Анализ работы установки предварительного сброса ЦДНГ-9 НГДУ "Мамонтовнефть"

Физико-химические свойства нефтяных эмульсий и их классификация. Теоретические основы обезвоживания нефти. Характеристика сырья, готовой продукции и применяемых реагентов. Описание технологической схемы с автоматизацией и материальный баланс установки.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 21.05.2009
Размер файла 150,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

- уровня жидкости во входных сепараторах, в сепараторах - отстойниках, в КСУ, в установке подготовки пластовой воды с воздействием на выход нефти;

- уровня жидкости во входных сепараторах, сепараторах отстойниках, в установке подготовки пластовой воды с воздействием на выход воды;

б) автоматическое управление:

- насосными агрегатами внутренней и внешней перекачки (об отключении при нижнем уровне в резервуаре, перегреве подшипников, повышенных утечка:

- сальников, низком и высоком давлении на выходе УПСВ, срыве подачи срабатывании электрозащит, загазованности 50% от НПВ, пожаре);

- насосными агрегатами подачи воды на КНС;

- автоматический ввод резервного насоса при выходе из строя рабочего,

- самозапуск основных насосов при кратковременных перерывах в электроснабжении;

- вытяжными вентиляторами при загазованности в закрытых технологически:

- блоках (20% НПВ);

-насосами откачки из конденсатосборников и дренажно-канализационных емкостях по уровню жидкости в этих аппаратах;

- основными технологическими задвижками с электроприводом.

в) дистанционное управление:

- основными насосными агрегатами (включить - отключить);

- электроприводами основных технологических задвижек (открыть - закрыть);

г) дистанционный контроль:

- давления в входных сепараторах, в сепараторе топливного газа;

- давления газа в КСУ;

- давления на входе УПСВ;

-производительности УПСВ по нефти (с помощью системы обработки

информации);

- производительности по газу (отдельно суммируются показания расхода газа, подаваемого на факел, на ГПЗ);

- уровня жидкости в входных сеператорах;

- уровня жидкости в сепараторах отстойниках, КСУ, в сепараторах подготовки пластовой воды;

- уровня жидкости в резервуарах;

- давления нефти на входе УПСВ;

- температуры нефти на входе УПСВ.

е) сигнализацию:

1) аварийную сигнализацию:

- отключения основных насосных агрегатов с расшифровкой причины аварии;

- загазованности наружных технологических площадок и закрытых помещений;

- предельных значений уровня в входных сепараторах, сепараторах отстойниках, резервуарах, газовых сепараторах, КСУ, конденсатосборниках и дренажно-канализационных емкостях, расширительных камерах, в сепараторах подготовки воды;

- возникновения пожара в нефтенасосных станциях, в технологических блоках.

2) исполнительную сигнализацацию:

- состояния основных насосных агрегатов (включено - отключено);

- положения основных технологических задвижек (открыто -- закрыто);

ж) формирование и передачу на ДП информации.

По технологическим установкам с комплектными системами автоматизации (нагреватели, факельные установки) предусматривается передача аварийных сигналов в систему управления УПСВ.

5.4 Комплекс технических средств АСУ ТП

Комплекс технических средств АСУ ТП состоит из:

- комплекта датчиков, преобразователей, исполнительных механизмов;

- управляющего вычислительного комплекса УВК.

5.4.1 Комплекс датчиков, преобразователей, исполнительных механизмов

Все применяемые в проекте датчики, преобразователи, исполнительные механизмы выполнены только электрическими и имеют требуемые виды климатического исполнения и взрывозащиты, системы пневмоавтоматики не предусматриваются.

В контурах регулирования с ограниченным перепадом давления применены регулирующие затворы и шаровые краны с электрическими исполнительными фланцевыми механизмами.

Датчики и измерительные преобразователи, вторичные приборы имеют унифицированные выходные сигналы с одним из следующих параметров:

- аналоговые (токовые 4...20 мА) для контроля и регулирования режимных технологических параметров;

- частотно-импульсные сигналы для контроля учетных технологических параметров;

- дискретные типа "сухой контакт" для сигнализации предельных значений технологических параметров;

- интерфейсные RS 485.

Для контроля уровня взлива и уровней раздела фаз нефть - вода применены ультрозвуковые уровнемеры с контроллерами "Гамма" производства ЗАО Альбатрос".

Для измерения расхода нефти применены массовые расходомеры типа "Promass" фирмы "Endress Hauser".

Для сигнализации аварийных ситуаций и отклонения от нормы технологических параметров используются дискретные датчики с электрическим контактным выходом.

Все датчики, преобразователи и исполнительные механизмы соответствуют требованиям по степени защиты от воздействия окружающей среды:

по взрывопожаробезопасности;

по климатическому воздействию;

по устойчивости к воздействию агрессивных сред;

по степени защиты оболочки от проникновения внутрь пыли и влаги.

Все блочно-модульные комплектные технологические установки оснащаются средствами контроля и автоматики на заводах-изготовителях.

5.4.2 Управляющий вычислительный комплекс

Разработчиком и поставщиком программно- технического комплекса УПН является ИПФ "АСУ- нефть" г. Тюмень. Поставщиком программно-технического комплекса узла учета нефти (УУН) является "Сибнефтеавтоматика" г. Тюмень.

1. Нижний уровень. Нижний уровень УПН строится на базе контроллера System 2005 фирмы BR(Австрия). Контроллер имеют модульную, проектно - компонуемую структуру и создается из наборов типовых контроллерных модулей.

Наборы контроллерных модулей обеспечивают возможность компоновки контроллеров различной производительности (от единиц до нескольких сотен сигналов).

Конфигурация контроллера System 2005 в максимальном варианте:

- цифровых входов/ выходов - 800;

- аналоговых входов/ выходов - 400;

- импульсных входов - 200.

Контроллер System 2005 имеет стопроцентный горячий резерв. Нижний уровень узла учета нефти строится на базе устройства программного управления TREL-5B ООО "ТРЭИ ГМБХ" г. Пенза.

Нижний уровень объектов электроснабжения строится на базе контроллера "Омь" фирмы "Мир" г. Омск.

5. Средний уровень. Средний уровень УПСВ представляет собой рабочую

6. (операторскую) станцию на базе промышленного компьютера, которая размещается в

7. представленной структурной схеме вычислительного комплекса имеется возможность

8. разместить АРМ энергетика в диспетчерском пункте на опорной базе промысла.

5.5 Размещение и монтаж комплекса технических средств АСУ ТП

Первичные преобразователи, датчики технологических параметров и исполнительные механизмы, монтируемые непосредственно на технологическом оборудовании и трубопроводах, устанавливаются с помощью закладных деталей, которые устанавливаются и учитываются технологической частью проекта.

Блочно-модульное технологическое оборудование оснащается первичными преобразователями, датчиками и исполнительными механизмами на заводах--изготовителях блоков, там же выполняется монтаж внутриблочных электрических и трубных проводок.

Приборы, устанавливаемые на открытых технологических площадках и неприспособленные к эксплуатации в условиях низких температур окружающего воздуха, размещаются во взрывозащищенных утепленных электрообогреваемых шкафах.

Внешние электрические проводки на проектируемых объектах промыслового обустройства выполняются следующим образом:

а) внутри производственных помещений и по наружным технологическим площадкам -- изолированными проводами в стальных защитных трубах или контрольными небронированными кабелями в коробах и лотках.

Для взрывоопасных помещений категорий В-1А применяются кабели и провода с медными жилами и защитные водогазопроводные трубы по ГОСТ 3262-75. В остальных случаях используются кабели и провода с алюминиевыми жилами и защитные электросварные трубы по ГОСТ 10704-76.

