Методика использования визуальных моделей в обучении школьников решению математических задач

Наглядность как средство развития школьников в процессе обучения математике. Понятие наглядности и методика обучения решению математических задач с использованием визуальных моделей. Описание и анализ результатов опытно-экспериментальной работы.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 24.06.2009
Размер файла 168,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

С помощью двумерных диаграмм можно составить разные уравнения одной и той же задачи, это помогает найти более рациональный путь решения. Кроме того, она позволяет наглядным образом обосновывать полученные уравнения, позволяет наглядно представить процесс, описанный в задаче.

Как мы видели на примере задачи 3, её, при выполнении соответствующих требований, можно решить благодаря только геометрическим построениям. Существует класс задач на совместную работу, которые можно решить благодаря только построениям в системе координат. Приведем пример одной из таких задач.

Задача 4. Бассейн заполняется водой через одну трубу за 4 часа, а через другую вода может вытечь за 6 часов. За сколько времени наполнится бассейн при одновременном действии обоих труб?

Рассмотрим прямоугольную систему координат (рис. 4). Пусть отрезок OD изображает объем бассейна, тогда отрезок ОА является графиком наполнения бассейна через первую трубу, отрезок ОВ графиком вытекания воды из бассейна через вторую трубу. Графиками являются отрезки, так как объем воды, протекающий через трубу, прямо пропорционален времени. За 4 часа первая труба одна наполнит весь бассейн. Через вторую трубу за это время вытечет воды объемом, изображением которого служит отрезок МК. Объем воды, оставшейся в бассейне изображается отрезком АК=АМ - МК. Отложим отрезок МР = АК, проведем через точки О и Р прямую до пересечения С с прямой, изображающей объем. Тогда ОС является графиком наполнения бассейна при одновременном действии двух труб. Из рисунка видно, что через 12 часов бассейн наполнится. Условия, при которых мы можем принимать результат решения задачи без дополнительной проверки, описаны ниже и требуют отдельного рассмотрения с учениками в процессе обучения решению задач подобными методами.

То, что графиками указанных зависимостей будут отрезки обоснованно в ходе решения задачи. Принцип построения данных графиков также прост, для этого нужно соединить начало координат и точку, которая соответствует времени выполнения работы. Основной вопрос как построить результирующий график и почему он соответствует верному результату. Ответ на этот вопрос раскрывает смысл метода решения задач данным способом. Для приведенной выше задачи нужно построить отрезок МР, который равен объему совместной работы труб, в то время как первая труба заполнит объем соответствующий отрезку АК, через вторую трубу вытечет объем соответствующий МК. По построению МР=АМ - МК. Значит график совместной работы будет проходить через точку Р так как графиком является отрезок проходящий через начало координат, то теперь мы можем однозначно его построить.

Для того, чтобы решать задачи с помощью данного метода, нужно уметь еще строить результирующий график совместной работы. Работа может выполняться ее участниками в различном направлении (как «трубы» в предыдущей задачи) или в одном направлении.

Приведем пример задачи, где работа выполняется в одном направлении.

Задача 5. Ванна заполняется холодной водой за 6 минут 40 секунд, горячей - за 8 минут. Кроме того, если из полной ванны вынуть пробку, вода вытечет за 13 минут 20 секунд. Сколько времени понадобится, чтобы наполнить ванну полностью, при условии, что открыты оба крана, но ванна не заткнута пробкой?

Пусть отрезок OD (рис. 5) изображает весь объем, тогда отрезок OC график работы крана с холодной водой, отрезок DB - с горячей. Пусть M точка пересечения этих графиков, из рисунка видно, что к моменту времени соответствующему точке M, оба крана, работая совместно, выполнят весь объем работы. Тогда проведем отрезок BK через точку M перпендикулярно оси абсцисс, так как к моменту времени B (или К) весь объем работы будет выполнен, то отрезок OB (или DK) будет графиком совместной работы. OP график, соответствующий работе по вытеканию воды. Из графиков OB и OP, с помощью метода описанного в предыдущей задаче получаем результирующий график. Из рисунка видно, что ванна заполнится через 5 минут.

Данный метод дает точный ответ, не требующий вычислений только в том случае, если выбран масштаб и все данные и ответ к задаче являются числами, находящимися в точках которые соответствуют целому числу единичных отрезков.

Данный метод используется для решения достаточно узкого класса задач, в которых дано время, затрачиваемое на работу каждым субъектом в отдельности, и требуется найти их общую производительность. Алгоритм арифметического решения этих задач прост: выражается количество работы, выполняемой за час одним субъектом, затем результаты всех складываются - это будет общая производительность. Графическая модель помогает представить наглядно решение задачи, кроме того, она подводит к графическому методу решения более сложных задач, который будет рассмотрен в следующем параграфе.

2.2. Методика использования визуальных моделей при обучении решению задач на движение

Рассматриваемый способ визуализации представляет собой построение графической модели в координатной плоскости. В координатной плоскости по оси абсцисс откладывается время, по оси ординат соответствующий путь, так как рассматриваются задачи на равномерное прямолинейное движение, то графиками движения объектов, указанных в задачах, будут прямые.

Задачи на равномерное прямолинейное движение можно разделить в зависимости от их графической модели на два типа: те, графические модели которых, непосредственно выражают зависимость между данными и искомыми, и те, чьи модели указывают на упомянутую зависимость, помогают проследить логику построения математической модели.

