Электрический ток в газах

Изучение физических свойств и явлений, описывающих протекание электрического тока в газах. Содержание процесса ионизации и рекомбинации газов. Тлеющий, искровой, коронный разряды как виды самостоятельного газового разряда. Физическая природа плазмы.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 12.02.2014
Размер файла 203,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Коронный разряд может возникнуть не только возле проволок, но и возле любых проводников с малой поверхностью, каковыми являются всякого рода заострения. Свойства острий объясняются зажиганием возле них микроскопической короны. Корона возникает также в природе под влиянием атмосферного электрического поля и появляется на верхушках деревьев, корабельных мачт (см. приложение 1.4) и т.п.

С возможностью возникновения коронного разряда приходится всегда считаться в технике высоких напряжений. При зажигании короны возле проводов высоковольтных линий электропередачи окружающий воздух сильно ионизуется и появляются вредные токи утечки. Чтобы коронный разряд не мог возникнуть, провода высоковольтных линий должны иметь достаточно большой диаметр, тем больший, чем выше напряжение линий. По этой же причине и в лабораторной практике все подводки высокого напряжения (к рентгеновским установкам и другим высоковольтным устройствам) осуществляются обычно с помощью труб достаточно большого диаметра. Применение коронного разряда:

- Электрическая очистка газов (электрофильтры). Сосуд, наполненный дымом, внезапно делается совершенно прозрачным, если внести в него острые металлические электроды, соединенные с электрической машиной, а все твердые и жидкие частицы будут осаждаться на электродах. Объяснение опыта заключается в следующем: как только и проволоки зажигается корона, воздух внутри трубки сильно ионизируется. Газовые ионы прилипают к частицам пыли и заряжают их. Так как внутри трубки действует сильное электрическое поле, заряженные частицы пыли движутся под действием поля к электродам, где и оседают.

- Счетчики элементарных частиц. Счетчик элементарных частиц Гейгера - Мюллера состоит из небольшого металлического цилиндра, снабженного окошком, закрытым фольгой, и тонкой металлической проволоки, натянутой по оси цилиндра и изолированной от него (рис. 3.3.2).

Рис. 3.3.2

Счетчик включают в цепь, содержащую источник тока, напряжение которого равно нескольким тысячам вольт. Напряжение выбирают необходимым для появления коронного разряда внутри счетчика.

При попадании в счетчик быстро движущегося электрона последний ионизирует молекулы газа внутри счетчика, отчего напряжение, необходимое для зажигания короны, несколько понижается. В счетчике возникает разряд, а в цепи появляется слабый кратковременный ток. Чтобы обнаружить его, в цепь вводят очень большое сопротивление (несколько мегаом) и подключают параллельно с ним чувствительный электрометр. При каждом попадании быстрого электрона внутрь счетчика листка электрометра будут откланяться.

Подобные счетчики позволяют регистрировать не только быстрые электроны, но и вообще любые заряженные, быстро движущиеся частицы, способные производить ионизацию путем соударений. Современные счетчики легко обнаруживают попадание в них даже одной частицы и позволяют, поэтому с полной достоверностью и очень большой наглядностью убедиться, что в природе действительно существуют элементарные заряженные частицы.

- Громоотвод. Подсчитано, что в атмосфере всего земного шара происходит одновременно около 1800 гроз, которые дают в среднем около 100 молний в секунду. И хотя вероятность поражения молнией какого-либо отдельного человека ничтожно мала, тем не менее молнии причиняют немало вреда. Достаточно указать, что в настоящее время около половины всех аварий в крупных линиях электропередачи вызывается молниями. Поэтому, защита от молнии представляет собой важную задачу.

Ломоносов и Франклин не только объяснили электрическую природу молнии, но и указали, как можно построить громоотвод, защищающий от удара молнии. Громоотвод представляет собой длинную проволоку, верхний конец которой заостряется и укрепляется выше самой высокой точки защищаемого здания. Нижний конец проволоки соединяют с металлическим листом, а лист закапывают в Землю на уровне почвенных вод. Во время грозы на Земле появляются большие индуцированные заряды, и у поверхности Земли появляется большое электрическое поле. Напряженность его очень велика около острых проводников, и поэтому на конце громоотвода зажигается коронный разряд. Вследствие этого индуцированные заряды не могут накапливаться на здании и молнии не происходит. В тех же случаях, когда молния все же возникает (а такие случаи очень редки), она ударяет в громоотвод и заряды уходят в Землю, не причиняя вреда зданию.