б) междуплощадочные трассы - контрольными небронированными кабелями с медными и алюминиевыми жилами по ГОСТ 1508-78.

Кабели с медными жилами применяются во взрывоопасных условиях (В-1А) и в случаях, определяемых специальными требованиями к цепям измерения.

Экранированные кабели с медными жилами применяются для уменьшения влияния помех, наводок в цепях аналоговых и импульсных сигналов.

Между площадочные электрические проводки прокладываются на отдельных полках по кабельным эстакадам и в коробах совместно с силовыми (0.4 кВ) кабелями.

Электропитание операторских станций и контроллерного оборудования осуществляется от сети переменного тока напряжением 220В двумя вводами. В случае исчезновения напряжения питающей сети электропитание обеспечивается от источника бесперебойного питания, установленного в операторной./11/

Используемая для ведения технологического процесса многоступенчатая автоматизированная система управления позволяет безопасно и качественно поддерживать технологический режим.

6. Технологический расчёт

Поверочный технологический расчет проводится с целью выявления максимально возможной производительности оборудования установки предварительного сброса воды по жидкости.

6.1 Технологические параметры УПСВ-3 НГДУ «Мамонтовнефть»

I ступень сепарации С-1: температура 40-45оС, давление 1,5-3атм.(0,15-0,3 мПа).

Отстой с обезвоживанием:температура 40- 45оС, давление 1,2-2,5 атм. (0,12-0,25 мПа).

IIступень КСУ: температура 40-45оС, давление 0-0,2атм. (0-0,02 мПа).

Газовый фактор 43 м3/т /12/

Сырье - газоводонефтяная жидкость.

Характеристика нефти НГДУ «МН»:

Плотность, кг/м3 871-885

Вязкость, мм2/с (при 20оС) 22-53

Массовое содержание, %:

Серы 1,2-1,5

Смол селикагелевых 7-11

Асфальтенов 1,8-5,0

Парафинов 2,9-3,9

Можем сделать заключение:

нефть парафинистая > 1,5%

сернистая > 1,8 %

Тип нефти - средняя (р(20оС) - 851- 885 кг/м3)

нефть высокоэмульсионная (I группы)

I группа - это нефть с плотностью при 20°С - 860-890кг/м3,

вязкостью при 20°С - 12-15 и выше мм2/с,

содержание смол 5-15%,

асфальтенов - 1-7%. /13/

6.2 Поверочный расчет технологического оборудования

6.2.1 Расчёт аппаратов I ступени сепарации

Нефтегазовый сепаратор НГС 2-1,0-2400-2-И, объёмом 100м3.

кол-во аппаратов -2 шт.

Входной сепаратор предназначен для сепарации газа из жидкости

Давление 1,5-3,0 кгс/см 2 (0,15-0,3 мПа),

температура 40- 45°С по РД 39-0004-90

Объем сепаратора 100 м3,

Время нахождения жидкости в сепараторе 5 минут.

Обводнённость нефти НГДУ «МН» - 85%

Найдём плотность жидкости по формуле:

рж = (7)

где ж - плотность жидкости, кг/м3;

н - плотность нефти, кг/м3;

в - плотность воды, кг/м3 ;

В - обводнённость нефти в долях

рж = = 987 кг/м3

Рассчитаем производительность аппарата в минуту по формуле:

Q = (8)

где Q - производительность аппарата, м3/мин, м3/час;

V - объём аппарата, м3;

с - коэффициент заполнения объёма аппарата жидкостью, равен 0,6;

- время пребывания, мин

Q == 12 м3/мин = 720 м3/час

Рассчитаем объемный расход потока:

?ж = (9)

где ?ж - объёмный расход потока, м3/сут;

n- количество аппаратов, шт;

1,2 - коэффициент запаса, применяемый, если будет дополнительная подача жидкости;

Q - производительность аппарата, м3/мин, м3/час.

?ж = = 28 800 м3/сут

Максимальное количество жидкости, поступающей на установку, находим по формуле:

Qж = ?ж* рж /1000 (10)

где Q ж - количество жидкости поступающей на установку, т/сут;

?ж - объёмный расход потока, м3/сут;

рж - плотность жидкости, кг/м3.

Qж = 28 800* 987/1000 = 28 426 т/сут.

Эскиз нефтегазового сепаратора без сброса воды представлен на рис. 8. /14/

Из расчёта видно, что пропускная способность 2 входных сепараторов, объёмом 100 м3

каждый, 28 800 м3/сут (28 426 т/сут).

6.2.2 Расчёт отстойников

отстойник ОГ-200 1-1,0-3400-2-И, объёмом 200м3

кол-во аппаратов -6 шт.

Температура обезвоживания 40-45°С,

давление 1,2-2,5 кгс/см2 (0,12-0,25 мПа),

время отстоя эмульсии 30-60 минут,

Рассчитаем производительность аппарата в минуту по формуле (8):

Q == 4 м3/мин = 240 м3/час

Рассчитаем объемный расход потока по формуле (9):

?ж = = 28 800 м3/сут

Из расчёта видно, что пропускная способность 6 отстойников, объёмом

200 м3 каждый, 28 800 м3/сут (28 426 т/сут).

Эскиз отстойника ОГ-200 1-1,0-3400-2-И представлен на рис. 9. /14/

6.2.3 Расчёт аппаратов II ступени сепарации

В качестве концевой сепарационной установки принят

нефтегазовый сепаратор НГС 2-1.0-2400-2-И объёмом 100 м3

кол-во аппаратов -2 шт.

Температура эмульсии 40-45С,

давление 0-0,2 кгс/см2 (0-0,02 мПа),

время отстоя 5-10 минут,

Рассчитаем производительность аппарата в минуту по формуле (8):

Q == 12 м3/мин = 720 м3/час

Рассчитаем объемный расход потока по формуле (9):

?ж = = 28 800 м3/сут

Рассчитаем работу КСУ в аварийном режиме.

Сброс жидкости после сепараторов первой ступени сепараторов С1/1, С1/2.

Обводненность нефти - 85 %.

Проверим производительность КСУ в минуту по формуле (8):

Q == 12 м3/мин = 720 м3/час

Объем жидкости, поступающей на КСУ будет равен:

?ж == 1200 м3/час

Объем КСУ рассчитывается с учетом нагрузки по жидкости и времени пребывания по формуле:

V = , (11)

где ?ж - объёмный расход потока, м3/час;

- время пребывания, мин;

с - коэффициент заполнения объёма аппарата жидкостью, равен 0,6;

1,2 - коэффициент запаса, применяемый, если будет дополнительная подача жидкости;

V = = 200 м3.

Рассчитаем необходимое количество аппаратов, когда КСУ работает в аварийном режиме, по формуле:

n = , (12)

где ?ж - объёмный расход потока, м3/час;

1,2 - коэффициент запаса, применяемый, если будет дополнительная подача жидкости;

Q - производительность аппарата, м3/час.

n = = 2,0

Время пребывания жидкости в сепараторе принято в зависимости от типа нефти в соответствии с РД 39-0004-90/15/. Сепарационное оборудование, представлено в табл. 11.