Задачи первого типа в своей графической модели содержат зависимости между данными и искомым в виде геометрических связей (подобия и равенства треугольников), которые выражают данную зависимость, благодаря чему (из одних лишь геометрических соображений) можно перейти к математической модели задачи.

Из любой графической модели, благодаря только геометрическим соображениям, можно перейти к математической модели, но это не всегда целесообразно. Осуществить указанный переход можно потому, что условия задач и их графические модели изоморфны, но иногда рассуждения с помощью геометрических образов - это не более чем переход от одной терминологии к другой. Такой переход не всегда целесообразен, так как не всегда приводит к элементарной геометрической задаче, поэтому данные задачи выделяются в отдельный тип.

Первый тип задач является эстетически более привлекательным, так как в способе решения есть элемент неожиданности: из геометрических соображений мы получаем решение задачи на движение. Причем такой способ никак не просматривается из условия самой задачи, что и является фактором неожиданности [21]. Такие рассуждения повышают интерес учеников к математике, так как раскрывают связи между различными ее областями. Кроме того, решение, полученное данным способом, будет более лаконичным, простым и наглядным. То есть для решения мы используем более короткий путь, сохраняя при этом строгость рассуждений; все это и делает решения задач данного типа эстетически более привлекательными.

Выше было сказано, что условия задач и их графические модели изоморфны. Поясним, в чем состоит данный изоморфизм. Во-первых, всякое равномерное прямолинейное движение можно описать с помощью линейной функции, и всякая линейная функция может трактоваться как график равномерного прямолинейного движения. Во-вторых, любой объект, указанный в задаче, имеет свой геометрический образ в графической модели: время -- отрезок на оси абсцисс, расстояние -- отрезок на оси ординат, моменты встречи -- точки пересечения графиков, скорость -- угол наклона графика. Таким образом, всякое изменение условий влечет за собой изменение графической модели и наоборот.

Для того, что бы данный способ визуализации соответствовал формуле наглядности, данной Болтянским (наглядность = изоморфизм + простота), недостает только простоты графической модели. Простота в данном случае понимается как оперирование понятными образами, как осознание указанного изоморфизма. Все это достигается с помощью решения поставленных задач с использованием определенной методики.

Подготовительная работа при обучении моделированию текстовых задач на движение заключается в формировании умений переводить условие задачи на язык графиков и умений «читать» графики.

Мы работаем в системе координат «время-путь». Первой структурной единицей в системе умений и понятий, необходимой для овладения этим методом, является понятие линейной функции и умение интерпретировать ее как зависимость пути от времени равномерно и прямолинейно движущегося объекта. То есть ученик должен уметь выбрать точку отсчета и положительное направление осей координат, понимать, как отражается скорость на поведении графика.

Таким образом, пропевтическая работа, целью которой является диагностирование и устранение (если имеются) пробелов, а так же актуализация знаний с акцентом на данную интерпретацию, может быть организована с помощью задач. Основным требованием в такой задаче является построение по данным условиям графика, и обратная задача - интерпретировать данный график. При этом существенную роль играет варьирование условий в одной и той же задаче, так как это позволяет осознать влияние их в отдельности, помогает проследить динамику изменения поведения графика [4, 15].

Приведем пример такой работы.

Велосипедист выехал из пункта А и через 7 часов прибыл в пункт В, который находится на расстоянии 70 км от пункта А. Изобразите в координатной системе «время-путь» график движения велосипедиста.

В задаче с данным условием целесообразно выбрать пункт А так, чтобы он совпадал с началом координат. Далее нужно варьировать условия, изменяя скорость, время движения, направление движения, точку отсчета пути, точку отсчета времени.

Велосипедист выехал из пункта А и через 7 часов прибыл в пункт В. Изобразите в координатной системе «время-путь» график движения велосипедиста, если известно, что он двигался со скоростью 10 км в час.

При таких условиях график останется тот же самый, здесь нужно акцентировать внимание учеников на то, что график всегда выражает три параметра: расстояние, время, скорость.

Велосипедист выехал из пункта А и через 7 часов прибыл в пункт В, который находится на расстоянии 70 км от пункта А. Второй велосипедист выехал на час позже, и двигался с той же скоростью. Изобразите в координатной системе «время-путь» графики движения велосипедистов.

В этой задаче график движения второго велосипедиста сдвигается параллельным переносом на единицу вниз. Аналогично нужно варьировать начало отсчета пути, пути и времени одновременно. Такое изменение формирует представления о местоположении точки отсчета, которое необходимо для умения моделировать данным способом задачи более сложного содержания.

Велосипедист выехал из пункта А и через 7 часов прибыл в пункт В, который находится на расстоянии 70 км от пункта А. Второй велосипедист выехал на час позже, и прибыл в пункт В одновременно с первым. Изобразите в координатной системе «время-путь» графики движения велосипедистов.

В данной задаче варьируется скорость второго велосипедиста. При изменениях такого рода формируется понимание зависимости угла наклона графика от скорости.

Велосипедист выехал из пункта А и через 7 часов прибыл в пункт В, который находится на расстоянии 70 км от пункта А. Второй велосипедист выехал из пункта В одновременно с первым, и прибыл в А когда первый прибыл в В. Изобразите в координатной системе «время-путь» графики движения велосипедистов.

