Особенности методики обучения решению текстовых задач с помощью составления уравнений в 5-6 классах

Задачи в истории математического образования в России. Психологические особенности детей в период 10-12 лет. Особенности обучения учащихся решению текстовых задач методом составления уравнений в 5-6 классах, практическая реализация данной методики.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 28.04.2011
Размер файла 147,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Три товарища - Иван, Дмитрий, Степан преподают различные предметы (химию, биологию, физику) в школах Москвы, Санкт-Петербурга и Киева. Известно, что Иван преподает не в Москве, а Дмитрий не в Санкт-Петербурге. Москвич преподает не физику, а тот, кто работает в Санкт-Петербурге, преподает химию, Дмитрий преподает не биологию. Какой предмет и в каком городе преподает каждый из товарищей?

Соотнесение задач с каждым компонентом учебно-познавательной деятельности приводит к такой классификации: задачи, стимулирующие учебно-познавательную деятельность школьников; организующие и осуществляющие учебно-познавательную деятельность; задачи, в процессе выполнения которых осуществляется контроль и самоконтроль эффективности учебно-познавательной деятельности.

По своему математическому содержанию, соответствующему специфике той или иной математической дисциплины, задачи подразделяются на арифметические, алгебраические, аналитические, геометрические.

По содержанию задачи классифицируют на: «задачи на движение», «задачи на части», «задачи на проценты» и т.д. внутри каждого типа в зависимости от логической структуры задачи разделяют виды задач. Так, например, различают вид задач на встречное движение в одну сторону и движение в противоположные стороны, различают задачи на нахождение части числа и нахождение числа по заданной его части, нахождение соотношения чисел, различают задачи на нахождение нескольких процентов числа, нахождение числа по его проценту, нахождение процентного отношения или выражение частного в процентах.

(Методика работы над задачами подобной классификации будет рассмотрена ниже).

По характеру требований выделяют следующие группы задач:

а) задачи на вычисление;

б) задачи на построение;

в) задачи на доказательство;

г) задачи текстовые;

д) задачи комбинаторного характера.

Пример задачи на вычисление:

Среди людей 3% левшей и 7% людей, не подверженных морской болезни. В школе учится 1200 учащихся. Сколько среди них может быть левшей и не подверженных морской болезни?

Пример задачи на построение:

Построить равнобедренный треугольник по боковой стороне и углу при основании.

Пример задачи на доказательство:

Докажите, что в любом треугольнике сумма трех высот меньше периметра треугольника.

Пример задачи текстовой:

За 9 часов по течению реки теплоход проходит тот же путь, что за 11 часов против течения. Найдите собственную скорость теплохода, если скорость течения реки 2 км/ч.

Пример задачи комбинированного характера:

Постройте треугольник по двум сторонам и углу между ними и вычислите его площадь.

Г.В. Дорофеев делит задачи на два типа:

а) задачи, в которых речь идет о некоторой реальной, а более точно, о реализованной жизненной ситуации;

б) задачи потенциального характера, в которых жизненную ситуацию требуется сконструировать, смоделировать, выяснить условия, при которых она реализована.

Приведенные классификации позволяют учителю представить себе проблемы, связанные с методикой обучения учащихся решению задач.

Центральное место в формировании у учащихся 1 - 6 классов умение решать текстовые задачи должно занимать обучение общим приемам работы над такими задачами, причем оно должно строиться с учетом перехода от арифметического способа решения к алгебраическому.

§4. Обучение учащихся решению текстовых задач

методом составления уравнений

Пропедевтика обучения решению текстовых задач алгебраическим методом.

Решение текстовых задач способствует развитию мышления учащихся, более глубокому усвоению идеи функциональной зависимости, повышает вычислительную культуру. В процессе решения текстовых задач у учащихся формируются умения и навыки моделирования реальных объектов и явлений.

В курсе математики 5 - 9 классов рассматриваются два основных способа решения текстовых задач: арифметический и алгебраический. Арифметический способ состоит в нахождении значений неизвестной величины посредством составления числового выражения (числовой формулы) и подсчета результата. Алгебраический способ основан на использовании уравнений, составляемых при решении задач.

Остановимся на некоторых основных вопросах пропедевтической работы по составлению уравнений при решении текстовых задач.

Такая работа в основном осуществляется в 5 - 6 классах, хотя простейшие задачи уже решались этим методом в 1 - 4 классах.

Здесь можно выделить два основных этапа. На первом задача учителя состоит в том, чтобы систематически и целенаправленно формировать у учащихся некоторые важные общеучебные и математические навыки. На втором этапе основное внимание должно быть уделено выявлению зависимостей между величинами, входящими в текст задачи, и обучению переводу этих зависимостей на математический язык. Остановимся на каждом этапе подробнее.

Первый этап пропедевтики.

К наиболее важным умениям, которые необходимо сформировать у учащихся на этом этапе изучения текстовых задач, относятся следующие:

умение внимательно читать текст задачи,

умение проводить первичный анализ текста задачи - выделять условие и вопрос задачи,

умение оформлять краткую запись текста задачи,

умение выполнять чертежи (рисунки) по тексту задачи.

В методике обучения математике разработаны соответствующие приемы работы учителя по формированию выделенных умений (З.П. Матушкина).

Приемы, формирующие умение читать текст задачи:

показ образцов правильного чтения задачи;

проведение специальной работы над текстом задачи по усвоению ее содержания. Здесь имеется ввиду различные формы предъявления задачи: текстом, краткой записью текста, рисунком. Сюда включаются также приемы работы над условием содержания задачи: изменение числовых данных задачи; изменение сюжета задачи; изменение сюжета и числовых данных задачи.

Приемы, формирующие умения выделять условие и вопрос задачи:

выявление роли вопроса в нахождении способа решения задачи; обращение внимания на точность, ясность формулировки вопроса задачи; переформулировка вопроса задачи.

Этот прием направлен на воспитание у учащихся потребности выделять условие и вопрос задачи;

формулирование одного или нескольких вопросов к условию задачи;

нахождение необходимых данных для ответа на вопрос задачи;

составление задачи по вопросу; формулирование одной или нескольких задач по данному вопросу.

Приемы обучения оформлению краткой записи текста задачи:

оформление краткой записи в виде таблицы, схемы;

оформление краткой записи в строку (столбец);

чтение краткой записи задачи;

составление задачи по ее краткой записи.

Приему обучения выполнению чертежей (рисунков) по тексту задачи.

Основные из них следующие:

предъявление заданий, требующих только выполнение соответствующего рисунка;

чтение рисунка, выполненного по тексту задачи;

составление задачи по рисунку или чертежу.