В некоторых случаях коронный разряд с громоотвода бывает настолько сильным, что у острия возникает явно видимое свечение. Такое свечение иногда появляется и возле других заостренных предметов, например, на концах корабельных мачт, острых верхушек деревьев, и т.д. Это явление было замечено еще несколько веков тому назад и вызывало суеверный ужас мореплавателей, не понимавших истинной его сущности.

3.4 Дуговой разряд и его применение

Если после зажигания искового разряда постепенно уменьшать сопротивление цепи, то сила тока в искре будет увеличиваться. Когда сопротивление цепи станет достаточно малым, возникает новая форма газового разряда, называемая дуговым разрядом (см. приложение 1.5). При этом сила тока резко увеличивается, достигая десятков и сотен ампер, а напряжение на разрядном промежутке уменьшается до нескольких десятков вольт. Это показывает, что в разряде возникают новые процессы, сообщающие газу очень большую проводимость.

Дуговой разряд можно получить от источника низкого напряжения, минуя стадию искры. Профессор физики Петербургской медико-хирургической академии В.В.Петров, открывший в 1802 г. эту важную форму газового разряда, получил электрическую дугу, раздвигая два кусочка древесного угля, предварительно приведенные в соприкосновение и присоединённые к мощной батарее гальванических элементов. Он обнаружил, что при этом между концами углей возникает ярко светящийся столб газа, а сами угли раскаляются до ослепительного свечения.

В настоящее время электрическую дугу, горящую при атмосферном давлении, чаще всего получают между специальными угольными электродами, изготовленными прессованием порошкообразного графита и связующих веществ (дуговые угли). Наиболее горячим местом дуги является углубление, образующееся на положительном электроде и называемое «кратером дуги». Его температура при атмосферном давлении равна около 4000 К, а при давлении в 20 атм превышает 7000 К, т.е. больше температуры внешней поверхности Солнца (около 6000 К).

Что же является основной причиной большой электропроводности газа в дуговом разряде? Установлено, что хорошая электропроводность дуги поддерживается за счет высокой температуры отрицательного электрода из-за интенсивной термоэлектронной эмиссии. Это хорошо подтверждается тем фактом, что во многих случаях устойчивую дугу можно получить только при условии, что катод имеет высокую температуру, температура же анода не имеет существенного значения. Так, например, если одним из электродов дуги сделать угольный стержень, а другим - массивную, хорошо охлаждающуюся медную пластину и перемещать угольный стержень возле пластины (чтобы она не могла разогреться), то устойчивая дуга возникает только при отрицательном угле. Если же отрицательным полюсом служит пластина, то дуга периодически зажигается и снова гаснет, а получить её устойчивое горение нельзя. Дуговой разряд возникает во всех случаях, когда вследствие разогревания катода основной причиной ионизации газа становится термоэлектронная эмиссия. Например, в тлеющем разряде положительные ионы, бомбардирующие катод, не только вызывают вторичную эмиссию электронов, но и нагревают катод. Поэтому, если увеличивать силу тока в тлеющем разряде, то температура катода увеличивается, и когда она достигает такой величины, что начинается заметная термоэлектронная эмиссия, тлеющий разряд переходит в дуговой. При этом исчезает и катодное падение потенциала.

Наряду с рассмотренными выше термоэлектронными дугами наблюдаются и дуговые разряды при сравнительно низкой температуре катода (например, в ртутной дуговой лампе).

Электрическая дуга впервые была использована для освещения в 1875 году русским инженером-изобретателем П.Н. Яблочкиным (1847-1894) и получила название «русского света» или «северного света». В «свече Яблочкова» угли были расположены параллельно и разделены изогнутой прослойкой, а их концы соединены проводящим «запальным мостиком». Когда ток включался, запальный мостик сгорал и между углями образовывалась электрическая дуга. По мере сгорания углей изолирующая прослойка испарялась.