/16,17/

Таблица 11

Характеристика оборудования

Аппарат

Наименование

Тип

Производительность,

м3/час

Давление,

МПа

Объем, м

Сепаратор первой ступени сепарации

Нефтегазовый

НГС 2-1. 0-2400-2-И

ГП 868.00.000

160. ..800

1.6

100

Отстойник

Отстойник горизонтальный

ОГ-200

80. ..400

1.0

200

Сепаратор второй ступени сепарации

Нефтегазовый

НГС 2-1. 0-2400-2-И

ГП 868.00.000

160. ..800

1.6

100

Вывод: по поверочному расчёту существующих аппаратов установки предварительного сброса воды с учетом технологических параметров (температуры и давления), принятых в схеме показано, что максимальная пропускная способность оборудования по нефти и жидкости - 28 800 м3 / сутки (28 426 т/сут).

7. Материальный баланс установки предварительного сброса воды

7.1 Материальный баланс базовой установки предварительного сброса воды № 3 НГДУ «Мамонтовнефть» при максимальной пропускной способности оборудования

На основании поверочного технологического расчета составлен материальный баланс установки предварительного сброса воды № 3 НГДУ «Мамонтовнефть» при максимальной пропускной способности оборудования по сырью табл. 12. Число рабочих дней в году 365.

Таблица 12

Материальный баланс базовой УПСВ-3

Статьи баланса

% объем.

тыс. м3/год

м3/сут

м3/час

% весов.

тыс. т/год

т/сут

кг/час

Приход:

1. Сырая нефть:

15,1

10 512,0

28 800,0

1 200,0

99,5

10 404,3

28 425,6

1 184 400,0

в т.ч. нефть

2,3

1 576,8

4 320,0

180,0

13,2

1 379,7

3 780,0

157 500,0

вода пластовая

12,8

8 935,2

24 480,0

1 020,0

86,3

9 024,6

24 724,8

1 030 200,0

2. Газ попутный

84,9

59 327,1

162 540,0

6 772,5

0,5

56,5

154,7

644,7

Итого:

100,0

69 839,1

191 340,0

7 972,5

100,0

10 460,7

28 659,5

1 188 344,7

Расход:

1. Обезвожен-ная нефть:

2,27

1 587,3

4 348,7

181,2

13,3

1 390,3

3 808,9

158 705,7

в том числе:

нефть на ЦПС

2,26

1 576,8

4 320,0

180,0

13,2

1 379,7

3 780,0

157 500,0

вода на ЦПС

0,01

10,5

28,7

1,2

0,1

10,6

28,9

1 205,7

2. Вода на КНС

12,78

8 924,7

24 451,3

1 018,8

86,2

9 014,0

24 695,9

1 028 994,3

3. Газ попутный:

84,9

59 327,1

162 540,0

6 772,5

0,5

56,5

154,7

644,7

Итого:

100,0

69 839,1

191 340,0

7 972,5

100,0

10 460,7

28 659,5

1 188 344,7

7.2 Материальный баланс проектной УПСВ-3

Материальный баланс проектной установки предварительного сброса воды №3 НГДУ «Мамонтовнефть» (с учетом части нефти с месторождения Угутско - Киняминской группы НГДУ «Майскнефть») на 2005 год приведен в табл. 13. Число рабочих дней в году 365.

Физико-химические свойства нефти НГДУ «МсН»:

Плотность, кг/м3 - 861

Вязкость, мм2/с (при 35оС) - 7,17

Содержание воды, % об. - 38

Газовый фактор 62 м3/т /12/

Таблица 13

Материальный баланс проектной УПСВ-3 на 2005 год

%

%

Статьи баланса

объем.

тыс. м3/год

м3/сут

м3/час

весов.

тыс. т/год

т/сут

кг/час

Приход:

1. Сырая нефть :

15,6

6 807,0

18 649,4

777,1

99,5

6 685,3

18 315,8

763 157,3

в т.ч. нефть с ДНС-2Е

1,3

571,9

1 566,8

65,3

7,4

500,4

1 371,0

57 123,3

нефть с кустов

0,8

341,0

934,3

38,9

4,4

298,4

817,5

34 063,9

нефть с "МСН"

1,0

447,0

1 224,6

51,0

5,7

384,9

1 054,4

43 932,6

вода с ДНС-2Е

7,5

3 240,7

8 878,6

369,9

48,7

3 273,1

8 967,4

373 640,7

вода с кустов

4,4

1 932,5

5 294,5

220,6

29,0

1 951,8

5 347,5

222 810,5

вода с "МСН"

0,6

274,0

750,6

31,3

4,1

276,7

258,1

31 586,2

2. Газ попутный

84,4

36 691,9

100 525,8

4 188,6

0,5

34,9

95,7

3 987,5

Итого:

100,0

43 498,9

119 175,2

4 965,6

100,0

6 720,2

18 411,5

767 144,8

Расход:

1. Подготовленная нефть:

3,11

1 368,5

3 749,2

156,2

16,6

1 193,0

3 268,5

136 185,8

в том числе:

нефть на ЦПС

3,09

1 359,9

3 725,7

155,2

16,5

1 184,3

3 244,7

135 197,7

вода на ЦПС

0,02

8,6

23,5

1,0

0,1

8,7

23,7

988,1

2. Вода на КНС

12,49

5 438,6

14 900,2

620,8

81,7

5 493,0

15 049,2

627 049,3

3. Газ попутный:

84,4

36 691,9

100 525,8

4 188,6

0,5

34,9

95,7

3 987,5

в том числе:

Итого:

100,0

43 498,9

119 175,2

4 965,6

100,0

6 720,2

18 411,5

767 144,8

Вывод: на установке предварительного сброса воды № 3 НГДУ «Мамонтовнефть» имеются реальные возможности для увеличения ее пропускной способности по жидкости, при этом качество подготовленной нефти не изменится.

Реализация данного проекта позволяет увеличить производительность установки предварительного сброса воды в расчете на 2005 год с 16 674,2 м3/сут до 18 649,4 м3/сут (на 12 %). При этом доля загрузки установки сырой нефтью НГДУ «МсН» на 2005 год составит 10 % и имеет тенденцию к увеличению. Коэффициент загрузки установки по сырью увеличиться к 2005 г. на 6 %. У установки предварительного сброса воды № 3 имеется резерв по наращиванию производительности - более 30% по жидкости.

8. Безопасность и экологическая оценка проекта

8.1 Обеспечение безопасности работающих

8.1.1 Опасности и вредности установки

По воздействию вредные и опасные факторы подразделяются на четыре группы: физические, химические, психофизиологические, биологические.

В группе физических факторов следует выделить:

- климатические факторы: температура воздуха, скорость ветра, влажность;

шум и вибрация;

- загазованность воздуха рабочей зоны при авариях, утечках газа,

работа в колодцах, аппаратах, емкостях;

- опасное напряжение в электрической сети;

- инфракрасное излучение (только при пожарах).

В группе химических факторов следует выделить:

- поверхностно-активные вещества, работа с химическими реагентами;

-воздействие на организм работающих углеводородов нефти и природного газа.

Технологическое оборудование размещено на открытых площадках, что уменьшает вероятность образования взрывоопасных смесей.

8.1.2 Характеристика условий труда

В составе промышленного объекта (УПСВ) обращаются следующие опасные вещества:

- нефть обезвоженная;

- нефть сырая;

- попутный нефтяной газ;

- химические реагенты.

Из выше перечисленных опасных веществ, при возникновении и развитии аварийной ситуации, участвовать будут нефть сырая, нефть обезвоженная, а также попутный нефтяной газ.

Химические реагенты могут являться инициаторами аварии с вовлечением других опасных веществ. Условно примем свойства сырой нефти идентичными свойствам нефти обезвоженной.

Характеристика опасных веществ представлена в табл. 14 .

