Готовимся к экзамену по информатике

Информатика. Подготовка к экзаменам. Разработчики: Е.А. Еремин, В.И. Чернатынский, А.П. Шестаков. Ответы на билеты №№ 1, 2, 5, 6, 8, 10, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25. Советы по изложению материала для учащихся и преподавателей.

Рубрика Программирование, компьютеры и кибернетика
Вид шпаргалка
Язык русский
Дата добавления 27.06.2008
Размер файла 144,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Понятность. Каждая команда алгоритма должна быть понятна тому, кто исполняет алгоритм; в против-ном случае она (и, следовательно, весь алгоритм в це-лом) не может быть выполнена. В информатике часто говорят, что все команды алгоритма должны входить в систему команд исполнителя.

Определенность. Команды, образующие алгоритм, должны быть предельно четкими и однозначными, все возможности должны быть заранее предусмотрены и оговорены. Для заданных исходных данных результат не может зависеть от какой-либо дополнительной информации извне алгоритма.

Результативность. Правильный алгоритм не может обрываться безрезультатно из-за какого-либо не-преодолимого препятствия в ходе выполнения. Кроме того, любой алгоритм должен завершиться за конечное число шагов.

Корректность. Решение должно быть правильным для любых допустимых исходных данных.

Массовость. Алгоритм имеет смысл разрабатывать только в том случае, когда он будет применяться многократно для различных наборов исходных данных.

Исполнитель -- фундаментальное понятие информатики. Оно входит в определение алгоритма.

Исполнители алгоритмов необычайно разнообразны. Исполнителем словесных инструкций (алгоритмов) является человек. Многие окружающие нас автоматические устройства тоже действуют в соответствии с определенными алгоритмами (выключающийся по достижении определенной температуры воды электрический чайник, турникет в метро, современная многопрограммная стиральная машина и многие другие). Компьютер тоже является исполнителем, возможности которого необычайно широки.

Каковы наиболее важные черты исполнителей?

Во-первых, состояние каждого исполнителя описывается определенными характеристиками. Полный набор характеристик, описывающий состояние исполнителя, и обстановка, в которой он действует, принято называть средой данного исполнителя.

Во-вторых, любой исполнитель имеет собственный строго определенный набор команд. В учебниках его обычно называют системой команд исполнителя, или сокращенно СКИ. Исполнитель не способен выполнить ни одной команды, которая не попадает в его СКИ, даже если введенная команда отличается от существующей всего лишь единственной неправильно написанной буквой.

Но и синтаксически правильная команда при некоторых условиях не может быть выполнена. Например, невозможно произвести деление, если делитель равен нулю, или нельзя осуществить команду движения вперед, когда робот уперся в стену. Отказ в подобной ситуации можно сформулировать как "не могу" (в отличие от "не понимаю" в случае синтаксической ошибки в записи команды). Следовательно, каждая команда в СКИ должна иметь четко оговоренные условия ее выполнения; все случаи аварийного прерывания команды из-за нарушения этих условий должны быть тщательно оговорены.

Третьей важной особенностью исполнителей является наличие различных режимов его работы; перечень режимов у каждого исполнителя, естественно, свой. Для большинства учебных исполнителей особо выделяют режимы непосредственного и программного управления1. В первом случае исполнитель ожидает команд от человека и каждую немедленно выполняет. Во втором исполнителю сначала задается полная последовательность команд (программа), а затем он исполняет ее в автоматическом режиме. Большинство исполнителей могут работать в обоих режимах.

И в заключение небольшое замечание по последней части вопроса. Если внимательно проанализировать свойства алгоритмов, то становится очевидным, что для выполнения алгоритма вовсе не требуется ею понимание, а правильный результат может быть получен путем формального и чисто механического следования алгоритму. Отсюда выте-кает очень важное практическое следствие: поскольку осознавать содержание алгоритма не требуется, его исполнение вполне можно доверить автомату или ЭВМ. Таким образом, составление алгоритма является обязательным этапом автоматизации любого процесса. Как только разработан алгоритм, машина может исполнять его лучше человека.

Желательно изложить

Термин "алгоритм" имеет интересное историческое происхождение. В IX веке великий узбекский математик аль-Хорезми разработал правила арифметических действий над десятичными числами, которые в Европе стали называть "алгоризмами". Впоследствии слово трансформировалось до известного нам сейчас вида и, кроме того, расширило свое значение: алгоритмом стали называть любую последовательность действий (не только арифметических), которая приводит к решению той или иной задачи.