Многочисленные исследования электрических дуг с холодными электродами показывают, что источником мощной электронной эмиссии с катода является небольшое, ярко светящееся и непрерывно движущееся пятнышко на катоде, всегда возникающее в подобных дугах (катодное пятно). Плотность тока в катодном пятне огромна и может достигать 1010-1011 А/м2. Причина образования катодного пятна заключается в сильном увеличении концентрации положительных ионов у катода, которое создает очень сильное местное электрическое поле, вызывающее мощную автоэлектронную эмиссию. Поэтому электрические дуги с холодными катодами иногда называют автоэлектронными дугами. Катодное пятно может возникнуть не только у поверхности ртути, но и у любого металлического твердого электрода.

Вследствие высокой температуры электроды дуги испускают ослепительный свет (свечение столба дуги слабее, так как излучающая способность газа мала), и поэтому электрическая дуга является одним из лучших источников света. Электрическая дуга широко применяется в проекционных, прожекторных и других установках. Расходуемая ею удельная мощность меньше, чем у ламп накаливания. Она потребляет всего около 3 Вт на канделу и является значительно более экономичной, нежели наилучшие лампы накаливания.

В качестве источников света употребляют также дуговые лампы высокого давления. Большой интерес представляет ртутная дуга, горящая в кварцевой трубке, так называемая кварцевая лампа. В этой лампе дуговой разряд происходит не в воздухе, а в атмосфере ртутного пара, для чего в лампу вводят небольшое количество ртути, а воздух откачивают. Свет ртутной дуги чрезвычайно богат ультрафиолетовыми лучами, обладающими сильным химическим и физиологическим действием. Чтобы можно было использовать это излучение, лампу делают не из стекла, которое сильно поглощает УФО, а из плавленого кварца. Ртутные лампы широко используют при лечении разнообразных болезней, а также при научных исследованиях как сильный источник ультрафиолетового излучения.

В 1882 году Н. Н. Бенардосом дуговой разряд впервые был использован для резки и сварки металла. Разряд между неподвижным угольным электродом и металлом нагревает место соединения двух металлических листов (или пластин) и сваривает их. Этот же метод Бенардос применил для резания металлических пластин и получения в них отверстий. В 1888 году Н. Г. Славянов усовершенствовал этот метод сварки, заменив угольный электрод металлическим. Высокая температура дугового разряда позволяет использовать его для устройства дуговой печи. В настоящее время дуговые печи, питаемые током очень большой силы, применяются в ряде областей промышленности: для выплавки стали, чугуна, ферросплавов, бронзы, получения карбида кальция, окиси азота и т.д.

3.5 Плазма и ее применение

Некоторые виды самостоятельного разряда характеризуются очень высокой степенью ионизации газа. В различных формах газового разряда образуется сильно ионизированный газ, который при условии, что суммарный заряд электронов и ионов в каждом элементарном объеме равен (или почти равен) нулю, называется плазмой (см. приложение 1.6).

Плазму имеется в положительном столбе тлеющего разряда, а также она образуется в главном канале искрового разряда.

Плазма - это частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Таким образом, плазма в целом является электрически нейтральной системой.

Количественной характеристикой плазмы является степень ионизации. Степенью ионизации плазмы называют отношение объемной концентрации заряженных частиц к общей объемной концентрации частиц. В зависимости от степени ионизации плазма подразделяется на слабо ионизованную ( составляет доли процентов), частично ионизованную ( порядка нескольких процентов) и полностью ионизованную ( близка к 100%). Слабо ионизованной плазмой в природных условиях являются верхние слои атмосферы - ионосфера. Солнце, горячие звезды и некоторые межзвездные облака - это полностью ионизованная плазма, которая образуется при высокой температуре. Средние энергии различных типов частиц, составляющих плазму, могут значительно отличаться одна от другой. Поэтому плазму нельзя охарактеризовать одним значением температуры Т; различают электронную температуру Те, ионную температуру Тi (или ионные температуры, если в плазме имеются ионы нескольких сортов) и температуру нейтральных атомов Т (нейтральной компоненты). Подобная плазма называется неизотермической, в отличие от изотермической плазмы, в которой температуры всех компонентов одинаковы.

Плазма также разделяется на высокотемпературную (Тi106-108 К и более) и низкотемпературную (Тi<=105 К). Это условное разделение связано с особой влажностью высокотемпературной плазмы в связи с проблемой осуществления управляемого термоядерного синтеза.