Для обеспечения безопасности на производстве должны быть созданы нормальные санитарно-гигиенические условия на рабочих местах, сведения приведены в табл. 15.

Таблица 14

Показатели пожароопасности и токсичности сырья.

№№ п/п

Наименование веществ

Класс опасности по ГОСТ 12.1. 007-76

Удельный вес, г/см3

Температура, °С

Пределы взрываемости,

% (об.)

ПДК в воздухе рабочей зоны производственных помещений

Характер токсичности

вспышки

воспламенения

самовоспламенения.

нижний

верхний

1

Нефть

4

0,878-0,889

50 - 30

---

415-530

1,0

5,0

300

слабый наркотик, вызывает дерматит, экземы

2

Попутный нефтяной газ

4

0,739

---

---

---

3,2

15,0

300

в больших количествах наркотическое действие

3

Рекод-118

3

0,940-0,960

15

---

400 по

метанолу

5,5

36,6

300

ядовит

4

Метанол

3

0,791

---

---

436-464

6, 0

34,7

5,0

яд нервной и сердечно-

сосудистой систем

5

Окись углерода

4

1,25

---

---

636

12,5

74,0

20

чрезвычайно токсичный

газ

Взрывопожароопасные производственные объекты УПСВ-3 НГДУ «Мамонтовнефть» оснащены необходимыми системами автоматизации производства, многоуровневыми системами блокировок и предохранительных устройств, срабатывающих при возникновении аварийных ситуаций, вентиляционными системами и системами постоянного контроля воздушной среды, планами действия персонала в аварийной ситуации, а также обеспечены резервом технологического, энергетического оборудования и материалов, обеспечивающих локализацию аварий, пожаров, загазованности и восстановлению устойчивой работы объекта, что исключает необходимость постоянного пребывания персонала на опасном объекте и в значительной степени обеспечивает безопасность эксплуатации опасных производственных объектов.

Таблица 15

Санитарно-гигиенические условия труда

Наименование производственного помещения

Нефтяная

насосная

Оператор

ная

Водяная насосная

Блок реагентного хозяйства

Компресс

сорная

Объем помещения, м3

Характеристика тяжести работы

Теплый период года

84,2

средняя

180 дней

144,0

средняя

180 дней

96,4

средняя

180 дней

11,88

тяжелая

180 дней

101,6

средняя

180 дней

Температура, оС факт

норма

20

18-27

22

20-28

20

18-27

20

18-27

20

18-27

Относительная влажность воздуха, %

Факт

норма

48

15-75

43

15-75

51

15-75

45

15-75

43

15-75

Скорость движения воздуха, м/с

Факт

норма

0,5

0,5

отсутствует

0,5

0,5

0,5

0,5

0,5

0,5

Тип системы вентиляции

вытяжная

отсутствует

вытяжная

вытяжная

отсутствует

Естественное освещение

Площадь световых проемов, м2

норма

факт

0

0

0

3,84

0,10

0,10

0

0

0

0

0

0

0,48

0,02

0,02

Искусственное освещение, лк

Норма

Факт

150

200

200

299,7

150

180

150

110

150

119,98

Отопление

Теплоноситель и его параметры

Система отопления

вода

t- 50-80С

р- 4,5кгс/см2

водяное

отопление

вода

t-50-80С

р-4,5кгс/см2

водяное

отопление

вода

t-50-80С

р-4,5кгс/см2

водяное

отопление

эл/энергия

t-50-80С

электрическое

отопление

вода

t-50-80С

р-4,5кгс/см2

водяное

отопление

8.1.3 Электробезопасность и молниезащита

На предприятиях нефтеперабатывающей и нефтехимической промышленности широко применяют различные электрические установки. Электроустановки эксплуатируются как на открытых площадках, так и в помещениях с большой влажностью и повышенной температурой воздуха. Для защиты людей от поражения электрическим током в производственных условиях, из-за повреждения (пробоя) изоляции токоведущих проводников, принимают следующие защитные меры: заземление, пониженное напряжение, защитное разделение сети, зануление, контроль и профилактику повреждений изоляции и индивидуальные средства защиты.

8.1.3.1 Электроснабжение

По обеспечению надёжности электроснабжения, к I категории относятся:

- насосы системы ППД;

- насосы внешнего транспорта нефти;

- щитовые КИПиА;

- вентсистема подпора воздуха операторной;

- охранное освещение.

К II категории по надёжности электроснабжения относятся:

- водозаборные сооружения;

- электрообогрев бытовых помещений.

Остальные потребители относятся к III категории.

Надёжность электроснабжения обеспечивается:

- наличием двух независимых источников питания (двух секций 35 кВ на ПС 35/6кВ);

- питанием высоковольтных насосов внешнего транспорта от разных секций 6 кВ двух трансформаторных подстанций 35/6 кВ;

- питанием потребителей 0,4 кВ от разных секций 0,4 кВ двух трансформаторной подстанции 6/0,4 кВ, запитанных от разных секций 6 кВ двух трансформаторной подстанции 35/6 кВ.

8.1.3.2 Молниезащита и заземление

Здания и сооружения, относящиеся ко II категории, защищены от прямых ударов молнии, вторичных проявлений молнии и заноса высокого потенциала через наземные и подземные коммуникации.

Наружные установки, относящиеся к III категории, защищены от прямых ударов молнии и вторичных проявлений молнии.

Защита от прямых ударов молнии на проектируемом объекте осуществляется:

- использованием в качестве молниеприёмника металлической кровли здания;

- установкой стержневых молниеотводов на газоотводных и дыхательных трубах.

Защита от вторичных проявлений молнии на проектируемой УПСВ осуществляется:

- присоединением металлических корпусов всего оборудования и аппаратов к заземляющему устройству;

- соединением перемычками через каждые 30 м трубопроводов и других металлических конструкций в местах их сближения на расстояние не менее 10см.;

- во фланцевых соединениях должна быть обеспечена нормальная затяжка не менее 4 болтов на каждый фланец.

Защита от заносов высокого потенциала осуществляется путём присоединения ближайшей опоры коммуникаций, а так же всех коммуникаций на вводе в здание или сооружение к заземляющему устройству.

В качестве заземляющих устройств используются как естественные, так и искусственные заземлители:

- естественные заземлители - металлические и железобетонные конструкции зданий и сооружений, находящихся в соприкосновении с землёй;

- искусственные заземлители -- вертикальный (сталь уголок 35x35x4, длина 3м) и горизонтальный (сталь сечением 4x40 мм2).

8.1.3.3 Расчёт зоны защиты молниеотвода

Зона защиты молниеотвода - это часть пространства, внутри которого здание, сооружение защищено от прямых ударов молнии с определенной степенью надёжности. Зона защиты типа А обеспечивает надёжность 99,5%, зона защиты типа Б - 95%.

Тип зоны защиты определяется исходя из ожидаемого количества (N) поражений молний в год зданий и сооружений. Подсчёт ожидаемого количества N поражений молний в год производится по формулам:

для сосредоточенных зданий и сооружений (дымовые трубы, вышки, башни)

N = 9 ? h 2 n 10-6

для зданий и сооружений прямоугольной формы

N = ( ( S + 6h) (L + 6h) -7,7 h 2) n 10-6 ,

где h-наиболыпая высота здания или сооружения, м;

S, L-соответственно ширина и длина здания или сооружения, м;

n-среднегодовое число ударов молнии в 1 км. земной поверхности (удельная плотность ударов молнии в землю) в месте нахождения здания или сооружения.