При данных условиях формируется умение выбирать положительное направление движения. Здесь же можно поставить вопрос о времени или месте встречи велосипедистов, что даст первоначальные представления о сути метода. В данной задаче возможны еще случаи варьирования условий, но вышеуказанные составляют основу, так как остальные из них являются комбинацией первоначальных.

Итак, основополагающими являются умения выбирать точку отсчета по пути и по времени, положительное направление движения, понятие о зависимости угла наклона графика от скорости движения объекта. Достижение всего вышеуказанного происходит в процессе решения задач, подобных приведенным.

Этап обучения графическому моделированию задач на движение во многом опирается на умения, сформированные на предыдущем этапе. Но в данной части есть свои, специфические для данного этапа, особенности. Они заключаются в том, что условия, формулируемые в задаче, не позволяют однозначно построить график отдельного движущегося объекта, так как в них не задаются все те параметры, которые позволяли бы это сделать. Тем не менее, модель должна отображать существенные стороны задачи. Например, условия задачи не позволяют однозначно построить графики двух движущихся объектов, но из них ясно, что если один движется быстрее другого, то и угол наклона у него должен быть больше. Кроме того, на данном этапе нужно сформировать умение рационально строить модели. Этого можно добиться, давая при удобном случае рекомендации по построению модели. К таким рекомендациям можно отнести следующие [3]:

· если в задаче несколько объектов движутся на встречу одному, то удобнее в начало координат поместить эти несколько объектов;

· если в задаче движение начинается в какое-то определенное время суток, которое не влияет существенно на саму задачу, то при построении модели лучше полагать, что движение началось в момент времени;

· если в задаче есть динамика движения (то есть движение объектов относительно друг друга меняется), то удобнее те изменения, которые затрагивают меньшее количество графиков (например, если человека обгоняет рейсовый автобус через временной интервал, то для изображения момента встречи с идущим в другую сторону автобусом рациональнее развернуть график пешехода, чем совокупность прямых, изображающих движение рейсового автобуса).

Аккуратность чертежа хотя сама собой разумеется, но следует сделать акцент на то, что модель которая наиболее точно воспроизводит пропорции, указанные в задаче, может оказать существенную помощь в поиске решения задачи, тем более если эта задача первого типа.

Таким образом, модель становится схематичной, но, несмотря на это должна отражать существенные стороны задачи, так как это необходимое (а во многом и достаточное) условие успешности решения задачи [23].

В связи с этим необходимо обучать моделированию в данных условиях, что подразумевает под собой поэтапное движение от схематичного моделирования условий с двумя движущимися объектами к моделированию сложных условий с тремя и более движущимися объектами (например, периодическое движение рейсового автобуса). Необходимо также умение «читать» модели, то есть понимать, какой объект движется быстрее, какой раньше прибыл, где или когда они встретились. Значит, ученики должны выполнить работу по составлению моделей, по интерпретации моделей, по исправлению сознательно допущенных в ней ошибок, по составлению задач по данной модели.

Приведем примеры заданий, которые можно использовать на данном этапе.

Из пунктов А и В одновременно навстречу друг другу вышли два пешехода. После встречи первый находился в пути 16 минут, а второй 25 минут. Составьте модель данной задачи.

Данная задача не позволяет однозначно строить графики движения пешеходов, но подразумевает, что первый двигался быстрее, это должно быть отражено в модели. Для более хорошего освоения и закрепления можно дать еще 1-2 такие задачи.

Далее моделируемые ситуации должны усложняться, в условие должны входить 3 или более объектов, вместе с этим, как следствие возрастает количество числовых данных о вообще объем задачи, следовательно, усиливается роль анализа, умения выделить главные существенные стороны задачи.

Пешеход и велосипедист одновременно из одной точки направились навстречу всаднику. В момент, когда велосипедист встретил всадника, пешеход отставал от них на 3 км. В момент, когда пешеход встретил всадника, велосипедист обогнал пешехода на 6 км. Составьте модель данной задачи.

В этой задаче нужно выбрать положительное направление. Конечно, рациональнее выбор, при котором в положительном направлении движутся пешеход и велосипедист, но нужно показать оба случая для формирования умения рационально строить модель и понимания разновариантности. Кроме того, здесь уже три движущихся объекта, и подразумевается, но явно не сказано, что велосипедист движется быстрее пешехода.

Наращивая уровень сложности нужно дать задание подобного рода.

Идущего по дороге с постоянной скоростью человека рейсовый автобус обгоняет через каждые 7 минут, а через каждые 5 минут проходит встречный автобус. Составьте модель данной задачи.

Далее идут задачи, в которых по данной модели требуется определить числовые, или сравнительные характеристики движущегося объекта. Например, по данному рисунку определить какой объект двигался быстрее, где место встречи по отношению к началу и концу пути?

И, наконец, задания на составление задачи по модели.

Следующий этап предполагает непосредственное применение графических моделей для решения данного класса задач. В начале естественнее будет рассмотреть задачи первого типа, совместно провести анализ задачи, опираясь на графическую модель, перейти к математической модели.

Если мы рассматриваем задачи первого типа, то существенной чертой данного этапа является абстрагирование от функциональной части модели, и рассмотрение ее с позиций геометрии. То есть ученик должен уметь видеть геометрические отношения в данной модели, а так же уметь интерпретировать эти отношения в терминах данной задачи. Провести анализ задачи в данном случае означает выделить геометрический образ неизвестного, и идти от него к данным, устанавливая геометрические связи. Как правило, неизвестным бывает длина отрезка, в результате анализа задачи она выражается через данные, тем самым мы переходим к математической модели данной задачи. Строить графические модели, выделять геометрические образы неизвестных ученики умеют с предыдущих двух этапов, на этом этапе им нужно научиться проводить анализ задачи, используя графическую модель, что достигается путем выполнения упражнений. Приведем пример анализа подобной задачи и методической работы с ней.