Плазма как сильно ионизированный газ имеет некоторое сходство с обычными газами и подчиняется многим газовым законам. Однако между плазмой и обычными газами имеются и радикальные отличия. Они особенно резко проявляются тогда, когда имеется магнитное поле. В этом случае на частицы плазмы (ионы и электроны) действуют большие силы (силы Лоренца), не существующие в газе нейтральных атомов. При движении частиц вдоль магнитного поля эти силы равны нулю. При движении же поперек магнитного поля они максимальны и препятствуют этому движению. Второе отличие заключается в том, что ионы и электроны в плазме сильно взаимодействуют между собой с помощью кулоновских сил. Оба обстоятельства в сочетании с большой электропроводностью сильно ионизированной плазмы приводят к тому, что свойства плазмы и уравнения её движения при наличии электрических и магнитных полей оказываются резко отличающимися от таковых для обычных газов и жидкостей. Изучение законов движения плазмы, рассматриваемой как особого рода жидкость с большой электропроводностью, составляет предмет гидродинамики плазмы и имеет большое значение для понимания многих астрофизических процессов. Поэтому её специфические свойства позволяют рассматривать ее как особое четвертое состояние вещества. Проводимость плазмы увеличивается по мере роста степени ионизации. При высокой температуре полностью ионизованная плазма по своей проводимости приближается к сверхпроводникам. В лабораторных условиях плазма получается не только в газовых разрядах. В электропроводящих твердых телах (металлы, полупроводники) мы имеем подвижные электроны проводимости и неподвижные положительные ионы с общим объемным зарядом, равным нулю, т.е. тоже электронно-ионную плазму.

Однако наиболее часто плазма встречается в космических телах. Основная масса вещества космоса практически полностью ионизирована вследствие высокой температуры и действия различных излучений и находится в состоянии сильно ионизированной плазмы. В частности, наше Солнце полностью состоит из плазмы. Верхние ионизированные слои атмосферы Земли (ионосфера) тоже представляют собой плазму.

Наиболее широко плазма применяется в светотехнике -- в газоразрядных лампах, освещающих улицы, и лампах дневного света, используемых в помещениях. А кроме того, в самых разных газоразрядных приборах: выпрямителях электрического тока, стабилизаторах напряжения, плазменных усилителях и генераторах сверхвысоких частот (СВЧ), счётчиках космических частиц.

Все так называемые газовые лазеры (гелий-неоновый, криптоновый, на диоксиде углерода и т. п.) на самом деле плазменные: газовые смеси в них ионизованы электрическим разрядом.

Созданы также плазменные двигатели, магнитогидродинамические электростанции. Разрабатываются различные схемы плазменного ускорения заряженных частиц. Центральной задачей физики плазмы является проблема управляемого термоядерного синтеза.

Не так уж давно был создан новый прибор - плазмотрон. В плазмотроне создаются мощные струи плотной низкотемпературной плазмы, широко применяемые в различных областях техники: для резки и сварки металлов, бурения скважин в твердых породах и т.д.

ЗАКЛЮЧЕНИЕ

В курсовой работе рассмотрены основные понятия, свойства, явления которые описывают протекание электрического тока в газах. Рассмотрены такие процессы как ионизация и рекомбинация, которые являются неотъемлемой частью возникновения разрядов в газе. Выяснили, что одним из главных способов возникновения самостоятельного разряда является ионизация электронными ударами.

Подробно рассмотрены такие явления как самостоятельный и несамостоятельный газовые разряды. Более детально описаны разновидности самостоятельного разряда, условии их возникновения, основные свойства и границы их применимости. Исследованы свойства и виды плазмы, а также ее применение. Прилагаются фотографии, которые позволяют наглядно рассмотреть эти явления.

Таким образом, исследуя данную тему можно прийти к выводу, что изучение электрического тока в газах, а в частности, исследование газовых разрядов, нашло применение не только в области физики, но и во многих сферах науки и техники. Так, например, тот или иной вид разряда применяются в металлургической промышленности, в научных исследованиях, медицине, при экономии энергетических ресурсов, в качестве предохранителей от перенапряжения, и т.д.