Для зданий и сооружений сложной конфигурации в качестве S и L принимаются ширина и длина наименьшего прямоугольника, в который может быть вписано здание или сооружение в плане.

Для произвольного пункта на территории РФ удельная плотность ударов молнии в землю и определяется исходя из среднегодовой продолжительности гроз в часах;

Для Тюмени среднегодовая продолжительность гроз, от 40 до 60 ч., удельная плотность ударов молнии п = 4 в год на 1 км2.

Зона защиты одиночного стержневого молниеотвода.

Зона защиты одиночного стержневого молниеотвода высотой h представляет собой круговой конус, вершина которого находится на высоте h0< h на уровне земли зона защиты образует круг радиусом г0. Горизонтальное сечение зоны защиты на высоте защищаемого сооружения hx представляет собой круг радиусом гх.

Зона защиты одиночных стержневых молниеотводов высотой h<150 м имеют следующие габаритные размеры.

Зона А: h0=0,85*h; r0=(1,1-0,00222*h)*h;

rx=(1,1-0,002*h)(h-hх /0,85).

Зона Б: h0=0,92*h; r0=l,5*h;

rx=l,5(h-hx /0,85).

Для зоны Б высота одиночного стержневого молниеотвода при известных значениях hx и hr может быть определена по формуле:

h=(rx+l,63hx)/l,5

Резервуарные парки с ЛВЖ по устройству молниезащиты относятся ко II категории и подлежат защите на всей территории РФ, а молниеотводы предусматриваются с зонами защиты типа Б.

Для отдельных резервуаров, их групп или резервуарного парка за величину S и L следует принимать стороны прямоугольника, в котором могут быть вписаны все резервуары. Величина защитного уровня hx для резервуарных парков принимается с учётом, а высота зоны взрывоопасности над крышей -5м (hx=H+5).

Исходные данные:

Рассчитать необходимую высоту одиночного стержневого молниеотвода для защиты резервуара вертикального стального (РВС) ёмкостью 2000м3, L=S=15,18м.,

hх=15+5=20м..

Расчёт: как, указывалось выше РВС-2000 по устройству молниезащиты, относится ко II категории.

Число возможных воздействий молний по формуле (14):

N=((15,18+6*20)(15.18+6*20)-7,7*20)*4*10-6 = 0,000465<1

Принимаем зону типа Б и определяем высоту молниеотвода по формуле (15):

h = (8,93+1,63*20)/1,5 = 27,69м

где гх-радиус зоны защиты на высоте hх=20м

гх = 0,5 + ((S+l)2 + (L/2)2)1/2 = 0,5((15,18 +1)2 + (15,18/2)2)1/2=8,93 м

Вывод: необходимая высота молниеотвода 27,69 м /18,19 /.

8.2 Экологическая оценка проекта

8.2.1 Характеристика объекта в части выбросов загрязняющих веществ в атмосферу

При эксплуатации опасных производственных объектов загрязнение атмосферы происходит в результате выделения:

- легких фракций углеводородов из-за разгерметизации технологического оборудования (скважины, сепараторы, емкости, насосы);

- продуктов сгорания попутного нефтяного газа (факел, котельная);

- небольшого количества легких фракций химических реагентов (ингибиторы коррозии, деэмульгаторы).

Кроме этого, на всех стадиях работ на УПСВ в атмосферу будут выделяться загрязняющие вещества от передвижного транспорта.

При эксплуатации технологического оборудования по подготовки нефти через не плотности запорно-регулирующей арматуры и дыхательные клапаны емкостей выделяется небольшое количество легких углеводородов.

При сгорании газа на факеле будут выделяться в атмосферу: оксиды азота и углерода, сажа, углеводороды и бенз(а)пирен.

При эксплуатации автомобильного транспорта выбрасываются в атмосферу вредные вещества: оксиды азота, углерода и серы, сажа, углеводороды, соединения свинца.

В проекте нормативов предельно допустимых выбросов для УПСВ-3 НГДУ «Мамонтовнефть» ОАО «Юганскнефтегаз» расчетным путем определен уровень загрязнения атмосферного воздуха вредными веществами, содержащимися в выбросах предприятия. Определена санитарно-защитная зона и величина предельно-допустимых и временно-согласованных выбросов вредных веществ в атмосферу./21/

В результате проведенной работы установлено:

* предприятие выбрасывает в атмосферу следующие загрязняющие вещества окислы азота, метан, углеводороды, окись углерода, сажа, бенз(а)пирен, оксид железа, марганец и его соединения, кремний, фтористый водород, фториды, металлическая и абразивная пыль, древесная пыль.

* валовые выбросы вредных веществ в атмосферу по УПСВ-3 НГДУ «Мамонтовнефть» составляют 893,924 тонн в год.

По УПСВ представлено 243 основных источников выбросов загрязняющих веществ в атмосферу. /22/

Рассматриваемое предприятие относится ко II категории опасности.

В результате проведенных расчетов определено, что данное предприятие выбрасывает 13 наименований загрязняющих веществ. Перечень загрязняющих веществ, выбрасываемых в атмосферу данным предприятием представлены в таблице 16 .

Приведенные в таблице 1 коды, ПДК, классы опасности взяты согласно /23/, перечня используемой литературы.

Таблица 16

Перечень загрязняющих веществ, выбрасываемых в атмосферу.

№ п/п

Код

Наименование вещества

Класс опасности ности

пдк

м.р.

мг/м3

пдк

с.с

мг/м3

ОБУВ

мг/м3

Валовый выброс т/год

1

2

3

4

5

6

7

8

1

0123

железа оксид

3

0,04

0,00241

2

0143

марганец и его соединения

2

0,01

0,001

0,00021

3

0301

азота диоксид

2

0,085

0,04

5,749

4

0328

сажа

3

0,15

0,05

70,072

5

0337

углерода оксид

4

5,0

3,0

588,649

6

0342

фтористый водород

2

0,02

0,005

0,00019

7

0343

фториды

2

0,03

0,01

0,00162

8

0410

метан

50

95,767

9 аименование

вещества

Класс опасности

Стационарные источники, т/год

Передвижные источники, т/год

Оксид углерода

4

11633,126

0,240017

Пыль неорган.

3

0,00043

-

Марганец и его оксиды

2

0,0026

-

Фтористый водород

2

0,00034

-

Фториды

2

0,00137

-

Оксид железа

3

0,01052

-

Диоксид азота

2

142,487

1,3926

Углеводороды

4

5885,04

0,033699

Сажа

3

1394,12

0,006767

Бенз(а)пирен

1

375,4*10-8

-

Оксид серы

-

0,003687

Свинец

-

0,000027

9

0703

бенз(а)пирен

1

0,1х10-5

1,87х10-7

10

2754

углеводороды (предельные)

4

1,0

131,50

11

2908

окись кремния (SiO2 70-20%)

3

0,3

0,1

0,00016

12

2930

абразивная и металлическая пыль

0,04

0,0126

13

2936

пыль древесная

0,1

2,145

ИТОГО: 893,924

8.2.1.1 Расчет максимальных и валовых выбросов вредных веществ от источников загрязнений УПСВ-3.

(Источник № 1).

ОБЪЕКТ - Факел-1

Параметры факельной установки.

Высота:

22 м

Диаметр:

0,325 м

Скорость:

0,339 м/с

Объем:

13,502 м3/м3

Температура:

1773оС

Исходные данные:

Объем газа, сжигаемого на факеле и течение года - 1 821 500 м3;

Продолжительность работы факела в течение года - 8760 ч;

Температура попутного газа -20°С;

Плотность попутного газа -0,952 кг/м3;

Диаметр устья факельной установки -0,325 м;

Высота трубы факельной установки -22 м;

Температура воздуха -21,7 град, С;

Атмосферное давление - 760 мм. рт. ст.;

Относительная влажность воздуха - 60 %.

