и центробежный нагнетатель газа находятся в одном укрытии, на единой раме, образуя газоперекачивающий агрегат. Вспомогательные технологические системы обеспечивают охлаждение, очистку, подготовку циркуляционной, питательной и добавочной воды.

Пусконаладочные работы и их результаты

При проведении пусконаладочных работ ГПУ-16К необходимо было:

¦ достигнуть эффективной утилизации тепла уходящих газов в котле-утилизаторе;

¦ организовать подвод в ГТД энергетического и экологического пара, полученного при утилизации тепла, и улавливание части паров воды из парогазовой смеси на выходе установки:

¦ отрегулировать режимы работы вспомогательных технологических систем;

¦ отладить системы автоматического управления КГПТУ и ВТС и наладить их совместную работу.

В процессе пусконаладочных работ были реализованы мероприятия, которые позволили снизить массовые потери газопаровой смеси по выхлопному тракту установки, обеспечить эффективную работоспособность котла-утилизатора при его питании как обессоленной, так и умягченной водой при общем солесодержании питательной воды не более 1000 мг/л.

Основные результаты этих мероприятий подтвердили на практике характеристики газотурбинного двигателя, котла-утилизатора, контактного конденсатора и систем, обеспечивающих работу ГПУ-16К.

Согласно Программам предварительных и приемочных испытаний, были про ведены официальные 72-часовые испытания. Отдельные технические показатели, подтверждающие их соответствие ТЗ, приведены в табл.

При проведении испытаний были получены следующие результаты:

¦ эффективность установки при мощности 16 МВт -- 42,1% в условиях компрессорной станции (45% по ISO 2314);

¦ содержание вредных выбросов в уходящих газах: NOX -- 54 мг/нм3, СО - 58 мг/нм3;

¦ температура парогазовой смеси за установкой -- 25...35°С;

¦ утилизация воды из уходящей газопаровой смеси (расчетная) -1,0...1Д;

Содержание солей в циркулирующей котловой воде при длительной непрерывной работе установки практически постоянно и даже уменьшается вследствие эффективной продувки сепаратора.

В ходе пусконаладочных работ были выполнены сравнительные испытания на экономичность установки ГПУ-16К и агрегата ГПА-16 с газотурбинным двигателем ДЖ59. Выбор ГПА-16 для сравнения с установкой, работающей по схеме «Водолей», не случаен и обусловлен следующими факторами:

¦ одинаковая номинальная мощность установок;

¦ широкое применение двигателей ДЖ59 на компрессорных станциях Украины и России (более 150 шт.);

¦ идентичность условий работы (сравниваемые установки эксплуатировались параллельно в одном цехе компрессорной станции).

Результаты сравнительных испытаний (рис. 2) подтвердили снижение потребления топливного газа установкой ГПУ-16К по сравнению с агрегатом ГПА-16 на 27-32%.

Задачи опытно-промышленной эксплуатации и перспективы применения установки

В настоящее время осуществляется опытно-промышленная эксплуатация установки ГПУ-16К в условиях компрессорной станции при работе на магистральном газопроводе «Прогресс».

В процессе эксплуатации установки, которая будет продолжаться в течение 4000 часов, необходимо:

¦ определить основные эксплуатационные параметры оборудования ГПУ-16К и их изменение в процессе работы;

¦ на основании анализа эксплуатации оборудования разработать мероприятия по его оптимизации, внедрить их и проверить эффективность;

¦ разработать рекомендации по промышленной эксплуатации газоперекачивающей установки и подготовить ее к проведению Межведомственных испытаний.

На 1 августа 2004 года наработка ГПУ-16К составила 1600 часов. Результаты эксплуатации установки, работающей по схеме «Водолей», подтвердили правильность принятых решений по проектированию ее узлов и агрегатов и по выбору оборудования. Это создает предпосылки к дальнейшему применению таких установок на компрессорных станциях магистральных газопроводов.

В частности, согласно планам реконструкции ДК «Укртрансгаз» предусмотрено введение ГПУ-16К вместо ГПА-16 № 4 на компрессорной станции «Ставищенская» (УМГ «Черкассытрансгаз»). Такое решение позволяет использовать уже опробованные вспомогательные технологические системы для второй установки ГПУ-16К.

Учитывая, что срок эксплуатации ГПА-16 на отдельных компрессорных станциях Украины и России составляет более 10 лет, использование при их модернизации установок ГПУ-16К является разумной альтернативой.

Теплофикационные парогазовые установки для замены устаревшего оборудования ТЭЦ ОАО «Ленэнерго»

В статье приведены основные характеристики, тепловые схемы и состав оборудования теплофикационных парогазовых установок (ПГУ), разрабатываемых для замены устаревших паросиловых блоков. Описан способ регулирования электрической мощности теплофикационных ПГУ с котлами-утилизаторами при заданной тепловой мощности.

B. Безлепкин - С.-Петербургский государственный политехнический университет

C. Лапутько - ОАО «Ленэнерго»

В настоящее время оборудование теплофикационных паротурбинных установок ряда действующих ТЭЦ ОАО «Ленэнерго» выработало расчетный ресурс. Стоимость производства электрической и тепловой энергии на устаревших ТЭЦ значительно превышает средний показатель по энергосистеме и имеет тенденцию к дальнейшему увеличению. Чтобы обеспечить конкурентоспособность на рынке энергии, необходимо заменить устаревшее паротурбинное оборудование этих ТЭЦ на новое, более совершенное.

Мировой опыт показывает, что наиболее эффективными теплофикационными установками электростанций на органическом топливе являются парогазовые установки. Для них характерны высокая термическая эффективность, хорошие маневренные и экологические характеристики, высокая надежность и относительно низкая стоимость установленного киловатта.

Парогазовые установки, предназначенные для С.-Петербурга, должны быть адаптированы к особенностям работы энергосистемы Ленэнерго. Это существенная неравномерность суточного и недельного потребления электрической энергии; почти 100%-я доля природного газа в топливном балансе ТЭЦ; отсутствие на большинстве действующих ТЭЦ свободных площадей для размещения нового оборудования; жесткие требования к экологическим характеристикам теплофикационных установок.

Для выполнения предпроектных проработок по сооружению теплофикационных парогазовых установок была определена следующая очередность электростанций: Центральная ТЭЦ; ТЭЦ № 5; первые очереди ТЭЦ № 14 и № 15. При этом учитывалось состояние оборудования, а также существующие и ожидаемые нагрузки в зоне расположения ТЭЦ.

В районе расположения Центральной ТЭЦ (левобережная часть центра С.-Петербурга) наблюдается рост потребления тепловой и электрической энергии. По прогнозам, полезный отпуск электрической энергии составит здесь в 2005 году 1,4 млрд кВт'Ч, а в 2010-м -1,7 млрд. Отпуск тепловой энергии составит 18,4 и 19,9 млн ГДж соответственно.

Для покрытия прироста нагрузки электрогенерирующие мощности района должны быть увеличены примерно на 160 МВт.

Отмечается также значительная суточная и недельная неравномерность потребления электрической энергии. На рис. 1 приведен график производства и потребления электрической энергии в энергосистеме Ленэнерго в период максимальной нагрузки -- 25 декабря 2001 года. Отношение минимальной величины электрической нагрузки к максимальной составляет 0,685. В выходные дни нагрузка снижается еще на 15%.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.