Итак, подводя итог работы, можно сказать, что актуальность изучения данной темы очевидна, так как использование этих данных используется как в науке, так и в быту. Исследуя данную тему, я получила знания, которые, думаю, понадобятся мне в моей дальнейшей педагогической деятельности.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Савельев, И.В. Курс общей физики: Учебное пособие / И.В. Савельев. В 3-х т. Т. 2. Электричество и магнетизм. Волны. Оптика. - 3-е изд., испр. - М.: Наука, 1988. - 496 с.

2. Калашников, С.Г. Электричество / С.Г. Калашников. - 4-е изд., перераб. и доп.. - М.: Наука, 1977. - 592 с.

3. Трофимова, Т.И. Курс физики: Учебное пособие для ВУЗов / Т.И. Трофимова. - 4-е изд., испр. - М.: Высшая школа, 1997. - 542 с.

4. Китайгородский, А.И. Физика для всех / А.И. Китайгородский. - М.: Наука, 1979.

5. Кингсеп А.С. Плазма как объект физического исследования // Соросовский образовательный журнал. - 1996. - №2. С. 98-104.

6. Электрический ток в различных средах: Опорный конспект // Физика: Приложение к газете «1 сентября». - 2000. - №10. С. 1-15.

Размещено на Allbest.ru


Подобные документы

  • Механизмы возникновения электрического разряда в газах, условия их электропроводности. Ионная электропроводимость газов. Различные типы самостоятельного разряда и их техническое применение. Искровой, коронный и дуговой разряды. "Огни святого Эльма".

    презентация [2,9 M], добавлен 07.02.2011

  • Условия возникновения электрического разряда в газах. Принцип ионизации газов. Механизм электропроводности газов. Несамостоятельный газовый разряд. Самостоятельный газовый разряд. Различные типы самостоятельного разряда и их техническое применние.

    реферат [32,3 K], добавлен 21.05.2008

  • Изучение тлеющего газового разряда как одного из видов стационарного самостоятельного электрического разряда в газах. Создание квантовых источников света в люминесцентных лампах. Формирование тлеющего газового разряда при низком давлении газа, малом токе.

    презентация [437,2 K], добавлен 13.04.2015

  • Электрический разряд в газах. Ионизация газов. Механизм электропроводности газов. Несамостоятельный газовый разряд. Самостоятельный газовый разряд. Различные типы самостоятельного разряда и их техническое применение.

    реферат [22,1 K], добавлен 17.05.2006

  • Тлеющий газовый разряд как один из видов стационарного самостоятельного электрического разряда в газах. Применение его как источника света в неоновых лампах, газосветных трубках и плазменных экранах. Создание квантовых источника света, газовых лазеров.

    презентация [437,2 K], добавлен 13.01.2015

  • Явление ионизации и рекомбинации в газах, его физическое обоснование и значение. Самостоятельный и несамостоятельный газовый разряд, их сравнительное описание, применение и основные влияющие факторы. Понятие о плазме, ее характеристика и свойства.

    презентация [3,7 M], добавлен 13.02.2016

  • Самостоятельный и несамостоятельный разряды в газах. Описание установки для измерения тока ионного тока тлеющего разряда. Модель физического процесса. Построение графиков, отображающих зависимость ионного тока тлеющего разряда от расстояния до коллектора.

    курсовая работа [1,3 M], добавлен 14.09.2012

  • Электрический ток в полупроводниках. Образование электронно-дырочной пары. Законы электролиза Фарадея. Прохождение электрического тока через газ. Электрическая дуга (дуговой разряд). Молния - искровой разряд в атмосфере. Виды самостоятельного разряда.

    презентация [154,2 K], добавлен 15.10.2010

  • Характеристики тлеющего разряда, процессы, обеспечивающие его существование. Картина свечения. Объяснение явлений тлеющего разряда с точки зрения элементарных процессов. Вольт-амперная характеристика разряда между электродами. Процессы в атомарных газах.

    реферат [2,8 M], добавлен 03.02.2016

  • Понятие электрического тока и условия его возникновения. Сверхпроводимость металлов при низких температурах. Понятия электролиза и электролитической диссоциации. Электрический ток в жидкостях. Закон Фарадея. Свойства электрического тока в газах, вакууме.

    презентация [2,9 M], добавлен 27.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.