/24/

Расчет максимального расхода продуктов горения, покидающих факельную установку.

Wv= 1 821 500/8760 /3600 = 0,058 м3/с;

Wпр = 0,058 х 13,502 х [( 273 + 1773 ) /273] = 5,870 м3/с;

Расчет параметров факельной установки, как потенциального источника загрязнения атмосферного воздуха.

Длина факела:

Lф = 5,3 х 0,325 xvl773/296 xv( 1 + 12,021)х(1+12,021 х 1,1907/0,962)=24,8 м;

Расчет высоты факельной установки:

Нв = 22+ 24,8 = 46,8м

Расчет диаметра факельной установки:

Dф = 0,189 x 24,8 = 4,7 м.

Проверка выполнения условий бесссажевого горения попутного газа на факельной установке.

Расчет средней скорости поступления к атмосферу продуктов сгорания (ПНГ)

Vист = 1,274 х 5,87/ 4,72 = 0,339 м/с

Условие бессажевого горения: Vист > 0,2 х U3B

Vист ист =0,339 м/с 0,2 х U3B = 73,73

Так как 0,339 < 73,73, то сжигание идет с выделением сажи.

Расчет максимальных и валовых выбросов вредных веществ.

Wv = 0,058 м3/с.

Wg = 217,778 кг/ час.

Расчет максимальных и валовых выбросов вредных веществ.

Для оценок мощности выбросов метана, оксида углерода и оксида азота (в пересчете на диоксид азота) при сжигании попутного газа используются опытные значения удельных выбросов на единицу массы сжигаемого газа-g., представлены в таблице 17

Опытные значения удельных выбросов на единицу массы сжигаемого газа

Таблица 17

Наименование выбросов

(gj)

СО

0,25

NO2

0,002

Сажа

0,03

Бенз(а)пирен

8x10-11

Вредные вещества при сжигании попутного газа также образуются за счет недожига газа. Коэффициент недожига газа определяется эксперементально для факельных установок определенной конструкции, или принимается равным 0,0006 при бессажевом сжигании и 0,035 в противном случае.

Удельные выбросы углеводородов (в пересчете на метан), определяются по формуле:

(уд. выброс) = 0,01 х (коэф.недожига) х (массовая доля в %).

Компонентный состав попутного газа приведен в таблице 18 .

Таблица 18

компонент

СН4

С2Н6

СЗН8

iC4H10

nС4Н10

С5Н12

С6+

СО2

Сумма

% масс.

52,8

9,87

20,37

8,0

6,78

1,81

0,23

0,14

100

0.01*0,035*(%масс.)

0,018

0,003

0,007

0,003

0,002

0,001

0,0001

0,0001

0,034

Максимальные выбросы:

Wgi = 0,278 х gi x Wg (г/сек)

где Wg - массовый расход сбрасываемого на факельной установке газа (кг/час);

Wg = 3600 х Wv x pr ,

где Wv - объемный расход газа (мЗ/сек) = к-во сож.газа : 365 : 24 : 3600 = мЗ/сек

Валовые выбросы вредных веществ за год:

М = 0,001 х qi x Wq x t,

где t - продолжительность работы факельной установки в течение года, час.

Максимальные и валовые выбросы вредных веществ, представлены в таблице 19.

Максимальные и валовые выбросы вредных веществ (источник №1).

Таблица 19

Компонент

СО

NО2

Сажа

Бенз(а)- пирен

Метан

G, г/сек

15,136

0,121

1,816

0,048х10-7

2,482

М, т/год

476,934

3,815

57,232

1,526х10-7

78,217

(Источник № 2).

ОБЪЕКТ - Факел-2

Исходные данные:

Объем газа, сжигаемого на факеле и течение года - 403 000 м3;

Продолжительность работы факела в течение года - 456 ч;

Температура попутного газа -20°С;

Плотность попутного газа -0,952 кг/м3;

Диаметр устья факельной установки -0,5 м;

Высота трубы факельной установки -35 м;

Температура воздуха -21,7 град, С;

Атмосферное давление - 760 мм. рт. ст.;

Относительная влажность воздуха - 60 %.

Максимальные и валовые выбросы вредных веществ (источник №2)

Таблица 20

Компонент

СО

NО2

Сажа

Бенз(а)- пирен

Метан

G, г/сек

65,24

0,52

7,83

0,21х10-7

10,70

М, т/год

107,01

0,86

12,84

0,34х10-7

17,55

Параметры факельной установки.

Высота:

35 м

Диаметр:

0,5 м

Скорость:

0,62 м/с

Объем:

13,502 м3/м3

Температура

1773оС

(Источник № 3).

ОБЪЕКТ - Котельная

Исходные данные:

Котельная работает на газовом топливе.

284,0 тыс.м3 - расход топлива за год (m)

38,2 тыс.м3 - расход топлива за самый холодный месяц (mх)

1 дымовая труба ( N )

Удаление продуктов сгорания в атмосферу производится через

1 дымовую трубу диаметром 400 мм и высотой 16 м (котел МЗК).

Расчет выбросов загрязняющих веществ, при сжигании топлива в котельных проведен по методике /25,26/, согласно перечня используемой литературы.

Формулы, использованные в расчетах:

Валовый выброс оксида углерода:

Мсо=0,001 х Ссо х m (l-q1/100), т/год

Cco=q2 х R х Q, кг/тыс.м3

Максимально разовый выброс оксида углерода:

G=(Cco х mx (1 -q1/100) x 103):(d х 24 х 3600), г/сек

Валовый выброс диоксида азота:

МNO2= 0,001 х m х Q x kno2, т/год

Максимально разовый выброс диоксида азота:

G=(mx х Q х Кж>2 х 103):(d х 24 х 3600), г/сек

Объем уходящих газов:

V= ((Vr х m х 103):(N х Т х 24 х 3600)) х ((273+ t):273), м3/сек

где: m - расход топлива за год, тыс.м3

тх - расход топлива за самый холодный месяц, тыс.м3

Q - низшая теплота сгорания натурального топлива, Мдж/кг

q1 - потери теплоты вследствие механической неполноты сгорания топлива; 0,5%

q2 - потери теплоты вследствие химической неполноты сгорания топлива; 0,5%

R - коэффициент (для газа - 0,5)

K NO2- параметр, характеризующий количество оксидов азота, образующихся

на 1 ГДж тепла; 0,09 кг/ГДж

t - температура дымовых газов, 175 град.С

Vг - суммарный объем дымовых газов; 12,58

Т - количество рабочего времени котельной за год , 257 суток

N - количество дымовых труб

d - количество дней в самом холодном месяце, 31

Валовый выброс оксида углерода:

Ссо=0,5x0,5x42,04=10,51

Мсо= 0,001 х 10,51 х284,0 х (1- 0,5/100) = 2,982 т/год

Максимально разовый выброс оксида углерода:

Gco= 10,51 х 38,2 х (1- 0,5/100) х 1000 / (31 х 24 х 3600)= 0,149 г/сек

Валовый выброс диоксида азота:

МNO2= 0,001 х 284,0x42,04 х 0,09= 1,0735 т/год

Максимально разовый выброс диоксида азота:

G NO2= (38,2 х 42,04 х 0,09 х 1000) / (31 х 24 х 3600)= 0,0535 г/сек

Объем уходящих газов:

V= (12,58 х 284,0 х 1000)/(1 х 257x24 х 3600) х (273 + 175)/273= = 0,2641 м3/сек

/24/

(Источник №4).

