Технология конструкционных электротехнических материалов

Конструкция и область применения различных типов кабеля. Тепловой пробой твердых диэлектриков. Зависимость пробивного напряжения в твердом диэлектрике от частоты. Классификация магнитных материалов и требования к ним. Основные виды поляризации.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 04.12.2014
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Парамагнетик содержит, по крайней мере, один из перечисленных ниже типов носителей парамагнетизма.

а) Атомы, молекулы или ионы с некомпенсированными магнитными моментами в основном или возбуждённом состояниях с энергией возбуждения Ei « kТ. Парамагнетики этого типа обладают ориентацией ланжевеновским парамагнетизмом, зависящим от температуры Т по Кюри закону или Кюри - Вейса закону, в них возможно магнитное упорядочение. [Похожий по проявлениям магнетизм неоднородных систем малых ферро- или ферримагнитных однодоменных частиц (кластеров) в жидкостях или твердых матрицах выделен в особый вид - суперпарамагнетизм].

Этот тип носителей присутствует в парах металлов нечётной валентности (Na, Тl); в газе молекул О2 и NO; в некоторых органических молекулах со свободными радикалами; в солях, окислах и др. диэлектрических соединениях 3d-, 4f-, и 5f-элементов; в большинстве редкоземельных металлов.

б) Те же частицы, имеющие орбитальный магнитный момент в возбуждённом состоянии с энергией возбуждения Ei « kТ. Для таких парамагнетиков характерен не зависящий от температуры поляризационный парамагнетизм.

Этот тип носителей парамагнетизма проявляется в некоторых соединениях d- и f-элементов (соли Sm и Eu и др.).

в) Коллективизированные электроны в частично заполненных энергетических зонах. Им присущ сравнительно слабо зависящий от температуры спиновый Паули-парамагнетизм, как правило, усиленный межэлектронными взаимодействиями. В d-зонах спиновый парамагнетизм сопровождается заметным ванфлековским парамагнетизмом.

Подобный тип носителей преобладает в щелочных и щёлочноземельных металлах, d-металлах и их интерметаллических соединениях, актиноидах, а также в хорошо проводящих ион-радикальных органических солях:

O2 Li

NO Ca

FeCl2 Al

EuCl3 Pt

UF6 U

В) Ферромагнетики

Ферромагнетизм - магнитоупорядоченное состояние вещества, при котором все магнитные моменты атомных носителей магнетизма в веществе параллельны, и оно обладает самопроизвольной намагниченностью [2, С.301].

Рисунок 6.1 - Ферромагнитная (коллинеарная) атомная структура гранецентрированной кубической решётки. Ниже точки Кюри и стрелками обозначены направления атомных моментов; Js - вектор суммарной намагниченности единиц объёма.

Параллельная ориентация магнитных моментов (рисунок 6.1) устанавливается при температурах Т ниже критической температуры Кюри и. Часто ферромагнетизм называется совокупностью физических свойств вещества в указанном выше состоянии. Вещества, в которых установился ферромагнитный порядок атомных магнитных моментов, называются ферромагнетиками.

Рисунок 6.2 - Кривая безгистерезисного намагничивания (0Bm) и петля гистерезиса поликристаллического железа. Значению индукции Вт соответствует намагниченность насыщения Js

Магнитная восприимчивость ч ферромагнетиков положительна (ч >0) и достигает значений 104-105; их намагниченность J и магнитная индукция В=H+4рJ (в СГС системе единиц или В=(H+J)/µ0 в единицах СИ) растут с увеличением напряжённости магнитного поля H нелинейно (рисунок 5.2) и в полях до 100 Э (7,96·103 А/м) достигают предельного значения Js - магнитного насыщения и Вт. Значение J зависит от «магнитострикции предыстории» образца, что делает зависимость J от H неоднозначной (наблюдается магнитный гистерезис). При намагничивании ферромагнетиков изменяются их размеры и форма, т.е. наблюдается магнитострикция. Имеется и обратный эффект - кривые намагничивания и петли гистерезиса зависят от внешних механических напряжений. В ферромагнитных монокристаллах наблюдается магнитная анизотропия - различие магнитных свойств по разным кристаллографическим направлениям. В поликристаллах с хаотичным распределением ориентации кристаллических зёрен анизотропия в среднем по образцу отсутствует, но при неоднородном распределении ориентации она может наблюдаться (текстура магнитная).

Ферромагнетик - вещество, в котором ниже определённой температуры (Кюри точки) - устанавливается ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или магнитных моментов коллективизированных электронов (в металлических кристаллах). Среди химических элементов ферромагнитные переходные элементы: Fе, Со и Ni (3d- металлы) и редкоземельные металлы Gd, Тb, Dу; Но, Ег, Тm (таблица 6.2 ).

Таблица 6.2 Ферромагнитные металлы

Металлы

И, К

J SO1 Гс *

Fe

Co

Ni

Gd

Tb

Dy

Ho

Er

Tm

1043

1403

631

289

219 **

87 **

20 **

19,6 **

25 **

1735,2

1445

508,8

1980

2713

1991,8

3054,6

1872,6

*Jso - намагниченность ед. объёма при абсолютном нуле температуры.

** Точка перехода из ферромагнитного в антиферромагнитное состояние.

Для 3d-металлов и Gd характерна коллинеарная ферромагнитная атомная структура, а для остальных редкоземельных ферромагнетиков - неколлинеарная (спиральная, циклоидальная и синусоидальная).

Ферромагниты также многочисленны: металлические бинарные и более сложные (многокомпонентные) сплавы и соединения упомянутых металлов между собой и с другими неферромагнитными элементами; сплавы и соединения Сг и Мn с неферромагнитными элементами (Гейслеровы сплавы), соединения ZrZn2 и ZrxM1-x (где М - это Тi, Y, Nb или Hf), Au4V, Sc3Ln и др. (таблица 6.3), а также некоторые соединения группы актинидов, например UH3.