Задача 6. Из пунктов А и В одновременно навстречу друг другу вышли два пешехода. После встречи первый находился в пути 16 минут, а второй 25 минут. Сколько времени каждый из них находился в пути?

Ученики владеют методами построения модели. Пусть модель построена (рис. 6), перейдем к ее анализу. Введем предварительно обозначения всех точек пересечения прямых, а через точку С проведем перпендикуляр МК к оси абсцисс. В задаче требуется найти время нахождения в пути обоих пешеходов, время движения каждого после встречи известно, следовательно, неизвестным является время движения до момента встречи. Геометрическим образом неизвестного будет отрезок ВК. Заметим, что величину x мы можем выразить через подобие треугольников ВСЕ и АСР. Так как треугольники ВСЕ и АСР подобны, то (в подобных треугольниках все сходственные элементы находятся в одном отношении, ВК и КЕ - проекции сторон ВС и СЕ на сторону ВЕ в треугольнике ВСЕ, MP, AM - аналогичные проекции в треугольнике АСР). Т. е. . Далее, решая полученное уравнение, мы устанавливаем числовые данные.

В данной задаче мы установили геометрический образ неизвестного благодаря геометрическому образу точки встречи. Интерпретировать эти геометрические образы ученики умеют с предыдущего этапа. Тем не менее, работа по их выделению его неотъемлемая часть, существенно новым для данного этапа является геометрическое получение равенства . Важно, чтобы ученики поняли, что данный результат является обоснованным, что данное отношение следует из условия задачи, а использование графической модели лишь промежуточный шаг, который дает верные результаты вследствие изоморфности условию. Для этого их можно попросить ответить, опираясь на графическую модель, на следующие вопросы: что можно сказать о скоростях пешеходов, какие параметры в данной графической модели можно менять, какие остаются неизменными и сохраняется ли при этом полученное отношение? Для того, чтобы обосновать, что полученное в ходе решения уравнение является следствием условия задачи, а не данной графической модели можно привести решение, не опирающиеся на данную модель. Пусть скорость первого пешехода будет , а скорость второго пешехода будет , и пусть время, затраченное обоими до момента встречи, будет равно t. Тогда путь, пройденный первым до момента встречи, будет , а вторым - . Заметим, что второму осталось пройти до конца пути столько же, сколько прошел первый до момента встречи, а первому -- сколько прошел второй. Значит 1) , а 2) , поделим первое равенство на второе, получим искомое отношение.

При таком подходе каждый раз, в отличие от способа, где используется графическая модель, нужно проводить различные рассуждения: в данном случае нужно догадаться и обосновать равенства 1) и 2) и уже потом перейти к отношению, в то время как из графической модели данное отношение непосредственно следует. Стоит показать ученикам данные подходы для обоснования независимости полученного решения и преимуществ первого подхода.

Далее следует перейти к задачам второго типа, давая их как задачи, в которых геометрия их графических моделей играет вспомогательную, а не основную роль. Четкого критерия для того, чтобы отличить данные задачи от задач первого типа дать нельзя, тем не менее, ученики должны понимать разницу между ними. Основной довод в пользу того, что задача второго типа состоит в том, что геометрический образ искомой величины не выражается явно (из подобия или равенства фигур) при помощи геометрии. Но, во всяком случае, геометрия графической модели такова, что величина геометрического образа искомого однозначно из нее определяется, в случае если условия задачи являются полными. И хотя мы ее не ищем при помощи геометрии, но имеющаяся в графической модели информационная картина такова, что содержит все сведения для перехода к математической модели. Все навыки для получения этих сведений ученики имеют, тем более они отработаны в процессе решения задач первого типа. Нужно переходить непосредственно к анализу данных задач. Приведем пример анализа подобной задачи.

Задача 7. Из пунктов А и В одновременно навстречу друг другу отправились велосипедист и пешеход. Велосипедист в пункте В повернул назад и через час после начала движения встретил пешехода. Доехав до А, снова повернул назад и встретил пешехода через 40 минут после первой встречи. Определить время, затраченное пешеходом на весь путь.

Так как в условиях не дана ни одна величина размерности длины, то весь путь можно принять за единицу. Обозначим через скорость пешехода, через - скорость велосипедиста. Приведем для наглядности иллюстрацию (рис. 7), но в этой задаче она будет играть вспомогательную роль. Составим уравнения, используя при этом графическую модель. За час, прошедший до первой встречи, пешеход и велосипедист вместе прошли удвоенный путь от А до В, что непосредственно видно из иллюстрации, поэтому . За часа до второй встречи велосипедист прошел на удвоенный путь больше, чем пешеход, поэтому

.

Решая систему

,

получаем . Это означает, что за час пешеход проходит 0,4 всего пути, а на весь путь он затратит 2,5 часа.