Сделаем некоторые пояснения к приему оформления чертежей по тексту задачи. Выполненный чертеж (рисунок) по тексту задачи позволяет фиксировать ход рассуждений при ее решении, что способствует формированию общих подходов к решению задач. Поэтому к выполнению чертежей предъявляются требования: они должны быть наглядными, четкими, соответствовать тексту задачи; на них должны быть отражены по возможности все данные, входящие в условие задачи; выделенные на них данные и искомые должны соответствовать условию и общепринятым обозначения.

Формирование умения выполнять чертеж задачи будет успешным, если учащиеся будут уметь читать соответствующий чертеж. В связи с этим важным моментом является составление текста задачи по чертежу, рисунку. В результате выполнения таких упражнений формируются навыки перевода графических данных на словесный текст.

Второй этап пропедевтики

Важным моментом здесь является обучение пониманию учащимися способов словесного выражения изменению величин и фиксация их в виде математических выражений или уравнений.

Достигается это с помощью соответствующих упражнений. Например, при изучении действий умножения натуральных чисел в 5 классе учащиеся рассматривают одно из применений умножения - увеличение числа в несколько раз. Здесь для достижения указанной цели возможны следующие упражнения:

Отец старше сына в 4 раза. Сколько лет отцу, если сыну m лет? (4m)

На первых двух полках стоит по n книг на каждой, а на третьей - m книг. Сколько книг на трех полках? (2n+m)

Сравните a и c, если а = 5с (а больше с в 5 раз или с меньше а в 5 раз).

Составьте равенство, исходя из условия: х больше у в n раз (х = nу).

Составьте задачу по уравнению 2х = 28 (Например: «В корзине было несколько грибов. После того, как в нее добавили столько же, в ней стало 28 грибов. Сколько грибов было в корзине?»)

Аналогичные упражнения могут быть предложены учащимся также при изучении других арифметических действий.

Сложность подобных упражнений должна быть посильной для учащихся, а число их - достаточным для формирования соответствующих умений и навыков.

В методике обучения решению задач предлагаются также другие системы упражнений для достижения поставленной цели. Например, рассматриваются конкретные текстовые задачи и после прочтения их текстов учащимся предлагается ответить на ряд вопросов. Раскроем содержание этого приема на нескольких задачах.

Задача 1. Теплоход за час проходит расстояние в 5 раз больше, чем катер. Сколько километров в час проходит каждый из них, если сумма их скоростей равна 90 км/ч?

Задания. 1) Назовите величины, которые связаны зависимостями:

а) одна больше другой в 5 раз;

б) одна меньше другой в 5 раз.

2) Если катер проходит х км/ч, то как можно истолковать выражения: 5х, 5х+х? Значение какой из представленных величин известно по условию задачи?

Задача 2. Волейбольная команда школьников выиграла на … состязаний…, чем проиграла. Число проигранных состязаний в … числа состязаний, проведенных вничью. Сколько проведено состязаний, если ничьих было на …, чем проигрышей?

Задание. Используя справочный материал, заполните пропуски в тексте задачи. Справочный материал: команда школьников выиграла 16 состязаний, проиграла 6 и свела

вничью 2.

Задача 3. На школьной математической олимпиаде было предложено 8 задач. За каждую решенную задачу засчитывалось 5 очков, а за каждую нерешенную задачу списывалось 3 очка. Сколько задач правильно решил ученик, если он получил 24 очка?

Задание. Установите, к решению каких из приведенных ниже уравнений сводится решение предложенной задачи:

а) 5х-3(8-х)=24; г) 5х-3(8+х)=24;

б) 5х=24; д) 5х+3(8-х)=24.

в) 5(8-х)-3х=24;

Задача 4. С противоположных концов катка длиной 180 м бегут навстречу друг другу два мальчика. Через сколько секунд они встретятся, если начнут бег одновременно и если один пробежит 9 м/с, а другой 6 м/с?

Задание. Дополните приведенные ниже выражения до уравнения, к которому сводится решение задачи:

а) 9х+…=180;

б) 180…=6х;

в) …9х=….

Заметим, что задания к задачам не требуют решения исходных задач. Причем четко выделяются две группы заданий: первая группа (задачи 1 и 2) направлена на формирование умения видеть всевозможные зависимости между величинами, входящими в задачу; вторая группа (задачи 3 и 4) формируют умение видеть в математическом выражении или формуле определенное содержание, т.е. математическую модель.

Изложенная система пропедевтической работы учителя по обучению решению текстовых задач показывают, что эти задачи выступают не только как цель и средство, но и как предмет изучения. Это соответствует той важной роли, которая отводится им в курсе математики.

В 5 - 6 классах учащиеся решают также текстовые задачи на все действия с натуральными и дробными числами, на зависимость между компонентами и результатами действий. Эти задачи и методы их решения имеют важное методическое значение. Прочное усвоение методов решения «чисто арифметических» задач позволяет подготовить учащихся к осознанному решению задач методом составления уравнений. Тем самым, этот вид задач можно рассмотреть в связи с прикладной направленностью курса школьной математики (пропедевтика представления о математическом моделировании).

§5. Этапы решения задач с помощью уравнений

Деятельность по решению задачи включает следующие этапы независимо от выбранного метода решения:

анализ содержания задачи;

поиск пути решения задачи и составление плана её решения;

осуществление плана решения задачи;

проверка решения задачи.

Поясним это на конкретных примерах, выделяя отдельно каждый из названных этапов.

Пример. Расстояние от пункта А до пункта В равно 116 км. Из А в В одновременно отправляются велосипедист и мотоциклист. Скорость велосипедиста 12 км/ч, скорость мотоциклиста - 32 км/ч. Через сколько часов велосипедисту останется проехать в четыре раза больший путь, чем мотоциклисту?

Решение.

Анализ задачи.

В задаче идет речь о велосипедисте и мотоциклисте, которые отправляются одновременно в одном направлении из пункта А в В. Известно, что расстояние от А до В равно 116 км, скорость велосипедиста - 12 км/ч, скорость мотоциклиста - 32 км/ч. Требуется узнать, через сколько часов велосипедисту останется проехать в четыре раза больший путь, чем мотоциклисту.

Краткая запись задачи (в виде схематического чертежа) показана на рисунке 1а.

Поиск пути решения задачи и составление плана ее решения.

Обозначим искомое число часов через х. Зная скорость мотоциклиста, можем узнать, какое расстояние он проедет за х ч, а затем, зная расстояние между пунктами А и В, найдем, какое расстояние останется проехать мотоциклисту до пункта В.