Помимо простейших "бытовых" алгоритмов, можно выделить еще три крупных разновидности алгоритмов: вычислительные, информационные и управляющие. Первые, как правило, работают с простыми видами данных (числа, векторы, матрицы), но зато процесс вычисления может быть длинным и сложным. Информационные алгоритмы, напротив, реализуют сравнительно небольшие процедуры обработки (например, поиск элементов, удовлетворяющих определенному признаку), но для больших объемов информации. Наконец, управляющие алгоритмы непрерывно анализируют информацию, поступающую от тех или иных источников, и выдают результирующие сигналы, управляющие работой тех или иных устройств.

Компьютер имеет не только собственную систему команд, но и свой алгоритм работы. Рассмотрим подробнее, как он выполняет отдельные операции и как реализуется вся программа в целом.

Каждая программа состоит из отдельных машинных команд. Каждая машинная команда, в свою очередь, делится на ряд элементарных унифицированных состав-

1 Аналогичные режимы издавна существовали в языке Бейсик, где строка без номера немедленно исполнялась интерпретатором, а с номером -- заносилась в память для последующего исполне-ния; нечто похожее существует и в более поздних версиях под MS-DOS, реализованных в виде компиляторных частей, которые принято называть тактами (помните термин "тактовая частота процессора" -- он происходит именно отсюда). В зависимости от сложности команды, она может быть реализована за разное количество тактов.

При выполнении каждой команды ЭВМ проделывает определенные стандартные действия, описанные ниже.

1. Согласно содержимому счетчика адреса команд (специального регистра, постоянно указывающего на ячейку памяти, в которой хранится следующая команда) считывается очередная команда программы.

2. Счетчик команд автоматически изменяется так, чтобы в нем содержался адрес следующей команды. В простейшем случае для этой цели достаточно к текущему значению счетчика прибавить некоторую константу, определяющуюся длиной команды.

3. Считанная операция расшифровывается, извлекаются необходимые данные, над ними выполняются требуемые действия и, если это предусмотрено операцией, производится запись результата в ОЗУ.

4. Все описанные действия циклически повторяются с п. 1.

Рассмотренный основной алгоритм работы ЭВМ позволяет шаг за шагом выполнить хранящуюся в ОЗУ про-грамму.

Примечания для учителей

Данный вопрос по сравнению с экзаменом 9-го класса объединяет два билета -- об алгоритмах и об исполните-лях. Поэтому в конце данных материалов вы увидите две ссылки на предыдущие публикации.

В отличие от экзамена в 9-м классе, выпускников можно с некоторой осторожностью спрашивать не о конкретном исполнителе, но об их общих свойствах. Об осторожности говорю потому, что умение обобщать есть достаточно сложный навык, и, к сожалению, в окружающей нас повседневной жизни, где логика видна все меньше, он развивается все слабее и слабее.

Возможно, не все учителя считают нужным излагать материал об основном алгоритме работы ЭВМ. Тем не менее, обосновывая формальность исполнения программы, о нем желательно сказать.

Примечания для учеников

Вопрос о свойствах алгоритма имеет фундаментальное значение в курсе информатики любого уровня. Поэтому при подготовке данного вопроса мы рекомендуем заучить названия всех свойств 2. В то же время объяснение всех свойств, как обычно, необходимо разобрать и дополнить примерами.

При подготовке вопроса обязательно повторите особенности и систему команд исполнителей и языков программирования, которые вы изучали на уроках. Сопоставьте эти сведения с приведенным выше материалом и подберите примеры, которые вы включите в свой экзаменационный ответ.

2 В порядке исключения, так как обычно, напротив, всегда при-ывали к осмысленному запоминанию материала, а не заучиванию

БИЛЕТ № 15

1. Алгоритмическая структура "ветвление". Команда ветвления. Примеры полного и неполного ветвления.

2. Двоичное кодирование текстовой информации, i Различные кодировки кириллицы.

3. Практическое задание. Формирование запроса I на поиск данных в среде системы управления базами данных.

1. Алгоритмическая структура "ветвление". Команда ветвления. Примеры полного и неполного ветвления

Базовые понятия

Алгоритм, ветвление, условие, полное ветвление и неполное ветвление.