Таблица 6.3 Ферромагнитные соединения

Соединения

И, К

Соединения

И, К

Fe3Al

Ni3Mn

FePd3

MnPt3

CrPt3

ZnCMn3

AlCMn3

743

773

705

350

580

353

275

TbN

DyN

EuO

MnB

ZrZn3

Au4V

Sc3In

43

26

77

578

35

42 - 43

5 - 6

Особую группу ферромагнетиков образуют сильно разбавленные растворы замещения парамагнитных атомов, например Fe или Co в диамагнитной матрице Pd. В этих веществах атомные магнитные моменты распределены неупорядоченно (при наличии ферромагнитного порядка отсутствует атомный порядок). Ферромагнитный порядок обнаружен также в аморфных (метастабильных) металлических сплавах и соединениях (металлические стекла), в аморфных полупроводниках, в обычных органических и неорганических стёклах халькогенидов (сульфидах, селенидах, теллуридах) и т.п. Число известных неметаллических ферромагнетиков пока невелико. Это, например, ионные соединения типа La1-x СахМn05 (0,4>x>0,2), EuO, Eu2SiO4, EuS, EuSe, EuI2, CrBr3 и т.п. У большинства из них точка Кюри лежит ниже 1 К. Только у соединений Eu, халькогенидов, CrB3 значение и ~ 100 К [2, С.304].

Г) Антиферромагнетики

Антиферромагнетизм - магнитоупорядоченное состояние вещества, характеризующееся тем, что магнитные моменты соседних частиц вещества - атомов носителей магнетизма - ориентированы навстречу друг другу (антипараллельно) и поэтому намагниченность тела в целом в отсутствии магнитного поля равна нулю. Этим антиферромагнетизм отличается от ферромагнетизма, при котором одинаковая ориентация всех атомов магнитных моментов приводит к высокой намагниченности тела.

Антиферромагнетизм - упорядоченное состояние вещества, характеризующееся тем, что средние магнитные моменты всех (или большей части) ближайших соседей любого иона направлены навстречу его собственному магнитному моменту. Для этого обменное взаимодействие должно быть отрицательным (при ферромагнетизме обменное взаимодействие положительно и все магнитные моменты направлены в одну сторону). В каждом антиферромагнетике устанавливается определённый порядок чередования магнитных моментов.

Антиферромагнетик - вещество, в котором установился антиферромагнитный порядок магнитных моментов атомов или ионов. Обычно вещество становится антиферромагнетиком ниже определённой температуры ТN (точка Нееля) и остаётся антиферромагнетикам вплоть до T = 0 K. Из элементов к антиферромагнетикам относятся: твёрдый кислород (б-модификация при T < 24 К), хром - антиферромагнетик с геликоидальной структурой (TN =310 К), б-марганец (TN =100 К), а также ряд редкоземельных металлов (с TN от 60 К у Tu до 230 К у Tb). В последних обычно наблюдаются сложные антиферромагнитные структуры в температурной области между TN и некоторой температурой Т1 (0 К<T1< TN); ниже Т1 они становятся ферромагнетиками [2, С.305].

Число известных химических соединений, которые становятся антиферромагнетиками при определённых температурах, приближается к тысяче.

Таблица 6.4 Свойства редкоземельных элементов - антиферромагнетиков

Элементы

T1·K

TN·K

Dy ...…………………

Ho ……………………

Er ……………………..

Tu …………………….

Tb …………………….

85

20

20

22

219

179

133

85

80

230

Д) Ферримагнетики

Ферримагнетик - вещество, в котором при температуре ниже Кюри (точки Тс) существует ферримагнитное упорядочение магнитных моментов ионов. Значит, часть ферримагнетиков - это диэлектрические или полупроводниковые ионные кристаллы, содержащие магнитные ионы различных элементов или одного элемента, но находящиеся в разных кристаллографических позициях (в неэквивалентных узлах кристаллической решётки). Среди них наиболее обширный класс хорошо изученных и широко используемых ферримагнетиков образуют ферриты (шпинели, гранаты и гексаферриты).

Другую группу диэлектрических ферритов образуют двойные фториды (типа RbNiF3), в которых из шести магнитных подрешеток намагниченность четырех направлена в одну сторону, а намагниченность двух других - в противоположную. Двойные фториды прозрачны в видимой области спектра. К ферромагнетикам принадлежит также ряд сплавов и интерметаллических соединений. В большинстве - это вещества, содержащие атомы редкоземельных элементов (R) и элементов группы железа (Me). Их магнитная структура состоит из двух магнитных подрешёток: атомов Me и R, соответственно. Интерметаллические соединения типа RFe2 обладают рекордной магнитострикцией (~10-3 в полях 10-15 кГс) и могут быть использованы в качестве пьезоэлектрических преобразователей. Другой тип редкоземельных интерметаллидов имеет формулу, близкую к RMe6. Эти соединения имеют большую энергию анизотропии и, значит, коэрцитивную силу. Из них изготавливают магниты постоянные с рекордной величиной BHмакс (~107 Гс·Э).

Таблица 6.5 Свойства типичных ферромагнетиков

Вещество

Тип кристаллической структуры

TC · K

4рJs · Гс

Рэфф · µБ

Fe3O4

MgFe2O4

CoFe3O6

Y3Fe6O12

Gd3Fe6O12

Ho3Fe8O12

BaFe12O10

Ba3Co3Fe34O41

RbNiF3

TiNiF3

CeNiF3

GdFe2

TbFe3

DyFe2

PrCo3

SmCo3

шпинель

шпинель

шпинель

гранат

гранат

гранат

гексагональная

гексагональная

гексагональная

гексагональная

кубическая

фаза Лавеса

фаза Лавеса

фаза Лавеса

гексагональная

гексагональная

858

713

793

560

564

567

730

680

139

111

150

789

698

635

912

1020

6400

1800

6000

2470

7250

7400

5220

3350

1080

620

620

692

1090

1300

1150

937

4,1

1,1

3,9

5,0

16

15

27

31

-

-

-

3,7

5,6

5,6

10,8

8,7

В таблице 5.5 приведены некоторые характеристики типичных ферромагнетиков: температура Кюри Тс, магнитная индукция насыщения 4рJS и эффективный магнитный момент Pэфф; магнетонах Бора мб (последние две величины для Т = 0 К) [2, С.306].

Е) Метамагнетики

Метамагнитными являются такие материалы, которые в слабых магнитных полях ведут себя как антиферромагнитные, а в сильных магнитных полях - как ферромагнитные, или наоборот. Антиферромагнитными в слабых полях являются MnAs2, диспрозий Dy и эрбий Er. Ферромагнитными MnAs, MnBi, гольмий Ho и тербий Tb [2, С.307].

7. Основные виды поляризации (вопрос 4)

Существо поляризации большинства диэлектриков состоит в возникновении электрического (дипольного) момента в объёме диэлектрика вследствие перемещения связанных электрических зарядов (зарядов, связанных в атомах, молекулах, кристаллической решетке) под действием внешнего электрического поля.