Зная скорость велосипедиста, можем узнать, какое расстояние он проедет за х ч, а затем найдем, какое расстояние ему останется проехать до пункта В.

По условию велосипедисту останется проделать путь, в четыре раза больший, чем мотоциклисту. Следовательно, мы можем составить уравнение, приравняв между собой путь, в четыре раза больший пути, который осталось проехать мотоциклисту.

Решив этот уравнение, найдем, через сколько часов велосипедисту останется проделать путь, в четыре раза больший, чем мотоциклисту.

Осуществление плана решения задачи.

Пусть через х ч велосипедисту останется проделать в четыре раза больший путь, чем мотоциклисту. За это время мотоциклист проедет 32х км, значит, ему останется проехать до пункта В (116 - 32х) км. Велосипедист за х ч проедет 12х км, значит, ему останется проехать до пункта В (116 - 12х) км (рис. б). По условию это расстояние в четыре раза больше, чем расстояние, которое останется проехать мотоциклисту. Следовательно, получаем уравнение

(116 - 32х) · 4 = 116 - 12х.

После несложных преобразований будем иметь:

464 - 128х = 116 - 12х 116х = 348 х = 3.

Итак, искомое решение равно 3 ч.

Проверка решения задачи.

Через 3 ч мотоциклист проедет 32 · 3 = 96 (км), останется 116 - 96 = 20 (км). Через 3 ч велосипедист проедет 12 · 3 = 36 (км), останется до конца 116 - 36 = 80 (км). Найдем, во сколько раз велосипедисту останется сделать больший путь, чем мотоциклисту: 80 : 20 = 4 (раза). Расхождения с условием задачи нет. Задача решена правильно.

Ответ: через 3 ч велосипедисту останется сделать в четыре раза больший путь, чем мотоциклисту.

Выделенные этапы представляют норму деятельности человека по решению задач. В реальном процессе решения задачи этапы не имеют четких границ, и человек, решающий задачу, не всегда выделяет их в явном виде, переходя от одного к другому незаметно для себя. Вместе с тем решение каждой отдельно взятой задачи обязательно должно содержать все указанные этапы, осмысленное прохождение которых (вместе со знанием приемов их выполнения) делает процесс решения любой задачи осознанным и целенаправленным, а значит, более успешным. Игнорирование одних этапов (например, поиска пути решения) может привести к решению методом «проб и ошибок», игнорирование других (например, проверки решения задачи) - к получение неверного ответа и т.д.

Выделенные этапы процесса решения задачи служит той ориентировочной основой, опираясь на которую учитель управляет действиями учащихся по формированию способов решения задач. Каждый этап имеет свои признаки (ориентиры), руководствуясь которыми учитель формирует у учащихся компоненты общего умения решать задачи.

Рассмотрим более подробно каждый этап решения задачи.

На первом этапе (анализ текста задачи) учитель должен добиться того, чтобы учащиеся «приняли» задачу, т.е. поняли ее смысл, сделав целью своей деятельности. В этом случае задача становится объектом мышления.

Поэтому усвоение текста задачи учащимися будет первой важной целью учителя. Исходным здесь является выделение в задаче условия, т.е. данных и отношений между ними, и требования задачи, т.е. искомого (искомых) и отношений между ними. Дальнейшее соотнесение условия и требования позволяет выявить в задаче основное отношение, направляющее процесс поиска ее решения. Как правило, это отношение имеет вид функциональной зависимости. Важное значение имеют краткая запись текста задачи, составление схем, рисунков.

Схемы и рисунки выступают в роли наглядного представления содержания задачи и зависимостей величин, входящих в нее. Еще большее значение приобретает схема в роли модели, выявляющей скрытые зависимости между величинами. Поэтому составлению кратких записей и схем по тексту задачи необходимо специально обучать.

Сопоставление условия и требования задачи позволяет выяснить, достаточно ли данных для ответа на вопрос задачи, нет ли среди них противоречивых или лишних данных.

На первом этапе решения необходимо также актуализировать «базис» решения задачи, т.е. теоретическую и практическую основу, необходимую для обоснования решения. Здесь выясняется также, не принадлежит ли задача к известному типу задач.

Итак, основные назначения этапа - осмыслить ситуацию, отраженную в задаче; выделить условия и требования, назвать данные и искомые, выделить величины и зависимости между ними (явные и неявные). На этом этапе решения задачи можно использовать такие приемы:

а) представление той жизненной ситуации, которая описана в задаче;

б) постановка специальных вопросов и поиск ответов на них;

в) «переформулировка» задачи;

г) моделирование ситуации, описанной в задаче, с помощью реальных предметов, предметных или графических моделей и др.

Первый прием - представление той жизненной ситуации, которая описана в задаче, - выполняется фактически при чтении или слушании задачи. Вместе с тем мысленное воспроизведение всех объектов задачи и связей между ними может проводиться и позже. Цель такого воспроизведения - выявление основных количественных и качественных характеристик ситуации, представленной в задаче.

Второй прием - постановка специальных вопросов и поиск ответов на них - включает следующий «стандартный» набор вопросов, ответы на которые позволяют детально разобраться в содержании задачи:

О чем говорится в задаче?

Что известно в задаче?

Что требуется найти в задаче?

Что в задаче неизвестно? и др.

Третий прием - переформулировка текста задачи - состоит в замене данного в задаче описания некоторой ситуации другим описанием, сохраняющим все отношения, связи, качественные характеристики, но более явно их выражающим. Вся лишняя, несущественная информация при этом отбрасывается, текст задачи преобразуется в форму, облегчающую поиск пути решения. В ходе переформулировки выделяются основные ситуации, о которых идет речь в задаче, при необходимости строится вспомогательная модель задачи: краткая запись условия, таблица, рисунок, чертеж, диаграмма и т.п.

Моделирование ситуации, описанной в задаче, с помощью реальных предметов, предметных моделей или графических моделей является еще одним, четвертым, приемом анализа задачи.

Рассмотрим приемы вспомогательных моделей, которые могут быть представлены в виде схематического чертежа, чертежа, таблицы и краткой записи.

Пример. В первом бидоне краски в 2 раза больше, чем во втором. Если из первого бидона взять 2 л краски, а во второй добавить 5 л краски, то в обоих бидонах станет поровну. Сколько краски было в каждом бидоне первоначально?

Вспомогательная модель задачи (в виде схематического чертежа) показана на рисунке.

Пример. Одна машинистка тратит на печатание 12 страниц текста столько же времени, сколько вторая машинистка на печатание 16 страниц. Сколько времени первая машинистка тратит на печатание одной страницы, если вторая печатает одну страницу за 12 мин?