В данной задаче нам требуется найти длину отрезка AD. Она не выражается из подобия или равенства треугольников, но, как видно, имеет определенное значение. Все уравнения, полученные в ходе решения задачи, не являются следствиями каких-либо геометрических соображений, но имеющаяся в графической модели информация наглядно иллюстрирует логику построения математической модели данной задачи. Таким образом, графическая модель отвечает на вопросы: что дано и что требуется найти? Она помогает переформулировать вопросы так, что от них непосредственно можно перейти к уравнению, например, из того факта, что велосипедист и пешеход первый раз встретились через час после начала движения, с помощью иллюстрации достаточно просто получить, что к моменту первой встречи они вместе прошли удвоенный путь, что непосредственно приводит к уравнению.

В задачах второго типа ориентировочная основа действий менее содержательна по сравнению с ней для задач первого типа. Тем не менее, умения строить графическую модель, интерпретировать ее, формулировать факты, заложенные в ней в виде, удобном для составления уравнений, являются основополагающими для успешного решения и достигаются в процессе решения системы задач [12, 15].

Как показывает опытное преподавание, использование данного способа визуализации для обучения решению задач на прямолинейное равномерное движение, является эффективным средством. Его эффективность обуславливается следующими причинами: данный способ естественно приводит к математической модели, данный способ отражает структуру задачи, соответствует формуле наглядности, данной Болтянским. Поясним приведенные аргументы. Естественность получения математической модели заключается в том, что мы получаем её непосредственно из графической модели. Например, во втором способе решения задачи 6 непонятно, почему мы вводим в качестве переменных скорости движения пешеходов, почему рассматриваем именно равенства 1) и 2), и, наконец, деление одного равенства на другое является также достаточно искусственным шагом, в то время как из графической модели уравнение следует естественным образом. Данный способ визуализации отражает структуру задачи, т.е. взаимосвязи между данными задачи, это помогает увидеть общее в разных, на первый взгляд, задачах, что, в свою очередь, формирует представление о математическом моделировании в целом.

2.3. Методика применения визуальных моделей при обучении решению задач с параметрами

Для решения некоторых аналитических задач можно использовать систему координат. Целесообразность ее использования можно аргументировать, ссылаясь на следующую цитату из статьи В. А. Далингера [2]: «Созданный Рене Декартом метод имеет огромное значение не только в научных открытиях. Он привнес значительный эффект и в процесс обучения математике. Эффект этот в первую очередь состоит в том, что координатный метод дает возможность многим абстрактным алгебраическим объектам, изучение которых строится на словесно-логической основе, дать геометрическую интерпретацию, позволяющую опираться на наглядно-образное, визуальное мышление».

Среди множества всех задач с параметрами можно выделить целый класс задач, которые можно решить с использованием графических методов визуализации. Как и в случае с текстовыми задачами этот метод не является непосредственно наглядным, а, следовательно, для его усвоения требуется предварительная работа по формированию навыков работы с графическими моделями. Формирование самих по себе графических представлений и умений учащихся является задачей школьного курса математики, но данная тема (использование графических свойств для решения задач с параметрами) имеет свои специфические аспекты, которые заключаются в обобщении свойств графиков. Так, например, у учеников сформированы представления о зависимости угла наклона линейной функции и коэффициента при неизвестном в ее аналитическом выражении, но если данный коэффициент задан параметром, то мы получаем множество прямых с углами наклона от 0 до , которое условно называют «вращающаяся прямая».

Среди методов визуализации, применяемых при решении задач с параметрами, можно выделить следующие: 1) движущаяся прямая; 2) вращающаяся прямая; 3) координатные плоскости «неизвестное-параметр» и «параметр-неизвестное»; 4) применение свойств графиков функций.

Обучать применению данных методов целесообразнее в указанном порядке, так как каждый последующий метод является более сложным, и в некоторых случаях содержит идеи предыдущих.

Метод «Движущаяся прямая».

Данный метод позволяет решать всевозможные задачи с параметрами, которые заданы в виде (или преобразованы к нему) f(x) = a. Метод основывается на том, что простейшее параметрическое уравнение y = a задает множество всех прямых параллельных оси абсцисс.

Построение данной графической модели предполагает умение строить графики функций. На подготовительном этапе обучения моделированию нужно актуализировать знания связанные с построением графиков функций и подвести к графической модели параметрического уравнения y = a. Реализовать данные задачи можно через систему упражнений, которая предполагает построение графиков функций и работу с ними. Работа с графиками подразумевает ответ на следующие вопросы: назовите множество значений функции; сколько раз и почему функция принимала значение В (под В подразумевается конкретное числовое значение причем его нужно варьировать, в том числе брать его не из множества значений функции); каким должно быть значение а, чтобы уравнение y = a задавало касательную к функции.

Этап обучения моделированию является обобщением первого этапа. Здесь нужно сформировать представление о зависимость между значением параметра и положением прямой y = a. На предыдущем этапе ученики отвечали на вопрос о том, сколько раз функция принимает конкретное значение, опираясь на это, нужно сформулировать общее правило ответа на этот вопрос, сопровождая его соответствующими иллюстрациями. Таким образом, возникает прямая, положение которой зависит от величины, не являющейся заранее определенной и, следовательно, уравнение y = a задает множество прямых.

Иногда учащиеся не понимают смысла параметров. Это связанно с его двойственностью: с одной стороны параметр обозначает конкретное число, с другой - параметр изменяет свои значения. Указанный выше подход опирается в начале на конкретные значения, затем изменению значений соответствует движение прямой, это помогает наглядно раскрыть смысл параметра.