Объясним этот механизм поляризации на примере поляризации атома. Перед приложением внешнего электрического поля положительные и отрицательные заряды в атоме распределены так, что внешне атом проявляет себя как электрически нейтральный. Центры тяжести положительных и отрицательных зарядов при этом совпадают.

При воздействии внешнего электрического поля симметрия в распределении зарядов нарушается, возникает индуцированный электрический момент. Центр тяжести положительных зарядов при этом смещается в направлении напряженности внешнего поля, а центр тяжести отрицательных зарядов - в противоположном направлении. Такой механизм поляризации называется электронной поляризацией. Смещение центра тяжести отрицательных зарядов пропорционально напряженности внешнего поля [2, С.169].

Проследим, как этот механизм проявляется на временной зависимости электрического тока поляризации в течение одного периода (рисунок 7.1).

Рисунок 7.1 - Изменение во времени электрического тока поляризации диэлектрика с электронной поляризацией

В первой четверти периода напряженность внешнего поля непрерывно возрастает и в момент t = T/4 достигает максимума. Тотчас после приложения поля центр тяжести отрицательных зарядов отклонится и через диэлектрик потечет относительно большой ток. При дальнейшем возрастании напряженности поля смещение центра тяжести хотя и увеличивается, но все медленнее, так как поле должно преодолевать все большие упругие силы. Поэтому ток постепенно уменьшается. При t = T/4 ток становится равным нулю и смещение электронов против направления напряженности внешнего поля заканчивается. С этого момента направление движения электронов изменится, так как упругие силы связи стремятся возвратить их в исходное положение. Поэтому при уменьшении напряженности внешнего поля ток течет в обратном направлении и постепенно увеличивается. При t = T/2 центры тяжести зарядов находятся в исходном положении. Во втором полупериоде процесс повторяется с той разницей, что заряды смещаются в направлении, обратном направлению их смещения в первом полупериоде. Этот процесс периодически повторяется.

Время, в течение которого заряды в атомах способны реагировать на внешнее поле, очень мало и имеет порядок 10-15 с, то есть реакция почти мгновенна, поэтому вектор тока опережает вектор напряжения на 90°.

При других типах поляризации это время больше, так как механизм поляризации является иным. Часто речь идет о смещении более тяжелых частиц, встречающих сопротивление среды. В таких случаях опережение вектора тока по отношению к вектору напряжения меньше 90° [2, С.170].

Каким бы ни был физический механизм при различных типах поляризации, внешне поляризация проявляется всегда одинаково, т.е. как нарушение симметрии распределения электрических зарядов в диэлектрике. Заряды противоположных знаков, смещенные внешним полем со своих равновесных положений, образуют электрические диполи, поле которых действует навстречу причине их возникновения и способно скомпенсировать часть внешнего электрического поля. Поле диполей связывает часть зарядов на электродах.

В общем случае электрическая поляризация представляет собой комплекс явлений, связанных с различными механизмами поляризации и происходящих на микроскопическом уровне.

Основным механизмом поляризации можно считать упругое смещение частиц в диэлектрике. Поляризация такого типа называется упругой. При упругом смещении электронов в атомах говорят об упругой электронной поляризации. При взаимно упругом смещении противоположно заряженных ионов в кристаллической решетке ионных кристаллов говорят об упругой ионной поляризации. В случае упругого смещения противоположно заряженных частиц в молекуле с постоянным дипольным моментом говорят об упругой дипольной поляризации. Общим признаком таких механизмов поляризации является то, что поляризация происходит очень быстро и без потерь.

Может случиться, что индуцированный электрический момент возникает в результате смещения слабосвязанных частиц (электронов или ионов), которые не связаны упругими силами, или в результате ориентации постоянных дипо?лей в направлении внешнего поля. Реакция этих частиц на изменения внешнего поля уже не такая быстрая, как в случае поляризации упругого типа. После исчезновения внешнего поля частицы возвращаются в исходное положение не мгновенно, а через определенное время, и не под действием упругих сил связи, а в результате хаотического теплового движения. Такие механизмы поляризации называются релаксационными и характерны тем, что сопровождаются потерями электрической энергии и сильно зависят от интенсивности теплового движения, т. е. от температуры.

К этим основным механизмам поляризации в некоторых специальных случаях добавляются особые типы поляризации - миграционная и спонтанная.

Миграционная поляризация заключается в возникновении индуцированного дипольного момента вследствие смещения свободных зарядов, которые не имеют возможности нейтрализации на электродах.

Такие заряды концентрируются под действием внешнего поля на блокирующих барьерах различного характера и образуют пространственные заряды, поле которых внешне проявляет себя как поляризация особого вида. Это типично для неоднородных диэлектриков.

Спонтанная поляризация заключается в ориентации спонтанно (самопроизвольно) образовавшихся электрических моментов в направлении внешнего электрического поля. Это типично для сегнетоэлектриков.

Оба особых типа поляризации имеют нелинейный характер.

О релаксационном характере поляризации можно говорить в узком и широком смысле.

В узком смысле релаксационной поляризацией считается такая поляризация, при которой зависимость поляризованности от времени после приложения или снятия внешнего постоянного поля имеет экспоненциальный характер и описывается выражениями (7.1) или (7.2).

После приложения поля поляризованность растет во времени

, (7.1)

где Pr(t) - релаксационная поляризованность в момент t; Pr?(t) - релаксационная поляризованность в установившемся состоянии; Т - постоянная времени; e - основание натуральных логарифмов (e =2,718).

После снятия внешнего поля релаксационная поляризованность уменьшается согласно формуле

. (7.2)

Кривые изменения релаксационной поляризованности во времени при приложении и снятии внешнего поля показаны на рисунке 7.2.

Рисунок 7.2 - Изменение во времени поляризованности при релаксационном характере поляризации:

a - при возникновении; б - при исчезновении

Важным параметром процесса релаксационной поляризации является постоянная времени Т. Она равна времени, за которое релаксационная поляризованность после снятия электрического поля уменьшается до 1/е, то есть приблизительно до 37% первоначального уровня. Неполярными считаются такие диэлектрики, частицы которых не имеют постоянного дипольного момента и у которых могут возникать только индуцированные дипольные моменты под действием внешнего электрического поля. Основной вопрос в том, является ли молекула материала полярной или неполярной, принадлежит характеру химических связей и ориентации диполей. Если эти связи без дипольного момента, то есть чисто ковалентные, или если эти связи - переходного типа с дипольными моментами, которые ориентированы так, что взаимно компенсируются; центры тяжести положительных и отрицательных зарядов в молекулах материала совпадают и материал является неполярным. На практике к неполярным материалам относят и такие полярные материалы, у которых полярность очень слабо выражена, то есть молекулы имеют лишь малый постоянный дипольный момент [2, С.172].