Обязательно изложить

При составлении алгоритмов решения разнообразных задач часто бывает необходимо обусловить те или иные предписания, т.е. поставить их выполнение в зависимость от результата, который достигается на определенном шаге исполнения алгоритма. Например, алгоритм нахождения корней квадратного уравнения с помощью компьютера должен содержать проверку знака дискриминанта. Лишь в том случае, когда дискриминант положителен или равен нулю, можно про-водить вычисление корней. Алгоритм перемещения в заданный пункт по улицам города обязательно должен содержать предписание проверки сигналов светофоров на пересечениях улиц, поскольку они обусловливают движение на перекрестках. Можно привести еще много примеров подобных ситуаций, которые не имеют решения в рамках структуры "следование". По этой причине в теории алгоритмов наряду со "следованием" предлагается вторая базовая структура, назы-ваемая "ветвление". Эта структура предполагает формулировку и предварительную проверку условий с последующим выполнением тех или иных действий, реа-лизуя альтернативный выбор.

В словесной форме представления алгоритма "ветвление" реализуется в виде команды:

ЕСЛИ <АВ> то <Серия 1> ИНАЧЕ <Серия2>

Здесь <ЛВ> -- это логическое выражение, < Серия 1> -- описание последовательности действий, которые должны выполняться, когда <ЛВ> прини-мает значение ИСТИНА, < Серия 2> -- описание пос-ледовательности действий, которые должны выпол-няться, когда <ЛВ> принимает значение ЛОЖЬ. Любая из серий может быть пустой. В этом случае ветвление называется неполным. Каждая серия мо-жет, в свою очередь, содержать команду ветвления, что позволяет реализовать не только альтернативный выбор действий.

Если для представления алгоритма используется блок-схема, структура "ветвление" изображается так:

Полное ветвление Неполное ветвление

Серия 1

Серия

2

В языке программирования Turbo Pascal структура ветвления изображается оператором:

IF <ЛВ> THEN <БЛОК1> ELSE <БлОк2>;

Здесь <Бл<ж1> и <Блок2> -- последовательности операторов языка Turbo Pascal, заключенные в операторные скобки BEGIN . . END.

Рассмотрим пример использования структуры "ветвление". Одной из типичных задач информатики является задача сортировки: упорядочения по возраста-нию или убыванию величин порядкового типа. Составим алгоритм и программу сортировки списка из двух фамилий, используя неполное ветвление.

Алгоритм

/ *'Y /

i Г

Конец

Программа

PROGRAM SORT;

VAR X,Y,C: STRING;

BEGIN

WRITELN (-'Введи две фамилии'); READLN(X,Y); IF X > Y THEN BEGIN

С := X; X := Y; Y := С END;

WRITELN('После сортировки'); WRITELN (X); WRITELN (Y) END.

Рассмотрим теперь в качестве примера использования полного ветвления алгоритм и программу вычисления отношения двух чисел с блокировкой деления на ноль и выводом соответствующего сообщения на экран монитора.

Алгоритм

Программа

PROGRAM REL; VAR А,В,С: REAL; BEGIN

WRITELN('Введи 2 числа'); READLN(А,В); IF В О О THEN

BEGIN ' ;

С := А/В; WRITELN('С = ',С) END ELSE

WRITELN('ДЕЛЕНИЕ HA 0') END.

Ссылка на материалы вопроса

1. Угринович Н. Информатика и информационные технологии. Учебное пособие для 10--11-х классов. Углубленный курс. М.: Лаборатория Базовых Знаний, 2000, 440 с.

2. Семакин И., Залогова А., Русаков С., Шестакова Л. Базовый курс для 7--9-х классов. М.: Лаборатория Базовых Знаний, 2001, 384 с.

2. Двоичное кодирование текстовой информации. Различные кодировки кириллицы

Базовые понятия

Код, кодирование, двоичное кодирование, символ, код символа, кодировочная таблица.