ОБЪЕКТ - Сепаратор нефтяной

Исходные данные:

Вещества в аппарате находятся в жидкой фазе.

5,0 кг/см2 - давление в аппарате, Р

100 м3 - объем аппарата, V

1,6 - коэффициент Kv

4 шт. - количество аппаратов

Мув = 4/1,6 х (5,0 х 100)0,8 х 0,001 х 4 = 1,4427 кг/час; 12,638 т/год; 0,4008 г/сек.

(Источник №5).

ОБЪЕКТ - Сепаратор газовый

Исходные данные:

Вещества в аппарате находятся в парогазовой форме.

5,0 кг/см2 - давление в аппарате, Р 100 м3 - объем аппарата, V

80,4 - средняя молекулярная масса паров вещества, Мп

25°С - ср. температура в аппарате

Мув = 0,037 х (5 х 100)0,8 х v80,4/298 = 2,7867 кг/час; 24,4106 т/год, 0,7741 г/сек

(Источник №6).

ОБЪЕКТ - Насос центробежный

Исходные данные:

Вид уплотнения вала - сальниковое

2- количество уплотнений вала

4 - количество насосов, N

365 - количество рабочих дней

0,13 кг/час - удельный выброс углеводородов от одного насоса,

Мув = 0,13x24x365x4 х 103 = 4,555 т/год; 0,1444 г/сек.

(Источник №7).

ОБЪЕКТ - Отстойник

Исходные данные:

2,5 кг/см2 - абсолютное давление в аппарате, Р

200 м3 - объем аппарата, V

1,6 - коэффициент Kv

6 - количество отстойников

Мув = 4/1,6 (2,5 х 200)0,8 х 0,001 х 6 = 2,1640 кг/час; 18,957 т/год, 0,6011 г/сек

(Источник № 8).

ОБЪЕКТ - Накопитель подтоварной воды

Исходные данные:

15 198,5 м3/сут - производительность резервуаров УПСВ, Q

3 шт. - количество накопителей

Мув = 0,0416 х15 198,5 (0,37 х 1,064 + 1 х 4 х 0,801 х 103 + 1 х 0,006)=

= 2,54847 кг/час; 22,293 т/год; 0,7079 г/сек

2 накопителя на 5000 м3 - аварийные.

(Источник № 9).

ОБЪЕКТ - емкость

Исходные данные:

1,0 кг/см2 - абсолютное давление в аппарате, Р

20 м3 - объем аппарата, V

2,3 - коэффициент Kv

3 - количество аппаратов

Мдр = 4/2,3 х (1,0 х 200)0,8 х 0,001 х 3 = 0,0570 кг/час; 0,4993 т/год, 0,0158 г/сек

(Источник № 10).

ОБЪЕКТ - конденсатосборник

Исходные данные:

0,1 кг/см2 - абсолютное давление в аппарате, Р

20 м3 - объем аппарата, V

2,3 - коэффициент Kv

2 - количество конденсатосборников

Мув= 4/2,3 х (0,1 х 20)0,8х 0,001 х 2 = 0,0060 кг/час; 0,0526 т/год, 0,0 017 г/сек

(Источник № 11).

ОБЪЕКТ - кусты скважин

Исходные данные:

1,0 кг/см2 - абсолютное давление в аппарате, Р

3 м3- объем аппарата, V

2,3 - коэффициент Kv

30 - количество аппаратов

Мдр = 4/2,3 х (1,0 х 3)0,8 х 0,001 х 30 = 0,1250 кг/час; 1,0941 т/год 0,0347 г/сек

(Источник № 12).

ОБЪЕКТ - кусты скважин

Исходные данные:

0,5 м3 - объем сепаратора замерной установки,

V 10 кг/см2 - абсолютное давление в сепараторе замерной установки, Р

1,6 - коэффициент Kv 30 - число сепараторов зам. уст.

153 шт.- всего добывающих скважин, в том числе:

152 шт. - фонтанных и ЭЦН

1шт -ШГН

Общие выбросы от кустов скважин:

Мкс=325x152x0,0001 +234х1х0,0001 +4/1,6 (10 х 0,5)0,8 х 30 х 0,001 + Мдр=

= 5,3598 кг/час; 46,952 т/год, 4888 г/сек /27,28,29/

8.2.2 Расчёт платы за выбросы загрязняющих веществ в атмосферу

При реконструкции и эксплуатации УПСВ предполагается выброс вредных веществ в атмосферу от эксплуатируемого оборудования.

Среднегодовая плата за выбросы в атмосферу загрязняющих веществ от стационарных и передвижных источников, рассчитана согласно "Базовым нормативам платы за выбросы, сбросы загрязняющих веществ в окружающую природную среду и размещение отходов" с учетом коэффициента инфляции на 2003 г.

Плановый годовой размер и порядок платы (с разбивкой по кварталам) определяется природопользователем, утверждается руководителем предприятия и главным бухгалтером и согласовывается с территориальными органами Министерства охраны окружающей среды и природных ресурсов Российской Федерации.

Все типы сточных вод предполагается использовать в закрытой системе сбора и откачки жидкости УПСВ и , поэтому плата за сброс загрязняющих веществ в водные объекты не рассчитывается.

После ввода объектов предприятия в эксплуатацию должны быть разработаны «Том по предельно допустимым выбросам вредных веществ в атмосферу» и «Проект лимитов размещения отходов».

Размер платы предприятия за выбросы вредных веществ в атмосферу определен согласно Инструктивно-методическим указаниям по взиманию платы за загрязнение окружающей природной среды /30 /.

Плата за выбросы загрязняющих веществ (ПДВ или ВСВ) определяется путем умножения соответствующих ставок платы на величину массы выброса и суммирования полученных произведений по видам загрязняющих веществ по формуле:

П' = Cni1 x Mi1x Кэ х Ки, руб

где Cni1 - ставка платы за выброс 1 тонны i-загрязняющего вещества в пределах

допустимых выбросов (ПДВ или ВСВ), руб;

Mi1 -фактический выброс одного загрязняющего вещества (ПДВ или ВСВ), т;

Кэ - коэффициент экологической ситуации и экологической значимости атмосферы в данном регионе;

Ки -коэффициент инфляции на данный период времени по сравнению с 1992 годом.

Плата за допустимые выбросы загрязняющих веществ от передвижных источников определяется по формуле:

П111 = Yi х Тi х Кэ х Ки, руб

где Yi - удельная плата за допустимые выбросы загрязняющих веществ,

образующихся при использовании 1 тонны i-го вида топлива, руб;

Т i -количество i -го вида топлива, израсходованного передвижными источниками за период, т.

Расчет платы за выбросы вредных веществ от проектируемого оборудования приведен в табл. 18.

Эксплуатационные затраты на охрану окружающей среды и обеспечение безопасности работ составляют значительную долю годовых эксплуатационных затрат.

Они включают:

- плату за использование природных ресурсов;

- плату за загрязнение природной среды, выбросы и сбросы загрязняющих веществ, отходы производства;

- обучение персонала безопасным методам ведения работ, внедрение безопасных методов работы;

- стоимость обслуживания оборудования, установок, сооружений природоохранного назначения;

- приобретение оборудования по локализации и ликвидации аварий, обучение и содержание бригады по ликвидации последствий аварийных ситуаций;

- усилия, затрачиваемые на расследование всех чрезвычайных происшествий, с целью предотвращения их повторения;

- исследовательские работы природоохранного характера;

-мониторинг окружающей среды;

-услуги консультантов по подготовке отчетов о состоянии окружающей среды.