Вспомогательная модель задачи (в виде чертежа) показана на рисунке.

Пример. В первую неделю типография получила с фабрики шесть рулонов бумаги одного сорта и заплатила за них 204 р. Сколько рублей должна заплатить типография за месяц, если она получила 10 таких же рулонов бумаги того же сорта?

Вспомогательная модель задачи (в виде таблицы) показана на рисунке.

Число рулонов (шт.)

Стоимость (р.)

Цена (р.)

6

204

Одинаковая

10

?

На втором этапе процесса решения задачи важным моментом является выяснение стратегии решения задачи:

устанавливается, будет ли неизвестным, относительно которого составляется уравнение, искомая величина или же промежуточная величина. Если принято решение найти сначала промежуточную величину, то искомая величина выражается через нее;

по какому компоненту составлено уравнение или оно будет составлено с использованием всех его компонентов (другими словами, для каких величин соответствующие выражения будут приравниваться).

Далее осуществляется поиск способа решения задачи на основе построения модели поиска. Аналитико-синтетический поиск решения заканчивается получением уравнения. Соответствующий план решения обсуждается с учащимися, при этом используется табличная запись поиска решения задачи. В случае необходимости план как способ решения задачи оформляется письменно. В этом он выполняет роль ориентировочной основы деятельности учащегося.

Итак, назначение этапа - завершить установление связей между данными и искомыми величинами и указать последовательность использования этих связей.

Проведя анализ задачи, не всегда просто найти путь ее решения. Поиск пути решения задачи является довольно трудным процессом, для которого нет точного предписания. Укажем некоторые приемы, помогающие осуществить этот этап.

Одним их приемов поиска пути решения задачи является анализ задачи по тексту или по ее вспомогательной модели. Поиск пути решения задачи можно осуществлять от вопроса задачи к данным (аналитический путь) или от данных к вопросу (синтетический путь).

В первом случае (аналитический путь) на основе анализа задачи необходимо уточнить, что требуется найти в задаче и определить, что достаточно знать для ответа на этот вопрос. Для этого следует выяснить, какие из нужных данных есть в условии задачи. Если они (или одно из них) отсутствуют, надо определить, что нужно знать, чтобы найти недостающие данные (или одно недостающее данное), и т.д., пока для определения очередного неизвестного оба данных будут известны.

Поиск пути решения заканчивается составлением плана решения задачи. Под планом решения будем понимать объяснение того, что узнаем, выполнив то или иное действие, и указание по порядку выполнения арифметических действий. Приведем пример поиска решения задачи аналитическим путем.

Пример. В трех школах 1072 ученика, во второй на 16 учеников больше, чем в третьей, и на 14 учеников меньше, чем в первой. Сколько учеников в каждой школе?

Краткая запись задачи показана на рисунке.

Поиск пути решения. Чтобы определить число учащихся в каждой школе, надо сначала узнать число учащихся в одной из школ и разность между этим числом учащихся других школ.

В условии дана разность числа учащихся второй и третьей школ и разность числа учащихся первой и второй школ. Поэтому в первую очередь удобнее определять число учащихся второй школы; для этого приравниваем число учащихся первой и третьей школ к числу учащихся второй школы. Чтобы узнать, сколько было бы учащихся в трех школах, если бы в каждой школе было столько, сколько во второй, надо знать настоящее число учащихся трех школ (дано в условии) и на сколько учеников оно увеличится или уменьшится при предполагаемом изменении числа учащихся первой и третьей школ. Последнее число определим, зная, что число учащихся первой школы надо уменьшить на 14 учеников (чтобы уравнять со второй школой), а число учащихся третьей школы увеличить на 16.

План решения.

На сколько учеников увеличилось бы общее число трех школ, если бы в каждой школе число учеников было бы таким же, как во второй?

Сколько учеников было бы в трех школах, если бы число учеников в каждой школе было бы таким же, как во второй школе?

Сколько учеников во второй школе?

Сколько учеников в первой школе?

Сколько учеников в третьей школе?

Во втором случае (синтетический путь) решающий выделяет в тексте задачи два каких-либо данных и на основе связи между ними, установленной при анализе, определяет, какое неизвестное может быть найдено по этим данным и с помощью какого действия. Затем, считая полученное число данным, решающий опять выделяет два взаимосвязанных данных и определяет, какое неизвестное может быть найдено по ним и с помощью какого действия, и т.д., пока выполнение очередного действия не приведет к определению искомого.

Пример. У трех братьев была некоторая сумма денег: у первого и второго вместе 600 р., у второго и третьего вместе 500 р., у третьего и первого 700 р. Сколько денег было у каждого брата в отдельности?

Решение. Краткая запись задачи показана на рисунке.

I и II - 600 р.

II и III - 500 р.

I и III - 700 р.

Сколько денег было у каждого брата в отдельности?

Поиск пути решения. Зная, что у первого и второго братьев вместе 600 р., а у второго и третьего вместе 500 р., можем найти, на сколько денег у первого брата больше, чем у третьего.

По сумме и разности денег первого и третьего узнаем, чему равно удвоенное количество денег третьего брата, а затем, сколько денег имеет каждый из них. После этого можно найти, сколько денег у второго.

План решения.

На сколько рублей у первого брата больше, чем у третьего?

Чему равно удвоенное количество денег третьего брата?

Сколько денег имел третий брат?

Сколько денег имел первый брат?

Сколько денег имел второй брат?

При решении задач анализ и синтез в рассуждениях, как правило, переплетаются. Осуществляя поиск пути решения задачи синтетически, анализ часто производят «про себя». В то же время, каким бы приемом мы не вели поиск пути решения составной задачи, ее предварительный анализ (хотя бы подсознательный) неизбежен.

Еще одним из приемов поиска пути решения задачи является разбиение задачи на смысловые части. Сущность этой работы заключается в том, чтобы научиться различать в данной задаче отдельные, менее сложные задачи, последовательное решение которых позволяет получить ответ на требование данной.

На третьем этапе процесса решения задачи осуществляется найденный план решения, выполняется проверка решения и записывается полученный ответ.

Назначение этапа - найти ответ на требование задачи. Немаловажную роль при решении задач играет запись найденного решения. Прежде всего остановимся на используемых сокращениях при записи действий с именованными числами. При записи именованных чисел, выраженных в метрических мерах, используются наименования, принятые в международной системе единиц СИ, например, «м» - метр, «км/ч» - километров в час. Названия таких мер, как квадратный метр, кубический метр, употребляемых без чисел, выписываются полностью словами, например: «сколько гектаров земли…», а не «сколько га земли…». Принято название метрических мер выписывать полностью и в случае буквенной символики, например, «а литров», b метров» и т.д. Однако часто этого не делают, а используют более удобную запись «х км/ч», «у м3» и т.д. Что касается других наименований, то здесь нет общеустановленных условных обозначений. Вместе с тем в последнее время, как правило, вместо «руб.» принято писать «р.», вместо «коп.» - «к.» и др.