Обязательно изложить

Если каждому символу какого-либо алфавита сопоставить определенное целое число, то с помощью двоичного кода можно кодировать и текстовую информацию. Для хранения двоичного кода одного символа может быть выделен 1 байт = 8 бит. Учитывая, что каждый бит принимает значение 0 или 1, количество их возможных сочетаний в байте равно 28 = 256. Значит, с помощью 1 байта можно получить 256 разных двоичных кодовых комбинаций и отобразить с их помощью 256 различных символов. Такое количество символов вполне достаточно для представления текстовой информации, включая прописные и заглавные буквы русского и латинского алфавита, цифры, знаки, псевдографические символы и т.д. Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111. Таким образом, человек различает символы по их начертанию, а компьютер -- по их коду. Важно, что присвоение символу конкретного кода -- это вопрос соглашения, которое фиксируется в кодовой таблице. Кодирование текстовой информации с помощью байтов опирается на несколько различных стандартов, но первоосновой для всех стал стандарт ASCII (American Standard Code for Information Interchange), разработанный в США в Национальном институте ANSI (American National Standards Institute). В системе ASCII закреплены две таблицы кодирования -- базовая и расширенная. Базовая таблица закрепляет значения кодов от 0 до 127, а расширенная относится к символам с номерами от 128 до 255. Первые 33 кода (с 0 до 32) соответствуют не символам, а операциям (перевод строки, ввод пробела и т.д.). Коды с 33-го по 127-й являются интернациональными и соответствуют символам латинского алфавита, цифрам, знакам арифметических операций и знакам препинания. Коды с 128-го по 255-й являются национальными, т.е. в национальных кодировках одному и тому же коду соответствуют различные символы.

В языках, использующих кириллический алфавит, в том числе русском, пришлось полностью менять вторую половину таблицы ASCII, приспосабливая ее под кириллический алфавит. В частности, для представле-ния символов кириллицы используется так называе-мая "альтернативная кодировка".

В настоящее время существует несколько различных кодовых таблиц для русских букв (КОИ-8,

СР-1251, СР-866, Mac, ISO), поэтому тексты, созданные в одной кодировке, могут неправильно отображаться в другой.

После появления ОС Windows от фирмы Microsoft выяснилось, что альтернативная кодировка по некоторым причинам для нее не подходит. Передвинув русские буквы в таблице (появилась возможность -- ведь псевдографика в Windows не требуется), получили кодировку Windows 1251 (Win-1251).

В настоящее время все большее число программ начинает поддерживать шестнадцатибитовый стандарт Unicode, который позволяет кодировать практически все языки и диалекты жителей Земли в силу того, что кодировка включает в себя 65 536 различных двоичных кодов.

Международная организация по стандартизации (International Organization for Standardization, или IOS) разработала свой код, способный соперничать с Unicode. Здесь для кодирования символов использует-ся комбинация из 32 бит.

Желательно изложить

Кодирование и шифрование текста -- исторический подход.

Перевод текста из одной кодировки в другую.

Ссылка на материалы вопроса

"Информатика" № 12, 2003, с. 3 -- 5.

3. Практическое задание. Формирование запроса на поиск данных в среде системы управления базами данных

Принципы составления задания

Для организации запросов нужно предложить готовую базу данных, не требуя ее заполнения. Запросов должно быть несколько', причем их можно дифференцировать по сложности для отметок "удовлетворительно, "хорошо", "отлично".

Учащиеся должны продемонстрировать умение соз-давать как простые запросы, так и с использованием логических операций и некоторых простейших функций изучаемой СУБД.

Примеры заданий

В качестве вариантов заданий можно использовать материалы задачника-практикума "Информатика. Задачник-практикум в 2 т." / Под ред. И.Г. Семакина, Е.К. Хеннера. Т. 1, 2. М.: Лаборатория Базовых Знаний, 1999.

Примеры запросов можно посмотреть в статье: Брызгалов Е.В., Шестаков А.П. Уроки по Access // Инфор-матика и образование № 7, 2000, с. 18--29.

Ссылка на материалы

"Информатика" № 16, 2002, с. 13--22.

БИЛЕТ № 16

1. Алгоритмическая структура "цикл". Циклы со счетчиком и циклы по условию.

2. Двоичное кодирование графической информации. Растр. Пиксель. Глубина цвета.

3. Задача на определение количества информации и преобразование единиц измерения количества информации.

1. Алгоритмическая структура "цикл". Циклы со счетчиком и циклы по условию

Базовые понятия

Цикл -- последовательность команд (серия, тело цикла), которая может исполняться многократно для разных значений, данных до удовлетворения некоторого условия.

Циклы с неопределенным количеством повторений (по условию) и с параметром (счетчиком).

Обязательно изложить

Цикл является одним из трех базовых алгоритми-ческих элементов, на основе которых, согласно теории, можно построить любой алгоритм. Значение цикла в практическом программировании необычайно велико -- как правило, программа пишется лишь тогда, когда те или иные действия требуется совершить многократно для различных значений данных. (В самом деле, если необходимо провести однократное вычисление по формуле разумной сложности, это быстрее и проще сделать на калькуляторе.)