При работе с моделями нужно подобрать задания, двигаясь при этом от простого к сложному. С предыдущих этапов ученики знают, как зависит положение движущейся прямой от значений параметра, умеют интерпретировать информацию, содержащуюся в модели. Им можно показать решение задачи с параметром и общий метод рассуждения для подобных заданий.

Найти число корней уравнения в зависимости от параметра а.

Построим график функции (предполагается, что ученики владеют приемами построения графиков подобных функций), и построим условно график уравнения y = a, причем для a < 0. Мы видим (рис. 8), что при этих значениях параметра а два графика не пересекаются. Двигая прямую вдоль оси ординат вверх параллельно самой себе, получим, что при a = 0 уравнение имеет два корня, при уравнение имеет четыре корня, при a = 4 - три корня и при a > 4 - два корня.

Далее нужно рассказать об общем виде заданий с параметрами, для которых применим данный метод. Если уравнение имеет другой вид, то его нужно преобразовать (если это возможно). Далее следует привести систему заданий, в которой будет усложняться условия: требуется преобразовать выражение к нужному виду; усложняется функция, которую надо строить; выбираются из различных промежутков значения для х и т.д.

Метод «Вращающаяся прямая».

Данный метод позволяет решать всевозможные задачи с параметрами, которые заданы в виде (или преобразованы к нему) f(x) = aх. Метод основывается на том, что параметрическое уравнение y = ax задает множество всех прямых, проходящих через начало координат.

Так как данный метод предполагает использование свойств линейной функции, то на подготовительном этапе нужно актуализировать знания об этих свойствах, подвести к графической модели параметрического уравнения y = ax. Для этого нужно проделать работу по построению графиков линейных уравнений, по нахождению коэффициентов из графика, по составлению уравнений из графиков [6]. Кроме того, нужно актуализировать знания о касательной, ответить на вопрос: при каком k график функции y=kx+b будет касательной для данной функции f(x), здесь k и b имеют конкретные числовые значения, найти геометрические образы решений уравнения f(x) = kx+b. Всё это реализуется через систему задач.

Этап обучения моделированию нужно начать с обобщения свойств линейной функции на случай произвольных коэффициентов. Опираясь на результаты предыдущего этапа можно сделать естественный переход от конкретного задания функции к параметрическому. Например, поставив вопрос: можем ли мы для данной линейной функции y=kx+b, где b фиксирован, так подобрать значения для k, чтобы график имел любой наперед заданный угол наклона (проходил через любую точку окружности с центром (0; b))? После этого нужно остановиться на геометрической модели параметрически заданной линейной функции yx. Далее этап обучения моделированию переходит в этап обучения работы с моделями.

Этот этап нужно начать с разбора простых задач, указав признаки, по которым мы применяем именно данный метод.

В зависимости от значений параметра a найти количество корней уравнения .

Данное выражение можно преобразовать к виду, для которого применим метод «движущаяся прямая». Так как не является решением данного уравнения, то его можно преобразовать к виду , но для ответа на вопрос нам потребуется построить график функции , что является достаточно трудной задачей, по сравнению с построением графика функции . Изученные свойства линейной функции позволяют нам пользоваться только последним построением. Построим в системе координат график функции . При каких значениях параметра мы получим прямые параллельные ветвям графика функции ? Построим графики линейной функции для значений параметра 1 и -1 (рис. 9). Из рисунка видно, что если график функции yx находится между лучами, лежащими выше оси абсцисс, то уравнение имеет одно решение, если между осью абсцисс и графиком функции y = -x - два решения, и если лежит вне указанных областей, то решений не имеет. Укажите значения параметра для названных областей.

Если выражение имеет вид, который позволяет решить задачу с параметром методом «вращающаяся прямая», то его достаточно просто преобразовать к виду, который позволяет нам решить данную задачу метолом «движущаяся прямая». Для этого достаточно поделить левую и правую часть выражения на х, следя при этом за равносильностью преобразований. Этот момент должен быть рассмотрен при решении задач для формирования умений находить более рациональный путь в том или ином задании. Относительная простота построения графика функции в случае решения методом «вращающаяся прямая» компенсируется более трудным получением ответа из графической модели, так как иногда для его получения требуется переходить к уравнению, используя производную, рассматривать характер монотонности функции, производить относительно трудные сопутствующие вычисления. Проще и нагляднее в этом отношении пользоваться методом «движущаяся прямая» и, если построение функции - не слишком трудная задача, то, скорее всего, этот метод является более рациональным. Для формирования умения выбирать более рациональный путь нужно дать задание решить обоими способами задачу с параметром. Для формирования и закрепления умений и навыков работы с графическими моделями при решении задач с параметрами нужно постепенно переходить к более сложным заданиям, в которых варьируются значения независимой переменной, условия заданий и увеличивается арсенал требующихся аналитических методов.

Метод «неизвестное-параметр».

При решении задач данным методом параметр объявляется переменной. В системе координат строится множество точек, которое задает уравнение или система уравнений, при помощи этого построения находятся требуемые значения параметра. В основе данного метода лежит так называемый метод областей - построение множества точек плоскости, которое задает данное уравнение с двумя переменными или система уравнений. Метод областей можно в некотором смысле назвать обобщением метода интервалов на случай уравнений с двумя переменными. Овладеть методом областей - значит уметь строить множества точек, задаваемые уравнениями в системе координат, а это умение предполагает в свою очередь умения построения графиков функций и решения простейших неравенств с двумя переменными.