Четвертый этап - изучение (анализ) найденного решения задачи. Здесь анализ имеет своей целью выделение главной идеи решения, существенных его моментов, обобщение решения задач данного типа. Выясняются недостатки решения, выявляются и закрепляются в памяти учащихся приемы, которые были использованы в процессе решения задачи.

В психолого-дидактических исследованиях высказывается мнение, что осуществление этого этапа будет способствовать переносу знаний и служить средством более эффективного обучения решению задач. Раскроем методику обучения решению текстовых задач на конкретном примере.

Задача. По плану бригада должны была выполнить заказ за 10 дней. Но фактически она перевыполняла норму на 27 деталей в день и за 7 дней работы не только выполнила предусмотренное планом задание, но и изготовила сверх плана 54 детали. Сколько деталей в день должна была изготовить бригада по плану?

Анализ текста задачи. После прочтения текста задачи анализ может быть проведен посредством рассмотрения следующих вопросов (самими учащимися или с помощью учителя):

За сколько дней бригада должна выполнить заказ по плану?

За сколько дней бригада фактически выполнила заказ?

Почему бригада выполнила заказ раньше намеченного срока?

Сколько деталей изготовила бригада сверх плана?

Какие величины содержатся в задаче?

Как связаны между собой производительность труда, время и объем выполненной работы?

Сколько различных ситуаций можно выделить в задаче?

Какие величины, входящие в условие и вопрос задачи, неизвестны?

Какая величина в задаче является искомой?

Решалась ли раньше задача, похожая на эту?

В итоге первого этапа работы над задачей с учетом основного отношения выполняется запись текста задачи. Табличная форма записи на первых этапах обучения решению текстовых задач наиболее эффективна, потому что умение учащегося оформить соответствующую таблицу говорит о том, принял он задачу или нет.

Для выяснения связи между значениями одной и той же величины перед учащимися ставятся соответствующие вопросы, например: в каком случае производительность труда бригады была выше? На сколько деталей в день бригада перевыполняла норму?

Правильный ответ на первый вопрос позволяет поставить в таблице соответствующий знак неравенства между неизвестными значениями одноименной величины.

Ответ на второй вопрос позволяет записать: «На 27». Полученная запись позволяет учащимся актуализировать часть условия задачи: производительность бригады, предусмотренная планом, на 27 деталей в день меньше фактической. Аналогично поступают при выяснении связи между неизвестными значениями другой величины. В данном случае сравнивается плановый и фактический объем выполненной работы.

Поиск способа решения задачи.

На этом этапе обсуждается стратегия решения задачи. Затем вводится обозначение искомой или другой неизвестной величины в зависимости от выбранной учителем совместно с учащимися стратегии. Далее, пользуясь установленными зависимостями между значениями одноименных величин и основным отношением, реализованным в задаче (т.е. зависимостью между величинами), на основе табличной записи текста задачи выполняется таблица поиска решения задачи:

Величины

Ситуация

По плану

Фактически

Производительность бригад, дет. в день

Время работы, дн.

Объем выполненной работы, дет.

х <

10

10х <

х+27

7

(х+27)·7

На 27

На 54

Исходя из модели поиска решения, выписывается неравенство

10х<(х+27)·7 на 54, с помощью которого составляется уравнение 10х+54 = (х+27)·7 или уравнение 10х=(х+27)·7-54.

Осуществление плана решения задачи. Отсюда естественно вытекает план решения задачи, который включает в себя поиск решения (способ получения уравнения) и решение полученного уравнения. Заметим, что табличная форма записи деятельности учащихся по составлению уравнения не требует повторного ее описания. Поэтому на третьем этапе процесса решения текстовой задачи остается решить полученное уравнение, выполнить проверку решения и записать ответ.

Имеем уравнение: 10х+54 = (х+27)·7

Решим его:

10х+54 = 7х+189,

3х = 135,

х = 45.

Данное уравнение имеет один корень - число 45.

Однако решение задачи не может заканчиваться решением уравнения: необходимо проверить, удовлетворяет ли полученный корень уравнения условию и требованию задачи. В связи с этим необходимо сделать проверку корня уравнения по смыслу задачи.

По найденному значению х по порядку вычисляются значения входящих в задачу величин. При этом проверяется, удовлетворяют ли эти величины смысловым ограничениям. Если все найденные значения величин им удовлетворяют, то корень уравнения дает решение задачи.

С этой целью воспользуемся моделью поиска решения задачи. По смыслу найденной задачи все входящие в нее величины должны принимать положительные значения. Проверим, выполняется ли это для найденного значения х = 45:

х = 45 Положительное число.

х+27 = 45+27 = 72 Положительное число.

(х+27)·7 = 72·7 = 504 Положительное число.

504-450 = 54 Положительное число, являющееся данным.

Следовательно, значение х = 45 удовлетворяет условию задачи, т.е. является ее решением.

Ответ: бригада должна изготовить в день по плану 45 деталей.

Изучение (анализ) найденного решения. Перед учащимися в соответствии с содержанием этого этапа процесса решения задачи ставятся вопросы следующего типа:

Какова главная идея решения данной задачи?

Нельзя ли указать другие способы решения данной задачи?

Почему рассмотренный способ решения является рациональным?

В заключение отметим, что предложенная методика обучения решению текстовых задач на процессы эффективна также и в случае решения задач, приводящих к решению уравнений более сложного вида, чем линейные, например, квадратные. Естественно, что при последовательном формировании умений решать текстовые задачи методика обучения претерпевает определенные изменения: отпадает необходимость применять табличную форму записи текста задачи и поиска ее решения, сократится число выявленных этапов процесса ее решения, сам этот процесс станет более свернутым.

Глава 3. Практическая реализация этапов решения текстовых задач

§1. Решение задач с помощью составления уравнений

в теме «Уравнения»

Регулярное применение алгебраического метода решения текстовых задач начинается с 7 класса. К этому момента часть учащихся уже достигнет на достаточно хорошем уровне умения решать методом составления уравнения несложные текстовые задачи.

В 6 классе в связи с появлением новых видов уравнений и методов их решения текстовые задачи становятся разнообразнее как по содержанию, так и по своей информационной структуре. Эти задачи таковы, что они позволяют действительно показать преимущество алгебраического способа решения по сравнению с арифметическим. В 1 - 6 классах зачастую алгебраическим способом решались такие текстовые задачи, которые поддавались простому, иногда устному выполнению.