Циклы бывают двух принципиально различных типов: с предопределенным и с заранее неизвестным числом повторений. В первом случае из условия задачи известно, сколько раз цикл будет выполнен: например, найти сумму первых десяти членов числового ряда. Во втором -- количество повторений будет зависеть от результатов вычислений и поэтому определится только в ходе работы программы: примером может служить нахождение суммы ряда с заданной точностью, когда вычисления прекращаются, если очередное слагаемое не превышает требуемой погрешности. Внимательно сравните два приведенных выше примера, и вы, несомненно, почувствуете разницу.

Для полноты классификации следует добавить, что цикл с условием, в свою очередь, тоже может реализовываться двумя способами. В первом варианте в начале цикла поверяется условие, а затем, если оно истинно, выполняются операторы цикла и происходит возврат на новую проверку; поскольку здесь условие предше-ствует содержимому цикла, то в литературе его при-нято называть циклом с предусловием. Во втором варианте, напротив, сначала цикл выполняется, а затем проверяется условие его завершения: в случае ложности цикл повторяется (иначе заканчивается); такой цикл, когда условие ставится после операторов содержимого, называют "с постусловием". Чаше всего только одна из названных разновидностей цикла наилучшим образом подходит к конкретной задаче. Например, если вы собираетесь удалить пробелы, стоящие в начале строки, то, скорее всего, выберете цикл с предусловием, потому что надо сначала убедиться, что пробел имеется, и только затем его удалять (глупо поступать наоборот -- сначала удалять, а потом проверять, стоило ли это делать, хотя в практической жизни такая, с позволения сказать, логика порой встречается...). Зато ввод текста до точки трудно построить иначе как с постусловием, поскольку сначала требуется ввести очередной символ и только потом сравнивать его с точкой.

Часто одни и те же действия требуется выполнить для различных значений параметра: типичная ситуация -- подставить числа от 1 до 10 в какую-нибудь формулу. Для решения такого типа задач лучше всего подойдет цикл с параметром, который возьмет на себя автоматическое изменение переменной цикла и ее сравнение с окончательным значением.

Завершая ответ, необходимо продемонстрировать все перечисленные виды циклов на том языке, который использовался на уроках (блок-схема, алгоритм для исполнителя, язык программирования). По понятным причинам мы не можем здесь предугадать все воз-можности.

Желательно изложить

Циклы с неопределенным количеством повторений, как правило, не имеют каких-то существенных особенностей реализации в различных языках. А вот цикл с параметром (FOR), напротив, часто обладает теми или иными специфическими свойствами. Например, в языке Бейсик, где параметром цикла может быть только числовая переменная (но зато любого типа), разрешается цикл от 0 до 1 с дробным шагом изменения 0.1. В Паскале параметр цикла не обязательно числовой, но зато он должен являться порядковым (иметь конечный упорядоченный набор допустимых значений). Таким образом, можно строить циклы по целым, символьным (CHAR), логическим, заданным перечнем своих значений и некоторым другим типам переменных, но зато запрещено использование веще-ственных значений1. Фактически в Паскале при каждом новом исполнении цикла берется или следующее, или предыдущее в используемом типе значение. В языке Си цикл FOR еще более интересный. Его заголовок фактически содержит три части: действия по инициализации, действия по проверке окончания цикла и, хотя бы потому, что для вещественных чисел не определено понятие "следующий": в самом деле, какое значение следует после 1.1 - 1.2, 1.11 или 1.101? наконец, действия после каждой итерации. Характерной особенностью является возможность иметь в каждой части произвольное количество операторов, включая вариант их отсутствия. Например,

for (i = 0, j = n - 1; i < n; i++, j --) a[i] = a[j];

Настолько общий подход позволяет вообще написать цикл без содержимого: например, сам оператор организации цикла

for (s=0, i = 1; i < 11; s=s+i, i=i+l) уже вычисляет сумму первых 10 натуральных чисел.

Примечание. Ярые приверженцы Си последние два оператора никогда не напишут иначе, чем s += i, i++, давая возможность компилятору составить чуть более эффективную программу. Но мне хотелось сделать текст более удобочитаемым для тех, чье мышление не связано с конкретными комбинациями значков.

Разумеется, рассказанный в предыдущем абзаце материал не предназначен для включения в ответ це-ликом. Просто подчеркнуто, что ученику желательно раскрыть особенности цикла FOR в том языке, кото-рый он изучал (а приведенные примеры просто указывают те места, где эти особенности надо искать).