Подготовительная работа в данном случае представляет собой обучение методу областей. Обучение нужно начать с построения множеств точек, которые являются решениями простейших неравенств. Это связанно с тем, что решение более сложных неравенств сводится к решению простейших. Кроме того, на их примере можно наглядно продемонстрировать алгоритм построения множеств и обосновать его, проведя аналогию с методом интервалов.

Построить в координатной плоскости множество точек удовлетворяющих неравенству .

Преобразуем данное неравенство к виду . Построим в системе координат прямую . Данная прямая разбивает плоскость на две области. Какая-то из этих областей будет искомым множеством точек. Для того, чтобы её определить, нужно, как и в методе интервалов, подставить точку с области и посмотреть удовлетворяет ли она неравенству. Отличие от метода интервалов состоит в том, что точка имеет две координаты: их и нужно подставлять вместо переменных. Та область, точка которой удовлетворяет неравенству и будет искомым множеством точек. В данном случае это будет полуплоскость лежащая выше прямой. Так как неравенство нестрогое, то прямая сама принадлежит искомому множеству.

Далее нужно построить множество для системы неравенств. Лучше сделать это, дополнив уже рассмотренное неравенство до системы, добавив линейное неравенство.

В последствии нужно решить систему заданий, которая предполагает переход от линейных неравенств к линейным неравенствам с модулями, к произвольным выражениям, к выражениям которые требуют преобразований.

Указать множество точек плоскости, удовлетворяющих условиям: ; ; ; ; .

Каждое из этих заданий преобразуется к равносильной системе, где используются построения для элементарных функций.

На этапе обучения моделированию нужно перейти к задачам с параметрами. На этом этапе нужно объяснить, что параметр рассматривается как переменная, и показать, что существуют два случая: параметр объявляется независимой переменной и параметр зависит от значений другой переменной. По сути, мы получаем тот же метод областей, но задача усложняется в связи с тем, что кроме построения мы должны, опираясь на иллюстрацию, произвести отбор значений параметра которые требуются в задании. Разбор задач нужно начать с относительно простых заданий, для того чтобы показать действие данного метода.

При каких значениях параметра a имеет единственное решение система неравенств

Пусть a будет переменной. Для построения графической модели системы содержащей неравенство нам потребуется метод областей. Зависимая переменная a. Это связанно с тем, что a проще выразить через x. В качестве независимой переменной всегда выбирают ту, которую проще выразить через другую. Постройте в системе координат xOa множество точек, задаваемое системой. Мы получили фигуру (рис. 10) ограниченную параболами и . Сейчас мы воспользуемся методом «движущаяся прямая», для каждого положения прямой мы получаем в пересечении с множеством отрезок, точку или пустое множество. Если прямая a=a0 пересекает множество по отрезку АВ, то это означает, что при a=a0, система неравенств имеет решения равные абсциссам всех точек отрезка АВ. В задаче же нужно найти такие значения параметра, при которых система имела бы одно решение. Из рисунка видно, что такими значениями параметра являются и .

Этап обучения работе с моделями начинается после того, как разобрали приведенное выше задание. Он предполагает решение простых заданий, но здесь, после того как задание решено, можно изменить его условие, а рисунок оставить тем же и, продолжая так, получить всю возможную информацию, которую может дать иллюстрация. Здесь делается основной упор не на решение трудных заданий, а на работу с графическими моделями. Здесь же нужно отработать умение выбирать независимую переменную. При построении моделей можно предложить использование разных цветов, например, разными цветами можно изображать включаемые и не включаемые линии, а так же оси координат, и конечное искомое множество. Это усилит наглядность рисунка и может избавить от случайной ошибки. После того как отработаны все приемы по построению и интерпретации графических моделей, можно переходить к более сложным заданиям, где в качестве подзадачи возникает задача приведения выражения к виду, удобному для графического моделирования.

В двух предыдущих методах решения заданий с параметрами был указан вид выражения, по которому мы можем сказать, что применим именно этот метод. В этом случае нужно отметить, что данный метод применяется, в случае, если задание содержит неравенство или неравенство возникает в результате преобразований, и можно выразить значение параметра через переменную или наоборот. Умение выбирать в случае необходимости подходящий метод делает решение сложных заданий более рациональным, рассуждения более ясными, последовательными и лаконичными.

Использование свойств функции.

Данный метод заключается в обобщении свойств графиков функций на случай параметра. Ученики владеют методами построения функций методом сдвига вверх и вниз, влево и вправо, сжатия и растяжения. Рассмотрение этих методов в случае параметрического задания функции дает эффективный способ решения задач с параметрами. Если выражение в задании с параметром не удается привести к виду, в котором его можно решить методами, изложенными выше, то можно прибегнуть к данному методу, еще его можно применить, в случае если полученное с его помощью решение будет более рациональным, чем решение, полученное иными методами.

Подготовительный этап в обучении данному методу предполагает актуализацию знаний по построению графиков функций указанными выше способами и подведению к использованию данных способов на случай параметра. Ученики должны выполнить задания с построением функций с помощью указанных преобразований, а так же задания преобразовать графически заданную функцию f(x) на случай f(ax), f(xa), f(ax),где a и b конкретные числа. Полезно рассмотреть одну и ту же функцию для разных числовых значений, так как получившийся результат можно будет обобщить.