К началу систематического использования алгебраического способа у учащихся должны быть сформированы на хорошем уровне следующие умения:

проводить анализ текста задачи с целью усвоения ситуации, заданной в задаче, выявление ее предметной области и связей между объектами;

распознавать величины, участвующие в задаче;

сравнивать значения - величины, входящих в задачи;

записывать одну задачу через другую;

выявлять равные величины (на основе этого и составляется уравнение);

кратко записывать условие задачи.

Полезной окажется работа, в результате которой ученики проследят за тем, как перевод условия задачи с естественного (русского) языка на язык алгебры позволяет составить уравнение.

Рассмотрим следующую задачу: «Сын моложе отца в 7 раз, а через 10 лет отец станет старше сына в 3 раза. Сколько лет сыну в настоящее время?»

Оформим решение в следующем виде:

На русском языке

На языке алгебры

В настоящее время возраст сына неизвестен

Возраст отца в настоящее время

Через 10 лет возраст сына станет равен

Через 10 лет возраст отца станет равен

Возраст отца станет больше возраста сына в 3 раза

х

х + 10

7х + 10

7х + 10 = 3 (х + 10)

Несмотря на то, что в 5 - 6 классах уже шло формирование у учащихся умение выбирать неизвестное, следует этому вопросу уделить пристальное внимание и в 7 классе, т.к. у многих школьников это умение не сформировалось на нужном уровне. При этом акцент нужно сделать на оптимальный выбор неизвестного. Прежде, почти всегда, за неизвестное принималась одна или несколько величин. Школьникам на конкретных примерах следует показать, что в ряде случаев за неизвестное целесообразно выбирать величину, не относящуюся к искомой.

Главное внимание при обучении учащихся способу решения текстовых задач методом составления уравнений должно быть обращено на сознательную отработку этапности решения. Полная схема включает такие этапы:

объяснение к составлению уравнения;

составление уравнения;

решение уравнения;

проверка;

запись ответа;

анализ решения задачи;

На первом этапе проводится анализ задачи, выделяются объекты и процессы, подлежащие рассмотрению, выделяются величины, характеризующие эти процессы, выбирается неизвестная величина, через которую выражаются остальные.

Далее выявляются основания для составления уравнения и составляется само уравнение. Целью последнего этапа является выявление рациональных путей решения, уяснения и уточнения идеи и метода решения, уяснение общих правил для решения подобных задач.

Подготовительные упражнения

Подготовительные упражнения предназначены для подготовки учащихся к решению задач, с которыми они ранее не встречались. Важное значение для составления уравнений по условию задачи имеют навыки в записи алгебраических выражений, равенств с целью уяснения основных понятий и соотношений: равно, больше на столько-то, больше во столько-то раз, отношение и др..

Для отработки этих понятий и соотношений между ними необходимы систематические упражнения в записи алгебраических выражений.

v Большое значение имеет запись формул, выражающих функциональную зависимость между величинами. Приведем упражнения, которые целесообразно давать систематически, повторяя их время от времени.

Скорость движения тела V, время движения t , путь S. Запишите формулы для определения S, V, t.

Цена товара k, количество m, стоимость с. Запишите формулы зависимости между c, k и m.

Производительность - p деталей в час, время работы - t часов, объем произведенной продукции - n деталей. Запишите формулы для определения p, t, n

v Цель следующих заданий: формирование умений анализировать условие, исследовать корни, соотносить их с условием задачи.

При решении задач с помощью уравнений могут возникнуть затруднения, связанные с выделением из условия задачи величин, связанным какими-либо зависимостями.

Можно предложить учащимся следующие упражнения:

Прочитайте задачу и ответьте на вопросы.

Теплоход за час проходит расстояние, в 4 раза меньше, чем катер. Сколько километров в час проходит каждый из них, если сумма их скоростей равна 90 км/ч?

Вопросы:

Назовите величины, связанные следующими зависимостями:

а) одна больше другой в 4 раза;

б) одна меньше другой в 4 раза;

Если теплоход проходит х км в час, то что могут означать следующие выражения:

4х, 4х + х?

v Цель: развитие воображения учащихся, формирование умений читать схематически записи условий.

Задание: по схематической записи составить задачу.

а)

б)

V (км/ч)

t (ч)

S (км)

I

х

7

II

х + 5

6

v Цель заданий: первичное закрепление знаний об этапах решения задач.

Решить задачу, составив уравнение. На полке стояло несколько книг. Когда с нее сняли 10 книг, то на полке стало 25 книг. Сколько книг было на полке?

Анализ задачи.

Переведем задачу на математический язык.

Было несколько книг х

сняли 10 книг 10

стало 25 книг 25

Т.к. неизвестно, сколько книг было на полке, то это и обозначили х.

Составим уравнение.

х - 10 = 25

было сняли стало

Решаем уравнение.

х - 10 = 25

Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

х = 25 + 10

х = 35

Ответ: 35 книг было на полке.

Работа с задачей.

Задача: «В двух книгах 70 страниц. В первой книге страниц в 6 раз больше, чем во второй. Сколько страниц в каждой книге?»

1) О чем говорится в задаче? (о двух книгах).

2) В какой книге больше страниц? (в первой книге).

В какой книге меньше страниц? (во второй книге).

Что известно о количестве страниц в каждой книге? (в первой книге в 6 раз больше)

Наименьшее обозначим за «х». Что такое х в задаче? (х - количество страниц во второй книге).

Как выразить количество страниц в 1-ой книге? (6х)

Сколько всего страниц в двух книгах? (70 страниц).

Схематическая запись.

количество страниц

I книга

II книга

х

Основание составления уравнения: 70 страниц.

Составление уравнения:

х + 6х = 70

Решение уравнения:

х + 6х = 70

х (1 + 6) = 70

7х = 70

х = 70 : 7

х = 10

10 страниц во второй книге.

В задаче спрашивалось, сколько страниц в каждой книге. Значит, надо найти, сколько страниц в первой книге.

По условию это: 6х. Найдем значение этого выражения.

10 · 6 = 60 (с).

Найдены все величины. Можно записать ответ:

Ответ: 10 страниц во второй книге, 60 страниц в первой книге.

§2. Решение задач с помощью составления уравнений в теме

«Прямая и обратная пропорциональные зависимости»

Рассмотрим этапы изучения этой темы.

Во-первых, надо научить школьников решать пропорции. Основной способ их решения должен опираться на основное свойство пропорций. Когда эта цель будет достигнута, то можно показать использование свойств пропорций для упрощения их решения.