И в заключение еще одно важное с практической точки зрения замечание. При некорректной организации некоторых циклов может возникнуть эффект так называе-мого "зацикливания", когда действия внутри цикла не могут создать условия, требующиеся для его завершения. Следует всячески избегать подобных ситуаций путем тщательного анализа условий работы цикла.

Примечание для учителей

В литературе обычно используется термин "цикл с параметром", а не "цикл со счетчиком".

Примечание для учеников

Как обычно, при подготовке вопроса необходимо продумать и подобрать на изученном языке примеры циклических алгоритмов. Вне зависимости от языка при ответе желательно использовать блок-схемы.

2. Двоичное кодирование графической информации. Растр. Пиксель. Глубина цвета

Базовые понятия

Растр -- специальным образом организованная со-вокупность точек, на которой представляется изображение.

Пиксель -- логический элемент изображения.

Обязательно изложить

Людям издавна хотелось зафиксировать окружающие их предметы и события в виде наглядных графических изображений. Свидетельством этому являются рисунки со сценами охоты на стенах пещер, планы местности и многое другое. Важными техническими шагами в данном направлении явились изобретение практической деятельности (ссылка есть выше) необходимо проследить все этапы решения содержательной задачи -- с исследования моделируемой предметной области и постановки задачи до интерпретации результатов, полученных в ходе вычислительного эксперимента. Для освоения полной технологической це-почки при решении конкретных задач следует выде-лять и подчеркивать соответствующие этапы работы.

Ссылка на материалы вопроса

"Информатика" № 14, 2003, с. 3 -- 8.

2. Двоичное кодирование звуковой информации. Глубина кодирования и частота дискретизации

Базовые понятия

Дискретная и непрерывная форма представления информации. Аналого-цифровой и цифро-аналоговый преобразователи.

Дискретизация звукового сигнала по времени и амплитуде.

Теорема Найквиста для выбора частоты дискретизации звука.

Обязательно изложить

Звуковые сигналы в окружающем нас мире необычайно разнообразны. Для их записи с целью последующего воспроизведения необходимо как можно точней сохранить форму кривой зависимости интенсивности звука от времени. При этом возникает одна очень важная и принципиальная трудность: звуковой сигнал непрерывен, а компьютер способен сохранить в памяти пусть очень большое, но конечное число дискретных величин. Следовательно, в процессе записи звуковая информация должна быть "оцифрована", т.е. из аналоговой непрерывной формы переведена в цифровую дискретную. Данную функцию выполняет спе-циальный блок, входящий в состав звуковой карты, который называется аналого-цифровой преобразователь -- АЦП.

Каковы основные принципы работы АЦП?

Во-первых, он производит дискретизацию записываемого звукового сигнала по времени. Это означает, что измерение уровня интенсивности звука ведется не непрерывно, а, напротив, в определенные фиксированные моменты времени (удобнее, разумеется, через равные временные промежутки). Частоту, характеризующую периодичность измерения звукового сигнала, принято называть частотой дискретизации. Вопрос о ее выборе далеко не праздный, и ответ в значительной степени зависит от спектра сохраняемого сигнала: существует специальная теорема Найквиста, соглас-но которой частота "оцифровки" звука должна как минимум в 2 раза превышать максимальную частоту, входящую в состав спектра сигнала.

Во-вторых, АЦП производит дискретизацию амплитуды звукового сигнала. При измерении имеется "сетка" стандартных уровней (например, 256 или 65 536 -- это количество характеризует глубину кодирования), и текущий уровень измеряемого сигнала ок-ругляется до ближайшего из них.

Итак, в ходе оцифровки звука мы получаем поток целых чисел, представляющих собой стандартные амплитуды сигналов через равные промежутки времени.

Изложенный метод преобразования звуковой информации для хранения в памяти компьютера в очередной раз подтверждает тезис о том, что любая информация для хранения в компьютере приводится к цифровой форме и затем переводится в двоичную систему. Теперь мы знаем, что и звуковая информация не является исключением из этого фундаментального правила.