К неполярным электроизоляционным материалам относятся полиэтилен, политетрафторэтилен, полистирол, парафин и др. Слабополярным является нефтяное (минеральное) масло.

Полярными считаются такие материалы, молекулы которых и без воздействия внешнего электрического поля имеют электрический момент (собственный, или постоянный, дипольный момент). Это молекулы, в которых отдельные атомы связаны полярными связями со взаимно нескомпенсированными дипольными моментами связей.

К полярным материалам относятся целлюлоза, поливинилхлорид, хлорированные дифенилы и др.

Поляризованность диэлектрика равна индуцированному диполь-моменту единицы объема диэлектрика, т. е является суммой элементарных дипольных моментов в единице объёма Способность диэлектрика к поляризации можно охарактеризовать тремя величинами - поляризуемостью, диэлектрической восприимчивостью и относительной диэлектрической проницаемостью. В технике чаще всего используется относительная диэлектрическая проницаемость.

Поляризуемость связана с поляризованностью диэлектрика

P=NбE, (7.3)

где Р - поляризованность; N - концентрация индуцированных диполей; б - поляризуемость; Е - напряженность постоянного электрического поля.

Относительная диэлектрическая проницаемость и диэлектрическая восприимчивость диэлектрика связаны с поляризованностью

, (7.4)

где - диэлектрическая постоянная (=8,854?10-12 Ф/м); - относительная диэлектрическая проницаемость; - диэлектрическая восприимчивость.

Из сравнения выражений (7.3) и (7.4) следует соотношение между относительной диэлектрической проницаемостью, относительной диэлектрической восприимчивостью и поляризуемостью диэлектрика

. (7.5)

8. Сверхпроводники и возможности их применения в электротехнике (вопрос 20)

Размещено на http://www.allbest.ru/

Сверхпроводимость - свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры ТК, характерной для данного материала. Сверхпроводимость обнаружена у более чем 25 металлических элементов, у большого числа сплавов и интерметаллических соединений, а также у некоторых ПП и полимеров. Рекордно высоким значением ТК (около 23 К) обладает соединение Nb3Gе [2, С.66].

Основные явления. Скачкообразное исчезновение сопротивления ртути при понижении температуры впервые наблюдал голландский

физик X. Камерлинг-Оннес (1911) (рисунок 8.1). Он пришёл к выводу, что ртуть при Т = 4,15 К переходит в новое состояние, которое было названо сверхпроводящим. Несколько позднее Камерлинг-Оннес обнаружил, что электрическое сопротивление ртути восстанавливается при Т < ТК в достаточно сильном магнитном поле.

Падение сопротивления до нуля происходит на протяжении очень узкого интервала температур, ширина которого для чистых образцов составляет 10-3-10-4 К и возрастает при наличии примесей и других дефектов структуры[2, С.266].

Отсутствие сопротивления в сверхпроводящем состоянии с наибольшей убедительностью демонстрируется опытами, в которых в сверхпроводящем кольце возбуждается ток, практически не затухающий. В одном из вариантов опыта используются два кольца из сверхпроводящего металла. Большее из колец неподвижно закрепляется, а меньшее концентрически подвешивается на упругой нити таким образом, что когда нить не закручена, плоскости колец образуют между собой некоторый угол. Кольца охлаждаются в присутствии магнитного поля ниже температуры ТК, после чего поле выключается. При этом в кольцах возбуждаются токи, взаимодействие между которыми стремится уменьшить первоначальный угол между плоскостями колец. Нить закручивается, а наблюдаемое постоянство угла закручивания показывает, что токи в кольцах являются незатухающими. Опыты такого рода позволили установить, что сопротивление металла в сверхпроводящем состоянии меньше, чем 10-20 Ом·см (сопротивление чистых образцов Си или Ag составляет около 10-9 Ом•см при температуре жидкого гелия). Однако сверхпроводник не является просто идеальным проводником, и позднее установили, что слабое магнитное поле не проникает в глубь сверхпроводника независимо от того, было ли поле включено до или после перехода металла в сверхпроводящее состояние. В отличие от этого, идеальный проводник (т. е. проводник с исчезающе малым сопротивлением) должен захватывать пронизывающий его магнитный поток (рисунок 8.2, а, б, в) [2, С.67].

Размещено на http://www.allbest.ru/

Выталкивание магнитного поля из сверхпроводящего образца (эффект Мейснера) означает, что в присутствии внешнего магнитного поля такой образец ведёт себя как идеальный диамагнетик той же формы с магнитной восприимчивостью з=1/4р. В частности, если образец имеет форму длинного сплошного цилиндра, а внешнее поле Н однородно и параллельно оси цилиндра, то магнитный момент, отнесённый к единице объёма, М = -Н/4р. Это примерно в 106 раз больше по абсолютной величине, чем для металла в нормальном состоянии. Эффект Мейснера связан с тем, что при Н < НК в поверхностном слое (толщиной 10-5-10-6 см) сверхпроводящего цилиндра появляется круговой незатухающий ток, сила которого как раз такова, что магнитное поле этого тока компенсирует внешнее поле в толще сверхпроводника.