Во-вторых, нужно научить школьников выделять в условиях задач две величины, устанавливать вид зависимости между ними.

В-третьих, нужно научить их по условию задачи составлять пропорцию. При решении первых задач полезно подчеркнуть, что стоимость покупки определяется по формуле:

стоимость = цена · количество

и проследить, как при увеличении (уменьшении) одной величины в несколько раз изменяется вторая величина при неизменной третьей.

Аналогичная работа с задачами проводится по формуле:

путь = скорость · время

За несколько одинаковых карандашей заплатили 8 р. Сколько нужно заплатить за такие же карандаши, если их:

а) в 2 раза больше;

б) в 2 раза меньше?

Имеются деньги на покупку 30 карандашей.

а) Сколько тетрадей можно купить на те же деньги, если тетрадь дешевле карандаша в 2 раза?

б) Сколько ручек можно купить на те же деньги, если ручка дороже карандаша в 10 раз?

Наблюдения, полученные учащимся при решении задач 1,2, нужно использовать при формировании понятий прямой и обратной пропорциональности.

Две величины называются прямо пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая увеличивается (уменьшается) во столько же раз.

Две величины называются обратно пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая уменьшается (увеличивается) во столько же раз.

Дальше, опираясь на опыт решения задач 1,2 т определения, учащиеся должны ответить на вопросы заданий 3,4,5. Здесь следует постоянно обращать их внимание на то, какие величины изменяются, а какие нет.

Какова зависимость между:

ценой одной ручки и стоимостью нескольких ручек при постоянном их количестве?

Количеством ручек и их стоимостью при постоянной их цене?

количеством ручек и их ценой при постоянной их стоимости?

Какова зависимость между:

количеством тракторов и площадью, которую они вспашут за 1 день?

числом дней работы и площадью, которую он вспашет?

количеством тракторов и числом дней, за которые они вспашут поле?

Покупают одинаковые альбомы. Какова зависимость между количеством альбомов и стоимостью покупки?

Работу над заданиями 2,3 надо обобщить, заметив, что если три величины связаны равенством а = b · с, то при постоянном произведении множители обратно пропорциональны, а при постоянном множителе другой множитель и произведение прямо пропорциональны. Этот факт нужно рассмотреть применительно к формулам:

стоимость = цена · количество,

путь = скорость · время,

работа = производительность · время.

Перейдем к решению задач с помощью пропорций.

Расстояние между двумя городами пассажирский поезд прошел со скоростью

80 км/ч за 3 ч. За сколько часов товарный поезд пройдет то же расстояние со скоростью 60 км/ч?

Скорость (км) Время (ч)

80 3

40 х

В краткой записи условия задачи стрелки показывают, что скорость уменьшилась, а время увеличилось в одно и то же число раз. Это число находится делением большего числа на меньшее (в направлении стрелок). Чтобы учащиеся лучше освоили прием составления пропорций, надо постоянно задавать вопрос: «Во сколько раз увеличилась (уменьшилась) первая величина?» Тогда число, дающее ответ, будет находиться делением большего значения величины на меньшее (в направлении стрелок). На первых порах это число должно быть целым, позднее - дробным.

5 маляров могли покрасить забор за 8 дней. За сколько дней покрасят тот же забор:

а) 10 маляров; б) 1 маляр?

Чтобы у учащихся не сложилось впечатление, будто зависимость бывает только двух видов - прямой и обратной пропорциональностью, полезно рассмотреть провокационных задачи, в которых зависимость имеет другой характер.

За 3 ч поймали 12 карасей. Сколько карасей поймают за 4 ч?

Два петуха разбудили 6 человек. Сколько человек разбудят пять петухов?

Трое пошли - три гвоздя нашли. Четверо пойдут - много ли найдут?

До сих пор мы рассматривали задачи, в которых отношение двух неизвестных значений одной величины было целым числом. В следующих задачах оно часто выражается дробью. Как и раньше, здесь следует постоянно задавать вопрос: «Во сколько раз увеличилась (уменьшилась) величина?»

Из «Арифметики» А.П. Киселева. 8 аршин сукна стоят 30 р. Сколько стоят 15 аршин этого сукна?

Со скоростью 80 км/ч товарный поезд прошел 720 км. Какое расстояние пройдет за это же время пассажирский поезд, скорость которого 60 км/ч?

За одно и то же время токарь обтачивает 6 деталей, а его ученик - 4 детали.

1) Сколько деталей обточит ученик за то же время, за которое токарь обточит 27 деталей?

2) Сколько времени потратит ученик на задании, которое токарь выполняет за 1ч?

После изучения основных понятий в этих темах («Пропорции», «Прямая и обратная пропорциональности»), учащиеся решают соответствующие задачи.

Подготовительные упражнения

Рассмотрим некоторые подготовительные упражнения, которые можно давать учащимся, чтобы сформировать у них навыки и умения устанавливать зависимости между величинами.

1. Какую часть одно число составляет от другого?

а) 4 от 20; б) 7 от 15; в) 10 от 20; г) 13 от 21

2. Найдите отношения и придумайте отношения, значения которых равны заданным:

а) 25 к 5; б) 0,25 к 0,55; в) 1,37 к 1,3; г) 6 к 27

3. Что показывает отношение:

а) пути, пройденного автомобилем, ко времени его движения;

б) числа деталей ко времени из изготовления;

в) стоимости купленных апельсинов к их массе?

4. Дана пропорция, найти выражение, которое не является пропорцией, выведенной из данной:

1) а : 20 = 4 : 8

а) а : 4 = 20 : 8;

б) 8 : 20 = 4 : а;

в) 20 : а = 4 : 8;

г) 20 : а = 8 : 4.

2) 8 : 21 = b : 30

а) b : 21 = 30 : 8;

б) 8 : b = 21 : 30;

в) 8 : 30 = b : 21;

г) 8 : 21 = 30 : b.

1. Проверьте, используя основное свойство пропорции, следующие равенства. Какие из них являются пропорцией, а какие нет?

а) 4 : 3 = 36 : 26

б) =

в) 2 : 9 = 1 : 39

г) =

д) 3 : 7,5 = 2,5 : 6

2. Какова зависимость между:

временем и скоростью движения при постоянном пути?

количеством тракторов и числом дней, за которые они вспашут поле?

3. Установите зависимость:

За х кг апельсинов заплатили p рублей. Как изменится стоимость покупки, если массу апельсинов увеличили в 5 раз; уменьшили в 2 раза?

4. Расстояние от деревни до города велосипедист проехал за 3 часа.