Этап обучения моделированию можно реализовать, опираясь на разобранный метод «вращающаяся прямая», ссылаясь на то, что метод построения графической модели параметрического уравнения yx лишь частный случай, опирающийся на рассмотренные ранее приёмы построения графиков, для линейной функции. Если мы имеем функции вида f(ax), f(xa), f(ax),где a и b параметры, то графической моделью будет множество графиков, получающихся их графика функции y=f(x) при помощи соответствующих преобразований. На данном этапе нужно привести серию заданий, обыгрывающих разные ситуации по построению указанных выше графических моделей функций с параметром.

71

Постройте в системе координат графические модели, задаваемые следующими условиями: ; ; ; ; ; ; ; ; ; ; ; .

После выполнения данной системы заданий, нужно перейти непосредственно к применению графических моделей для решения заданий с параметрами. Так же как и в предыдущих методах, начав с простых задач.

Найдите значение параметра, при каждом из которых имеет хотя бы одно отрицательное решение неравенство .

Данное неравенство можно решить, применив метод «неизвестное-параметр», но для того, чтобы выразить через , потребуется раскрыть модуль и рассмотреть два случая. Воспользуемся другим способом. Перепишем исходное неравенство в виде . Графиком левой части является парабола с вершиной в точке (0; 3), ветви которой направлены вниз. Графиком правой части является «прямой угол», вершина которого имеет координаты (0; а). В зависимости от значений параметра а этот «угол» перемещается вдоль оси абсцисс (рис. 11). Исходное неравенство имеет отрицательное решение, если найдется такое отрицательное значение переменной x, для которой соответствующая точка параболы расположена выше точки на «угле». Таких точек нет если вершина «угла» оказалась правее точки с абсциссой 3 или левее точки с абсциссой (точки вычисляются аналитически).

После разбора серии относительно простых заданий нужно перейти к более сложным, при этом нужно подобрать некоторые задания таким образом, чтобы их можно было решить другим методом, причём использование этого метода должно в некоторых случаях давать более рациональное решение. Это будет способствовать осознанному выбору методов решения, заставит ученика рассуждать на всех этапах решения задачи, поспособствует более глубокому осознанию методов.

Данный метод позволяет решить более широкий класс задач с параметрами, чем приведенные выше методы. Поэтому и работа по закреплению умений строить и работать с графическими моделями здесь будет более обширной.

Все изложенные выше методы предполагают у учеников наличие умений исследовать функции: определять монотонность, четность, ограниченность, промежутки знакопостоянства, находить экстремумы. Решение задач с параметрами графическими методами сводится в основном к применению одного из вышеприведенных или к применению комбинации из данных методов, где отдельный метод применяется для решения возникающей подзадачи. Владение данными методами и умение их рационально применять во многом определяют успешность решения задачи. Даже если указанные методы не дают ожидаемого результата, визуальная модель поможет глубже осознать и понять задачу и может подсказать путь решения.

§ 3. Описание и анализ результатов опытно-экспериментальной работы

Опытное преподавание проводилось в в 8-б классе школы № 21 г. Кирова. Было проведено 5 уроков по теме «Решение задач на равномерное прямолинейное движение с использованием графических моделей».

На первом уроке были рассмотрены следующие вопросы: значения коэффициентов для графиков линейной функции, связь между линейной функцией и равномерным движением, методы задания с помощью линейной функции равномерного движения, методы построения графических моделей задач на движение.

Главной задачей в изучении первого вопроса была актуализация знаний о линейной функции для последующей интерпретации их в терминах равномерного прямолинейного движения. Коэффициент при свободной переменной линейной функции является тангенсом угла наклона графика функции к положительному направлению оси абсцисс, но ученики 8-го класса не владеют функциональным определением тангенса. Тем не менее, был рассмотрен геометрический смысл данного коэффициента для того определения, которым владеют ученики, с учетом возможной отрицательности коэффициента. Так же был рассмотрен геометрический смысл свободного члена и установлено, что его изменению соответствует параллельный перенос графика на вектор равный разности первоначального и конечного значения свободного члена. Можно было сразу раскрыть связь линейной функции и равномерного движения, но так как весь метод в целом предполагает переход к геометрической модели при решении задач, то такой подход обуславливается необходимостью установления связи между геометрической и физической трактовкой задачи.

При изучении второго вопроса учащимся была поставлена задача выяснить, какое движение называется равномерным и прямолинейным? Ответ отражал суть рассматриваемого понятия, но формулировка была нечеткой. Поэтому было дано определение: «Тело движется равномерно, если за любые одинаковые промежутки времени оно проходит одинаковые промежутки пути, прямолинейно - если траектория движения тела прямая».

Опираясь на это определение, в результате совместной работы со школьниками было выяснено, что путь, пройденный телом, пропорционально зависит от времени. Значит, если в качестве независимой переменной взять время, то путь будет линейной функцией от времени.

Далее был раскрыт физический смысл коэффициентов линейной функции. Физический смысл коэффициента при переменной был рассмотрен на том же изображении, что и геометрический. Так как рассмотрение геометрического смысла этого коэффициента опиралось на прямоугольный треугольник, то на этом этапе перед учащимися встала задача дать геометрическую трактовку катетов этого треугольника (для того чтобы выяснить, что означает их отношение), если график изображен в координатной плоскости «время-путь». Ученики достаточно успешно справились с этой задачей, но была необходимость в некоторых уточнениях. Таким образом, мы выяснили, что с одной стороны коэффициент при неизвестном в линейной функции - это скорость, с другой - тангенс соответствующего угла.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.