Рисунок 8.3 - Схема образования электронных пар в сверхпроводящем металле

Физическая природа сверхпроводимости. Явление сверхпроводимости можно понять и обосновать только с помощью квантовых представлений. Почти полвека с момента открытия сущность этого явления оставалась неразгаданной из-за того, что методы квантовой механики еще не в полной мере использовались в физике твердого тела. Микроскопическая теория сверхпроводимости, объясняющая все опытные данные, была предложена в 1957 г. американскими учеными Бардиным, Купером и Шриффером (теория БКШ). Значительный вклад в развитие теории сверхпроводимости внесли работы советского академика Н.Н. Боголюбова. Согласно установившимся представлениям, явление сверхпроводимости возникает в том случае, когда электроны в металле притягиваются друг к другу. Притяжение электронов возможно только в среде, содержащей положительно заряженные ионы, поле которых ослабляет силы кулоновского отталкивания между электронами. Притягиваться могут лишь те электроны, которые принимают участие в электропроводности, т.е. расположенные вблизи уровня Ферми. Если такое притяжение имеет место, то электроны с противоположным направлением импульса и спина связываются в пары, называемые куперовскими. В образовании куперовских пар решающую роль играют взаимодействие электронов с тепловыми колебаниями решетки - фононами. В твердом теле электроны могут как поглощать, так и порождать фононы. Мысленно представим себе следующий процесс: один из электронов, взаимодействуя с решеткой, переводит ее в возбужденное состояние и изменяет свой импульс; другой электрон, также взаимодействуя с решеткой, переводит ее в нормальное состояние и тоже изменяет свой импульс. В результате состояние решетки не изменяется, а электроны обмениваются квантами тепловой энергии - фононами. Обменное фононное взаимодействие и вызывает силы притяжения между электронами, которые превосходят силы кулоновского отталкивания. Обмен фононами при участии решетки происходит непрерывно. В упрощенном виде обменное фононное взаимодействие проиллюстрировано схемой (рисунок 8.3). Электрон, движущийся среди положительно заряженных ионов, поляризует решетку, т. е. электростатическими силами притягивает к себе ближайшие ионы. Благодаря такому смещению ионов в окрестности траектории электрона локально возрастает плотность положительного заряда. Второй электрон, движущийся вслед за первым, естественно, может притягиваться областью с избыточным положительным зарядом. В результате косвенным образом, за счет взаимодействия с решеткой, между электронами 1 и 2 возникают силы притяжения. Второй электрон становится партнером первого - образуется куперовская пара. Поскольку силы притяжения невелики, спаренные электроны слабо локализованы в пространстве. Эффективный диаметр куперовской пары имеет порядок 10-7 м, т. е. охватывает тысячи элементарных ячеек. Эти парные образования перекрывают друг друга, постоянно распадаются и вновь создаются, но в целом все пары образуют электронный конденсат, энергия которого за счет внутреннего взаимодействия меньше, чем у совокупности разобщенных нормальных электронов. Вследствие этого в энергетическом спектре сверхпроводника появляется энергетическая щель ДД - область запрещенных энергетических состояний (рисунок 8.4). Спаренные электроны располагаются на дне энергетической щели. Грубая оценка показывает, что количество таких электронов составляет около 10-4 от общего их числа[2, С.69].

Размер энергетической щели зависит от температуры, достигая максимального значения при абсолютном нуле и полностью исчезая при Т = Тсв. Теория БКШ дает следующую связь ширины щели с критической температурой перехода

Размещено на http://www.allbest.ru/

(8.1)

Формула (8.1) достаточно хорошо подтверждается экспериментально. Для большинства сверхпроводников энергетическая щель составляет 10-4-10-3 эВ.

Размещено на http://www.allbest.ru/

Как было показано, электрическое сопротивление металла обусловлено рассеянием электронов на тепловых колебаниях решетки и на примесях. Однако при наличии энергетической щели для перехода электронов из основного состояния в возбужденное требуется достаточная порция тепловой энергии, которую при низких температурах электроны не могут получить от решетки, поскольку энергия тепловых колебаний меньше ширины щели. Именно поэтому спаренные электроны не рассеиваются на дефектах структуры. Особенностью куперовских пар является их импульсная упорядоченность, состоящая в том, что все пары имеют одинаковый импульс и не могут изменять свои состояния независимо друг от друга. Электронные волны, описывающие движение пар, имеют одинаковые длину и фазу. Фактически движение всех электронных пар можно рассматривать как распространение одной электронной волны, которая не рассеивается решеткой, «обтекает» дефекты структуры. Такая согласованность в поведении пар обусловлена высокой мобильностью электронного конденсата: непрерывно меняются наборы пар, происходит постоянная смена партнеров.

При абсолютном нуле все электроны, расположенные вблизи уровня Ферми, связаны в пары. С повышением температуры за счет тепловой энергии происходит разрыв некоторой части электронных пар, вследствие чего уменьшается ширина щели. Движение неспаренных электронов, переходящих с основных уровней на возбужденные, затрудняется рассеянием на дефектах решетки. При температуре Т = Тсв происходит полный разрыв всех пар, ширина щели обращается в нуль, сверхпроводимость исчезает [2, С.70].

Переход вещества в сверхпроводящее состояние при его охлаждении происходит в очень узком интервале температур (сотые доли градуса). Неоднородности структуры, создаваемые примесями, искажениями решетки, границами зерен, не приводят к уничтожению сверхпроводимости, а вызывают лишь расширение температурного интервала перехода из одного состояния в другое (рисунок 8.5). Электроны, ответственные за создание сверхпроводимости, не обмениваются энергией с решеткой.

Размещено на http://www.allbest.ru/

Поэтому при температуре ниже критической наблюдается существенное уменьшение теплопроводности металлов.

Магнитные свойства сверхпроводников. Важнейшая особенность сверхпроводников состоит в том, что внешнее магнитное поле совершенно не проникает в толщу образца, затухая в тончайшем слое.

Силовые линии магнитного поля огибают сверхпроводник. Это явление, получившее название эффекта Мейснера, обусловлено тем, что в поверхностном слое сверхпроводника при его внесении в магнитное поле возникает круговой незатухающий ток, который полностью компенсирует внешнее поле в толще образца.

Размещено на http://www.allbest.ru/

Глубина, на которую проникает магнитное поле, обычно составляет 10-7-10-8 м. Таким образом, сверхпроводники по магнитным свойствам являются идеальными диамагнетиками с магнитной проницаемостью м = 0. Как всякие диамагнетики, сверхпроводники выталкиваются из магнитного поля. При этом эффект выталкивания выражен столь сильно, что открываются возможности удерживать груз в пространстве с помощью магнитного поля. Аналогичным образом можно заставить висеть постоянный магнит над кольцом из сверхпроводящего материала, в котором циркулируют индуцированные магнитом незатухающие токи (опыт В. К. Аркадьева).

Состояние сверхпроводимости может быть разрушено, если напряженность магнитного поля превысит некоторое критическое значение НСВ. По характеру перехода материала из сверхпроводящего состояния в состояние обычной электропроводности под действием магнитного поля различают сверхпроводники I и II рода. У сверхпроводников I рода этот переход происходит скачкообразно, как только напряженность поля достигнет критического значения. Кривая намагничивания таких материалов показана на рисунке 2 13. Сверхпроводники II рода переходят из одного состояния в другое постепенно; для них различают нижнюю НСВ1 и верхнюю НСВ2 критические напряженности поля. В интервале между ними материал находится в промежуточном гетерогенном состоянии, в котором сосуществуют нормальная и сверхпроводящая фазы. Соотношение между их объемами зависит от Н. Таким образом, магнитное поле постепенно проникает в сверхпроводник II рода (рисунок 8.7). Однако материал сохраняет нулевое сопротивление вплоть до верхней критической напряженности поля.