8.2.3 Размеры санитарно-защитной зоны с учётом розы ветров

Согласно санитарной классификации предприятий СН 245-71 /31/ предприятие по добыче нефти с малым содержанием летучих углеводородов относится к 3 классу. Минимальный размер санитарно-защитной зоны, используемый для расчетов рассеивания загрязняющих веществ в атмосфере, для проектируемой УПСВ равен 300 метрам.

Роза ветров для метеостанции Пыть-Ях приведена в табл. 19.

Повторяемость направлений ветра по румбам изменяется от 5% по северо-восточному направлению до 20% по южному направлению.

Полученные результаты расчетов рассеивания вредных веществ в атмосфере показали, что концентрации всех вредных веществ будут менее ПДК на границе СЗЗ объекта, поэтому размер СЗЗ не корректируется.

Таблица 22

Метеорологические характеристики и коэффициенты

Метеорологические

характеристики

Коэффициенты

Обоснование

Коэффициент, зависящий от стратификации атмосферы, А

200

ОНД-86 / 26 /

Коэффициент учета рельефа местности

1

ОНД-86

Средняя температура воздуха в 13 часов

наиболее жаркого месяца, град. С

21,7

СНиП 2.01.01-82 /27/

Скорость ветра, повторяемость которой

составляет 5%,U*, м/с

11

Справочник по климату

СССР / 28 /

Среднегодовая роза ветров, %

С

11

СВ

8

ЮВ

9

Ю

10

ЮЗ

18

З

21

СЗ

11

В

7

Штиль

8

8.2.4 Мероприятия по предотвращению и уменьшению аварийных выбросов

В целях предупреждения загрязнения атмосферного воздуха на УПСВ предусмотрен ряд мероприятий по предотвращению аварийных выбросов вредных

веществ в атмосферу:

- полная герметизация системы сбора и транспорта нефти;

- стопроцентный контроль швов сварных соединений трубопроводов;

- защита оборудования от коррозии;

- оснащение предохранительными клапанами всей аппаратов, в которых может возникнуть давление, превышающее расчетное, с учетом требований "Правил устройства и безопасной эксплуатации сосудов, работающих под давлением";

- испытание трубопроводов и оборудования на прочность и герметичность после монтажа;

- сброс нефти и газа с предохранительных клапанов аппаратов в аварийные емкости или на факел;

- перед остановкой оборудования на ремонт предусмотрен сброс газа на факел, жидкости из аппаратов в дренажные емкости;

- эксплуатация объекта с высокой степенью автоматизации;

- на факельной линии предусмотрен конденсатосборник, что исключает выбросы жидких углеводородов на факел.

8.2.5 Мероприятия по снижению шума

В ходе реконструкции УПСВ-3 будет использоваться строительная и землеройная техника: самосвалы, экскаваторы, трактора и т.д.

Шум от работающей техники ориентировочно может составить 116 дБА, при нормальной работе УПСВ уровень шума значительно ниже.

В условиях строительства уровни шума, наиболее приближенные к уровням, характерным для условий природной среды (35дБА), будут наблюдаться лишь на удалении около 1,5 км от строительной площадки.

Мероприятия по снижению шума:

- все оборудование, при работе которого возможен шум, будет оснащено специальными средствами для снижения уровня шума;

- все промысловые объекты размещаются не ближе 10 км от постоянных жилых мест;

- в ходе эксплуатации объекта периодически определяется уровень шума и при необходимости принимаются дополнительные меры по звукоизоляции установок и всего оборудования.

8.2.6 Оценка воздействия на поверхностные воды

8.2.6.1 Оценка возможных путей загрязнения поверхностных вод

Воздействие на поверхностные воды, связанное с функционированием проектируемых объектов, может проявляться в двух направлениях: первое- истощение водных объектов, второе - их загрязнение.

Первое направление воздействия обусловлено забором воды из водных объектов на производственные нужды.

Второе направление возможного воздействия на водные ресурсы можно разделить на две группы: механическое и химическое.

Механическое воздействие предполагается в виде возведения насыпных оснований под площадки.

Химическое воздействие может быть обусловлено попаданием нефтепродуктов и других загрязняющих веществ в водотоки от:

- аварийных разливов нефти при авариях на трубопроводах и резервуарах для хранения нефтепродуктов;


Подобные документы

  • Описание принципиальной технологической схемы дожимной насосной станции с установкой предварительного сброса воды. Принцип работы установки подготовки нефти "Хитер-Тритер". Материальный баланс ступеней сепарации и общий материальный баланс установки.

    курсовая работа [660,9 K], добавлен 12.12.2011

  • Технологические установки, входящие в состав системы сбора и подготовки продукции нефтяной скважины. Описание принципиальной технологической схемы установки предварительного сброса воды (УПСВ). Общий материальный баланс УПСВ, расчет его показателей.

    курсовая работа [390,0 K], добавлен 04.08.2015

  • Описание принципиальной технологической схемы дожимной насосной станции. Принцип работы ДНС с установкой предварительного сброса воды. Отстойники для нефтяных эмульсий. Материальный баланс ступеней сепарации. Расчет материального баланса сброса воды.

    курсовая работа [482,1 K], добавлен 11.12.2011

  • Выбор метода производства карбамида (мочевины). Основные физико-химические свойства сырья, вспомогательных материалов и готовой продукции. Материальный баланс выпарной установки и стадии кристаллизации. Тепловой баланс выпарки в аппарате пленочного типа.

    дипломная работа [391,5 K], добавлен 03.11.2013

  • Характеристика нефти и обоснование ассортимента получаемых из нее фракций. Краткое описание технологической схемы установки ЭЛОУ-АВТ, ее оборудование и условия эксплуатации. Материальный и тепловой баланс блока ЭЛОУ-АВТ и атмосферных колонн К-1 и К-2.

    курсовая работа [429,6 K], добавлен 30.11.2009

  • Основные стадии процесса получения каучука и приготовления катализатора. Характеристика сырья и готовой продукции по пластичности и вязкости. Описание технологической схемы производства и его материальный расчет. Физико-химические методы анализа.

    курсовая работа [13,1 M], добавлен 28.11.2010

  • Характеристика сырья, области применения и физико-химические свойства агара. Описание агрегатно-технологической линии производства агара из дальневосточной анфельции. Теоретические основы процесса выпаривания. Расчет однокорпусной выпарной установки.

    реферат [81,4 K], добавлен 26.09.2011

  • Характеристика сырья и материалов. Характеристика готовой продукции - труб кольцевого сечения, изготавливаемые из полиэтилена. Описание технологической схемы. Материальный баланс на единицу выпускаемой продукции. Нормы расхода сырья и энергоресурсов.

    отчет по практике [200,0 K], добавлен 30.03.2009

  • Структура водонефтяной эмульсии. Методы разрушения нефтяных эмульсий, их сущностная характеристика. Промышленный метод обезвоживания и обессоливания нефти. Технические характеристики шарового и горизонтального электродегидраторов. Деэмульгаторы, их виды.

    презентация [2,8 M], добавлен 26.06.2014

  • Обоснование выбора нефти для производства базовых масел. Групповой состав и физико-химические свойства масляных погонов. Особенности поточной схемы маслоблока и технологической схемы установки. Расчет испарительных колонн по экстрактному раствору.

    курсовая работа [292,1 K], добавлен 05.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.