Остается рассмотреть обратный процесс -- воспроизведение записанного в компьютерный файл звука. Здесь имеет место преобразование в противоположном направлении -- из дискретной цифровой формы представления сигнала в непрерывную аналоговую, поэтому вполне естественно соответствующий узел компьютерного устройства называется ЦАП -- цифро-аналоговый преобразователь. Процесс реконструкции первоначального аналогового сигнала по имеющимся дискретным данным нетривиален, поскольку никакой информации о форме сигнала между соседними отсчетами не сохранилось. В разных звуковых картах для восстановления звукового сигнала могут использоваться различные способы. Наиболее наглядный и понятный из них состоит в том, что по имеющимся точкам рассчитывается степенная функция, проходящая через заданные точки, которая и принимается в качестве формы аналогового сигнала.

Желательно изложить

Из курса физики известно, что звук есть колебания среды. Чаще всего средой является воздух, но это совсем не обязательно. Например, звук прекрасно распространяется по поверхности земли: именно поэто-му в приключенческих фильмах герои, стараясь услышать шум погони, прикладывают ухо к земле. Напротив, существует весьма эффектный школьный физический опыт, который показывает, что при откачивании воздуха мы перестаем слышать звук находящегося под герметичным колпаком звонка. Важно также подчеркнуть, что существует определенный диапазон частот, к которому принадлежат звуковые волны: при-мерно от нескольких десятков герц до величины немного более 20 кГц1. Значения этих границ определяются возможностями человеческого слуха.

1 Интересно сопоставить характерные звуковые частоты с так-товой частотой типового микропроцессора -- различие составля-ет примерно 6 порядков, что говорит об огромных возможностях компьютера в обработке звуковой информации.

БИЛЕТ № 17

1. Технология решения задач с помощью компьютера (моделирование, формализация, алгоритмизация, программирование). Показать на примере задачи (математической, физической, экономической, экологической).

2. Двоичное кодирование звуковой информации. Глубина кодирования и частота дискретизации.

3. Задача. Составление таблицы истинности для логической функции, содержащей операции отрицания, (инверсию), умножения (конъюнкцию), сложения (дизъюнкцию).

1. Технология решения задач с помощью компьютера (моделирование, формализация, алгоритмизация, программирование). Показать на примере задачи (математической, физической, экономической, экологической)

Базовые понятия

Модель, идеальная и материальная модель, моделирование, компьютерное моделирование, математическое моделирование, этапы компьютерного моделирования, формализация, компьютерный эксперимент, алгоритм, программа, тестирование и отладка программы.

Обязательно изложить

В решении любой содержательной задачи с использованием компьютера можно выделить ряд этапов.

Первый этап -- определение целей моделирования. Основные из них таковы:

* понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром (согласно этой цели моделирования получают описательную, или дескриптивную, модель);

* научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (оптимизационные и много-критериальные модели);

* научиться прогнозировать прямые и косвенные последствия воздействия на объект (игровые и имитационные модели).

После этого переходят к формализации объекта (процесса), результатом которой и будет в нашем случае модель (математическая или информационная).

Содержательное описание процесса обычно самостоятельного значения не имеет, а служит лишь основой для дальнейшей формализации этого процесса -- по-строения формализованной схемы и модели процесса.

Формализованная схема является промежуточным звеном между содержательным описанием и моделью и разрабатывается в тех случаях, когда из-за сложности исследуемого процесса переход от содержательного описания к модели оказывается невозможным.

Моделирование -- процесс построения формальной модели реального явления и ее использование в целях исследования моделируемого явления.

Когда модель сформулирована, выбирается метод и инструментальное средство ее исследования. В зависимости от формализованной постановки задачи в качестве такого средства может выступать либо пакет прикладных программ, либо собственноручно составленная программа.

Если в качестве средства решения задачи выступает тот или иной язык программирования (впрочем, это актуально и для математических пакетов), следующий этап -- разработка алгоритма и составление программы для ЭВМ (понятия алгоритма и программы подробно рассматриваются в билете 13, вопрос 1; а основы алгоритмического программирования -- в билете 2, вопрос 2).

После составления программы решаем с ее помощью простейшую тестовую задачу с целью устранения грубых ошибок.

Если результаты соответствуют экспериментальным данным или нашим интуитивным представлениям, проводят расчеты по программе, данные накапливаются и соответствующим образом обрабатываются. Чаще удобной для восприятия формой представления результатов являются не таблицы значений, а графики, диаграммы. Иногда численные значения пытаются заменить аналитически заданной функцией, вид которой определяет экспериментатор. Результаты анализа и обработки полученных данных в конечном итоге попадают в отчет о проделанном эксперименте.