Критическая напряженность магнитного поля зависит от температуры. При Т = ТСВ она обращается в нуль, но монотонно возрастает при стремлении температуры к ОК. Для сверхпроводников I рода температурная зависимость НСВ в хорошем приближении описывается выражением

, (8.2)

где НСВ(0) - напряженность критического поля при температуре абсолютного нуля. Иллюстрацией зависимости (8.2.) служат кривые на рисунке 8.7, а. Различия в свойствах сверхпроводников I и II рода подчеркивают фазовые диаграммы, показанные на рисунке 8.7,б,в. Область промежуточного (смешанного) состояния, существующая у сверхпроводников II рода, расширяется при понижении температуры. Различие между НСВ1 и НСВ2 может быть в сотни раз. Критическая напряженность магнитного поля для сверхпроводников I рода составляет приблизительно 105 А/м, а у сверхпроводников II рода значение верхней критической напряженности может превышать 107 А/м. Сверхпроводимость может быть разрушена не только внешним магнитным полем, но и током, проходящим по сверхпроводнику, если он превышает некоторое критическое значение IСВ. Для сверхпроводников I рода предельная плотность тока ограничивается достижением на поверхности образца критической напряженности магнитного поля. В случае длинной прямолинейной проволоки круглого сечения радиуса r предельный ток определяется формулой

. (8.3)

Поскольку в сверхпроводящих элементах ток проходит в тонком поверхностном слое, средняя плотность тока, отнесенная ко всему поперечному сечению, уменьшается с увеличением диаметра провода. Для сверхпроводников II рода соотношение (8.3) не выполняется и связь между IСВ и IIСВ носит более сложный характер.

Сверхпроводящие материалы. Явление сверхпроводимости при криогенных температурах достаточно широко распространено в природе. Сверхпроводимостью обладают 26 металлов. Большинство из них являются сверхпроводниками I рода с критическими температурами перехода ниже 4,2 К. В этом заключается одна из причин того, что большинство сверхпроводящих металлов для электротехнических целей применить не удается. Еще 13 элементов проявляют сверхпроводящие свойства при высоких давлениях. Среди них такие полупроводники, как кремний, германий, селен, теллур, сурьма и др. Следует заметить, что сверхпроводимостью не обладают металлы, являющиеся наилучшими проводниками в нормальных условиях. К ним относятся золото Au, медь Cu, серебро Ag. Малое сопротивление этих материалов указывает на слабое взаимодействие электронов с решеткой. Такое слабое взаимодействие не создает вблизи абсолютного нуля достаточного межэлектронного притяжения, способного преодолеть кулоновское отталкивание. Поэтому и не происходит их переход в сверхпроводящее состояние.

Кроме чистых металлов сверхпроводимостью обладают многие интерметаллические соединения и сплавы. Общее количество наименований известных в настоящее время сверхпроводников составляет около 2000. Среди них самыми высокими критическими параметрами обладают сплавы и соединения ниобия Nb (таблица 8.1 и таблица 8.2). Некоторые из них позволяют использовать для достижения сверхпроводящего состояния вместо жидкого гелия более дешевый хладагент - жидкий водород [2, С.72].

Несмотря на то, что принципиальные причины возникновения сверхпроводимости твёрдо установлены, современная теория не даёт возможности рассчитать значения Тк или Нк для известных сверхпроводников или предсказать их для нового сверхпроводящего сплава. Однако ряд эмпирических закономерностей - правил Маттиаса (1955) - позволяет определить направление поисков сплавов с высокими Тк и Нк.

Таблица 8.1 Отличительные особенности сверхпроводников

Материал

ТСВ, К

м0НСВ1(0),

Тл

м0НСВ2(0),

Тл

JДОU(0),

А/м2

Отличительные

особенности

V3Ga

14,8

0,6

21

1,6·109

Удовлетворительные

механические свойства

V3Si

17,0

0,62

23,4

2·109

То же

Nb3Sn

18,3

0,54

24,5

2,4·109

Высокая плотность тока, технологичность

Nb3Ga

20,3

-

34,0

-

Высокая температура

перехода, технологичность

Nb3Gе

21-24,3

-

37,0

109

Наиболее высокая температура перехода

Таблица 8.2 Значения критических параметров сверхпроводников

Вещество

Критическая

температура

ТК, К

Критическое поле

Н0,Э

Сверхпроводники 1-го рода

Свинец

7,2

800

Тантал

4,5

830

Олово

3,7

310

Алюминий

1,2

100

Цинк

0,88

53

Вольфрам

0,01

1.0

Ниобий

9,25

4000

Сплав НТ-50

(Ni-Ti-Zr)

9,7

100000

Сплав Ni-Ti

9,8

100000

V3Ga

14,5

350000

Nb3Sn

18,0

250000

Сверхпроводники 2-го рода

PbMo4S8

~

600000

Nb3Ge

23

±

GeTe*

0,17

-

SrTiO3

0,2-0,4

130

Все интерметаллические соединения и сплавы относятся к сверхпроводникам II рода. Однако деление веществ по их сверхпроводящим свойствам на два вида не является абсолютным. Любой сверхпроводник I рода можно превратить в сверхпроводник II рода, если создать в нем достаточную концентрацию дефектов кристаллической решетки. Например, у чистого олова Тсв = 3,7 К, но если вызвать в олове резко неоднородную механическую деформацию, то критическая температура возрастет до 9 К, а критическая напряженность магнитного поля увеличится в 70 раз.

Сверхпроводимость никогда не наблюдается в системах, в которых существует ферро- или антиферромагнетизм. Образованию сверхпроводящего состояния в полупроводниках препятствует малая концентрация свободных электронов. Однако в материалах с большой диэлектрической проницаемостью силы кулоновскою отталкивания между электронами в значительной мере ослаблены. Поэтому некоторые из них также проявляют свойства сверхпроводников при низких температурах. Примером может служить титанат стронция (SrTiO3), относящийся к группе сегнетоэлектриков. Ряд полупроводников удается перевести в сверхпроводящее состояние добавкой большой концентрации легирующих примесей (GeTe, SnTe, CuS и др.).