За сколько часов это расстояние пройдет пешеход, скорость которого в 3 раза меньше скорости велосипедиста?

За сколько часов это расстояние пройдет мотоциклист, скорость которого в 5 раз больше скорости велосипедиста?

При решении этих задач учащиеся повторят, что такое отношение, как оно составляется, понятие пропорции, ее свойства, установление прямой или обратной пропорциональности между величинами.

Понятно, что если в задаче говорится о двух величинах, то краткая запись будет выглядеть следующим образом:

I вел. - II вел.

Изменение I вел. - II вел.

При этом проверяется зависимость первой величины от второй или наоборот. Если при увеличении / уменьшении первой величины в n раз, во столько же увеличится / уменьшится II величина, то это прямая пропорциональность.

Обозначение вводится с помощью стрелочек, которые «смотрят» в одну сторону.

I вел. - II вел.

I изм. вел. - II изм. вел.

Для обратной пропорциональности при соответствующем определении для нее, стрелочки будут иметь разное направление:

I вел. - II вел.

I изм. вел. - II изм. вел.

Т.к. в пропорции четыре составляющие, то три из них должны быть оговорены в задаче. А четвертую и будем обозначать неизвестной.

Приведем пример: «В 200 г раствора содержится 4 г соли. Сколько соли содержится в 600 г раствора?»

Составив схематическую запись для этой задачи, получим:

раствор соль

Было 200 г - 4 г

Спрашивается 600 г - х г

Теперь выясняем зависимость и ставим стрелочки.

200 г - 4 г

600 г - х г

При рассуждении учащиеся используют свой практический опыт. Вид пропорциональности устанавливается на основе закономерности; «законов» логики в соотношении между величинами. У учащихся развивается воображение, самоконтроль за выполнением своих действий.

Работа с задачей и схема работы на уроке

Теперь рассмотрим работу по решению задач на выполнение конкретных задач, опираясь на приведенную схему (этапы).

Для перевозки груза потребовалось 15 машин грузоподъемностью 7,5 т. Сколько нужно машин грузоподъемностью 4,5 т, чтобы перевезти тот же груз?

Ученикам задаются следующие вопросы:

1. Что является объектом исследований? (количество машин грузоподъемностью 4,5 т)

2. Что они должны делать? (перевезти тот же груз)

3. Сколько машин перевезли этот груз, грузоподъемностью каждая по 7,5 т? (15)

4. Что неизвестно? Как обозначим? (кол-во машин; обозначим неизвестной х)

II. Составим краткую запись условия:

15 - 7,5 т

х - 4,5 т

Груз тот же, но каждая из машин теперь может увезти меньшую массу - 4,5 т. Увеличится или уменьшится количество машин, которые перевезут груз? (увеличится).

А число машин увеличилось или уменьшилось? (увеличилось).

Какая это пропорциональность? (обратная)

15 - 7,5 т

х - 4,5 т

III. Составим пропорцию. Она будет являться уравнением.

15 - 7,5 т

х - 4,5 т

Стоит обратить внимание на то, как составляется пропорция:

а) записываются два отношения в соответствии со стрелками;

б) между ними ставится знак равенства.

IV. Теперь надо найти неизвестное х. Для этого удобно использовать основное равенство пропорции.

15 · 7,5 = х · 4,5

х · 4,5 = 112,5

х = 112,5 : 4,5

х = 25

V. В задаче в качестве х обозначали количество машин, что и спрашивалось в вопросе. Поэтому мы нашли ответ. Т.к. использовали свойство пропорции и известный алгоритм решения уравнений, то все действия законны и вычисления верны. Осталось посмотреть соответствие ответа смыслу поставленного вопроса. Значение неизвестной х - это и есть количество машин, т.е. то, что спрашивалось в задаче. Можем записать ответ.


Подобные документы

  • Сущность алгебраического метода решения текстовых задач. Типичные методические ошибки учителя при работе с ними. Решение текстовых задач алгебраическим методом по Г.Г. Левитасу и В. Лебедеву. Анализ практического применения методики обучения их решению.

    курсовая работа [260,9 K], добавлен 30.09.2010

  • Понятие текстовой задачи и ее роли в курсе математики. Способы решения текстовых задач. Методика обучения решению составных задач на пропорциональное деление. Обучение решению задач на движение. Выявление уровня умений учащихся решению составных задач.

    курсовая работа [231,8 K], добавлен 20.08.2010

  • Анализ теоретических источников по методикам обучения младших школьников решению текстовых задач на движение. Выявление уровня подготовки учеников, затруднений учащихся в образовательном процессе. Методические рекомендации для учителей по обучению.

    дипломная работа [141,0 K], добавлен 07.09.2017

  • Особенности текстовых задач, решаемых в начальной школе. Методические приемы обучения школьников решению текстовых задач с использованием графического моделирования. Исследование уровня сформированности умения выделять тип задачи и способ ее решения.

    курсовая работа [462,3 K], добавлен 04.05.2019

  • Сюжетные задачи в курсе математики 5-6 классов. История использования текстовых задач в России. Анализ учебников математики. Методика обучения решению сюжетных задач в курсе математики 5-6 классов. Примеры применения методики работы с сюжетной задачей.

    курсовая работа [55,8 K], добавлен 12.06.2010

  • Понятие "текстовая задача" и ее структура. Процесс решения текстовых задач. Методические приемы, используемые в обучении решению. Формирование у учащихся обобщенных умений. Работа над текстовой задачей с использованием тетрадей с печатной основой.

    курсовая работа [105,9 K], добавлен 16.03.2012

  • Понятие задачи и ее решения. Решение задач выделением этапов математического моделирования. Роль аналитико-синтетических рассуждений в формировании умений решать алгебраическим способом. Задания по формированию умений составления математических моделей.

    дипломная работа [164,3 K], добавлен 23.04.2011

  • Классификация и функции задач в обучении. Методические особенности решения нестандартных задач. Особенности решения текстовых задач и задач с параметрами. Методика решения уравнений и неравенств. Педагогический эксперимент и анализ результатов.

    дипломная работа [387,1 K], добавлен 24.02.2010

  • Психологические особенности учащихся 5-6 классов, уровень их логического мышления. Изучение методики ознакомления детей с задачами на комбинаторику, ее апробация на собственном опыте. Фрагменты уроков и занятий математического кружка, их анализ.

    дипломная работа [314,0 K], добавлен 05.04.2009

  • Обзор математической и учебно-методической литературы по методике обучения решению задач. Текстовые задачи как особый вид заданий по математике. Сравнительная характеристика методических основ обучения этой науке по программам Казахстана и России.

    курсовая работа [777,8 K], добавлен 27.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.