В настоящее время промышленность выпускает широкий ассортимент сверхпроводящих проволок и лент для самых различных целей. Изготовление таких проводников связано с большими технологическими трудностями. Они обусловлены плохими механическими свойствами многих сверхпроводников, их низкой теплопроводностью и сложной структурой проводов. Особенно большой хрупкостью отличаются интерметаллические соединения с высокими критическими параметрами. Поэтому вместо простых проволок и лент приходится создавать композиции из двух (обычно сверхпроводник с медью) и даже нескольких металлов. Для получения многожильных проводов из хрупких интерметаллов особенно перспективен бронзовый метод (или метод твердофазной диффузии), освоенный промышленностью. По этому методу прессованием и волочением создается композиция из тонких нитей ниобия в матрице из оловянной бронзы. При нагреве олово Sn из бронзы диффундирует в ниобий Nb, образуя на его поверхности тонкую сверхпроводящую пленку станнида ниобия Nb3Sn. Такой жгут может изгибаться, но пленки остаются целыми [2, С.74]. Применение сверхпроводников в различных областях науки техники. Сверхпроводящие элементы и устройства находят все более широкое применение в самых различных областях науки и техники. Разработаны крупномасштабные долгосрочные программы промышленного использования сильноточной сверхпроводимости.

Одно из главных применений сверхпроводников связано с получением сверхсильных магнитных полей. Сверхпроводящие соленоиды позволяют получать однородные магнитные поля напряженностью свыше 107 А/м в достаточно большой области пространства, в то время как пределом обычных электромагнитов с железными сердечниками являются напряженности порядка 106 А/м. К тому же в сверхпроводящих магнитных системах циркулирует незатухающий ток, поэтому не требуется внешний источник питания. Сильные магнитные поля необходимы при проведении научных исследований. Сверхпроводящие соленоиды позволяют в значительной мере уменьшить габариты и потребление энергии в синхрофазотронах и других ускорителях элементарных частиц. Перспективно использование сверхпроводящих магнитных систем для удержания плазмы в реакторах управляемого термоядерного синтеза, в магнитогидродинамических (МГД) преобразователях тепловой энергии в электрическую, в качестве индуктивных накопителей энергии для покрытия пиковых мощностей в масштабах крупных энергосистем. Широкое развитие получают разработки электрических машин со сверхпроводящими обмотками возбуждения. Применение сверхпроводников позволяет исключить из машин сердечники из электротехнической стали, благодаря чему уменьшаются в 5 - 7 раз их масса и габариты при сохранении мощности. Экономически обосновано создание сверхпроводящих трансформаторов, рассчитанных на высокий уровень мощности (десятки-сотни мегаватт). Значительное внимание в разных странах уделяют разработке сверхпроводящих линий электропередач на постоянном и переменном токах. Разработаны опытные образцы импульсных сверхпроводящих катушек для питания плазменных пушек и систем накачки твердотельных лазеров. В радиотехнике начинают использовать сверхпроводящие объемные резонаторы, обладающие, благодаря ничтожно малому электрическому сопротивлению, очень высокой добротностью [2, С.75].

9. Векторное изображение электрических величин (тока, напряжения, ЭДС). Примечание комплексных чисел для расчета электрических цепей. Представление синусоидальных э.д.с., напряжений и токов комплексными числами

При изображении вращающихся векторов синусоидальных э.д.с, напряжения и тока на комплексной плоскости ось абсцисс плоскости декартовых координат совмещают с осью действительных или вещественных величин (ось + 1) комплексной плоскости. Тогда мгновенные значения синусоидальных величин получают на оси мнимых величин (ось+j) [18].

Как известно, каждому вектору на комплексной плоскости соответствует определенное комплексное число, которое может быть записано в показательной, тригонометрической или алгебраической форме. Например, э.д.с. Emsm (cot + ц/с) изображенной на рисунке 9.1 вращающимся вектором, соответствует комплексное число.

Рисунок 9.1 - Изображение синусоидальной э.д.с. вращающимся вектором на комплексной плоскости

Um=Um+jUm, (9.1)

Em ef(щt+шe)= Em cos(щt+шe)+jEmsi n+(щt+шe)= е'+je (9.2)

Фазовый уголь a>t+ у/, определяют по проекциям вектора на оси координат +1

tg (щt+шe)= е/е' (9.3)

Мнимая составляющая комплексного числа вектора на комплексной плоскости определяет синусоидальное изменение э.д.с. и обозначается символом Im

e=Em sin(щt+шe)=Im Em е'(щt+шe). (9.4)

Комплексное число E j(щt+шe ) удобно представить в виде произведения двух комплексных чисел

Em е'(щt+шe)= Em е' шe e щt = Em е(щt (9.5)

Первое комплексное число Em соответствующее положению вектора в начальный момент времени, называют комплексной амплитудой

Em = Em еtшe (9.6)

Второе комплексное число Eш является оператором поворота вектора на угол cat относительно начального положения вектора.

Следовательно, мгновенное значение синусоидальной величины равно мнимой части без знака j произведения комплекса амплитуды Ет и оператора вращения

e=Em sin(щt+шe)=Im Em еjщt. (9.7)

Переход от одной формы записи синусоидальных э.д.с, токов и напряжений к другой осуществляется весьма просто с помощью формулы

Эйлера еjщt - cos +/sin a.

Если, например, комплексная амплитуда напряжения задана в виде комплексного числа в алгебраической форме

Um =Um+ jUm (9.8)

то, чтобы записать ее в показательной форме, необходимо найти начальную фазу <р „, т.е. угол, который образует вектор Um с осью + 1.

В данном случае вектор Um расположен в первом квадранте комплексной плоскости, и его начальная фаза (рисунок 9.2) определяется соотношением

Tg шu=Um /Um (9.9)

Мгновенные значения напряжения

u=ImUm e щt =ImUme'(щt+шe)= Um sin(щt+шe), (9.10)

Рассмотрим другой пример, когда комплексная амплитуда тока задана комплексным числом

Im=-Im+jIm (9.11)

Вектор комплексной амплитуды тока /т расположен во втором квадранте комплексной плоскости (рисунок 9.3). Начальная фаза этого тока

Шt=180є-б (9.12)

Где tgшt=tg(180є-б)=- Im/ Im=tgб (9.13)

Если задано мгновенное значение тока в виде синусоиды / = Imsin(o)e + , то комплексную амплитуду записывают сначала показательной форме, а затем, по формуле Эйлера, переходят к алгебраической форме

I=Ieiiш (9.14)

(9.15)

Рисунок 9.2 - начальная вектора комплексной амплитуды напряжения, расположенного в первом квадранте комплексной плоскости.

Рисунок 9.3 - первая начальная фаза вектора комплексной амплитуды тока, расположенного во втором квадранте комплексной плоскости

Применение комплексных чисел позволяет от геометрического сложения или вычитания векторов на векторной диаграмме перейти к алгебраическому действию над комплексными числами этих векторов. Например, для определения комплексной амплитуды результирующего тока (см. рисунок 9.4) достаточно сложить два комплексных числа, соответствующих комплексным амплитудам токов ветвей

I3m= Im +I2m =I3mefш3 (9.16)

Для определения комплексной амплитуды результирующей э.д.с. (см. рисунок 9.4) достаточно определить разность комплексных чисел, соответствующих комплексным амплитудам э.д.с. Е\т и Е\т.[18].

Изображение синусоидальных величин с помощью векторов

При расчете цепей переменного тока часто приходится производить операции сложения и вычитания токов и напряжений. Когда токи и напряжения заданы аналитически или временными диаграммами, эти операции оказываются весьма громоздкими. Существует метод построения векторных диаграмм, который позволяет значительно упростить действия над синусоидальными величинами. Покажем, что синусоидальная величина может быть изображена вращающимся вектором.

Пусть вектор 1т вращается с постоянной угловой частотой со против часовой стрелки. Начальное положение вектора /т, задано углом у/ (рисунок 9.4.). Проекция вектора 1т на ось у определяется выражением /„, sin (cot + ц/), которое соответствует

мгновенному значению переменного тока. Таким образом, временная диаграмма переменного тока является разверткой по времени вертикальной проекции вектора /т, вращающегося со скоростью со .

Изображение синусоидальных величин с помощью векторов дает возможность наглядно показать начальные фазы этих величин и сдвиг фаз между ними.

Рисунок 9.4 - Изображение синусоидального тока вращающимися векторами

На векторных диаграммах длины векторов соответствуют действующим значениям тока, напряжения и ЭДС, так как они пропорциональны амплитудам этих величин.

На рисунке 9.5 показаны векторы Ei и Е2 с начальными фазами ц/i и ц/2 сдвигом фаз

Рисунок 9.5 - Векторная диаграмма синусоидальных Э.Д.С.

Совокупность нескольких векторов, соответствующих нулевому моменту времени, называют векторной диаграммой. Необходимо иметь в виду, что на векторной диаграмме векторы изображают токи (напряжения) одинаковой частоты.

Ответы на письма в редакцию

Редакция получила письмо от заведующей вузовской библиотекой. В этом письме задан вопрос о применении ГОСТ 7.1-2003, ответ на который, как нам кажется, носит общий характер и будет полезен многим.

Публикуем и письмо, и ответ на него Э.Р. Сукиасяна, главного редактора ББК, члена редколлегии сборника.

Уважаемые коллеги!

В связи с введением в действие с 1.07.04 г. [ГОСТ 7.1-2003] “Библиографическая запись. Библиографическое описание. Общие требования и правила составления” возникают трудности с толкованием его отдельных положений. В частности, в разделе I “Область применения” сказано: “Стандарт распространяется на описание документов, которое составляется библиотеками, органами научно-технической информации, центрами государственной библиографии, издателями, другими библиографирующими учреждениями. Стандарт не распространяется на библиографические ссылки”.

Просим разъяснить, обязательно ли применение [ГОСТ 7.1-2003] при составлении списков в диссертациях, монографиях, методических пособиях, дипломных и курсовых работах.

На поставленный вопрос можно дать очень короткий ответ: да, применение ГОСТ 7.1-2003 при составлении списков литературы в диссертациях, монографиях, методических пособиях, дипломных и курсовых работах обязательно.

Посмотрим последовательно по видам указанных документов, на чем основывается наше утверждение.


Подобные документы

  • Сверхпроводники и возможности их применения в электротехнике. Зависимость пробивного напряжения в твердом диэлектрике от температуры и частоты. Поляризация диэлектриков и диэлектрическая проницаемость. Нагревостойкость твердых и жидких диэлектриков.

    реферат [968,8 K], добавлен 12.02.2013

  • Основные сведения о строении вещества, классификация и общие характеристики электротехнических материалов. Принципы использования электротехнических материалов в устройствах электротехники и электроэнергетики. Силы электростатического притяжения.

    презентация [706,2 K], добавлен 29.01.2011

  • Формы электрических полей. Симметричная и несимметричная система электродов. Расчет максимальной напряженности кабеля. Виды и схема развития пробоя твердого диэлектрика. Характеристики твердой изоляции. Зависимость пробивного напряжения от температуры.

    контрольная работа [91,5 K], добавлен 28.04.2016

  • Определение тока утечки, мощности потери, удельных диэлектрических потерь при включении образца на переменное напряжение. Классификация и основные свойства полупроводниковых материалов. Физический смысл и область использования магнитных материалов.

    контрольная работа [93,7 K], добавлен 28.10.2014

  • Понятие молекулярной связи как самой непрочной, ее сущность и особенности. Зависимость эффекта дипольной поляризации в вязкой среде от увеличения ее температуры. Зависимость диэлектрической проницаемости тел от структурных особенностей диэлектрика.

    контрольная работа [19,8 K], добавлен 06.04.2009

  • Электрические, тепловые, влажностные и химические свойства диэлектриков. Поляризация мгновенная и протекающая замедленно. Дипольно-релаксационная поляризации. Общее понятие о доменах, сопротивление изоляции. Классификация диэлектриков по виду поляризации.

    презентация [964,7 K], добавлен 28.07.2013

  • Диэлектрические материалы для создания электрической изоляции токоведущих частей в электротехнических и радиоэлектронных устройствах. Электропроводность диэлектриков. Образцы для определения электрической прочности твердых электроизоляционных материалов.

    реферат [201,9 K], добавлен 07.11.2013

  • Понятие диэлектрической проницаемости как количественной оценки степени поляризации диэлектриков. Зависимость диэлектрической проницаемости газа от радиуса его молекул и их числа в единице объема, жидких неполярных диэлектриков от температуры и частоты.

    презентация [870,1 K], добавлен 28.07.2013

  • Основные критерии классификации магнитных материалов. Магнитомягкие материалы для постоянных и низкочастотных магнитных полей. Свойства ферритов и магнитодиэлектриков. Магнитные материалы специального назначения. Анализ магнитных цепей постоянного тока.

    курсовая работа [366,4 K], добавлен 05.01.2017

  • Классификация электротехнических материалов. Энергетические уровни. Проводники. Диэлектрические материалы. Энергетическое отличие металлических проводников от полупроводников и диэлектриков. Полупроводниковые материалы. Магнитные материалы и магнетизм.

    реферат [1022,4 K], добавлен 15.04.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.