Примеры решения содержательных задач из различных областей см.: Шестаков А.П. Профильное обучение информатике в старших классах средней школы (10--11-е классы) на основе курса "Компьютерное математическое моделирование" (КММ) // "Информатика" № 34, 36, 38, 40, 42, 44, 46, 48/2002.

Желательно изложить

История развития технологии решения задач с использованием ЭВМ.

Примечание для учителей

Чаще всего задачи на программирование предлагаются учащимся уже в формализованном виде. На примере ряда моделей из различных областей науки и для высококачественного воспроизведения звука верхнюю границу обычно с некоторым запасом принимают равной 22 кГц. Отсюда из теоремы Найквиста следует, что частота звукозаписи в таких случаях (например, при записи музыкальных компакт-дисков) должна быть не ниже 44 кГц2. Часто такое высокое качество не требуется, и частоту дискретизации мож-но значительно снизить. Например, при записи речи вполне достаточно частоты дискретизации 8 кГц. Заметим, что результат при этом получается хотя и не блестящий, но легко разборчивый3 -- вспомните, как вы слышите голоса своих друзей по телефону.

При оцифровке звука напрашивается линейная зависимость между величиной входного сигнала и номером уровня. Иными словами, если громкость возрастает в 2 раза, то интуитивно ожидается, что и соответствующее ему число возрастет вдвое. В простейших случаях так и делается, но это не самое лучшее решение. Причина в том, что в широком диапазоне громкости звука человеческое ухо не является линейным. Например, при очень громких звуках (когда "уши закладывает" ) увеличение или уменьшение интенсивности звука почти не дает эффекта, в то время как при восприятии шепота очень незначительное падение уровня может приводить к полной потере разборчивости. Поэтому при записи цифрового звука, особенно при 8-битном кодировании, часто используют различные неравномерные распределения уровней громкости, в основе которых лежит логарифмический закон (ц-law, A-law и другие).

Примечание для учителей

Мы рассмотрели процессы преобразования естественных звуков к виду, пригодному для хранения в компьютере, и последующего их восстановления при воспроизведении. Разумеется, не следует требовать от учеников на экзамене большего. Тем не менее, назовем некоторые интересные вопросы, связанные с компьютерной обработкой звуковой информации, которые полезно знать любому грамотному пользователю. Это, прежде всего сжатие (кто ни разу не использовал файлы МРЗ?), MIDI-запись музыки в виде необычайно компактных "нотных" команд для инструментов, форматы звуковых файлов и их особенности, возможности компьютеров в редактировании фонограмм (фильтрация, удаление помех и т.п.) и другие не менее важные и интересные темы.

Примечание для учеников

Автор советует при подготовке к экзамену прочитать полный материал вопроса, снабженный интересными примерами и иллюстрациями.

2 Обычно используется значение 44 032 Гц, которое делится нацело на 256.

3 Известно, что высокие частоты в основном влияют на "окрас-ку" (тембр) человеческого голоса.

Ссылка на материалы по вопросу

Подробные материалы опубликованы в "Информатике" № 14, 2003. Электронная версия имеется на сайте редакции по адресу http:/ /inf.lsepteniber.ru/ eremin/emc/theory/info/Ъ17__2.html.

По поводу непрерывной и дискретной информации можем порекомендовать почитать ответ на "старый вопрос 3 билета 10, опубликованный в "Информатике" № 14, 2003 (также доступно в Интернете по ссылке из списка литературы предыдущего вопроса).

3. Задача. Составление таблицы истинности для логической функции, содержащей операции отрицания (инверсию), умножения (конъюнкцию), сложения (дизъюнкцию)

Теоретический материал к этому заданию содержится в билете № 23, вопрос 2. Тему предлагаемых практических заданий можно сформулировать так: до-казать ряд основных законов алгебры логики путем построения таблицы истинности для обеих частей равенств, которые эти законы выражают.

Вариант 1. Доказать распределительный закон:

~Х и Y * Z = (X u F) * (~Х u Z)

Решение. Построим таблицу истинности, придавая возможные значения логическим переменным (1 -- истина, 0 -- ложь) и пользуясь соглашением о приоритете логических операций (НЕ, И, ИЛИ в порядке убывания).

X

у

Z

X

Y- Z

Xu Y- Z

Xu Y

XuZ

(Xu Y) -(XuZ)

0

0

0

1

0

1

1

1

1

1

0

0

0

0

0

0

0

0

0

1

0

1

0

1

1

1

1

0

0

1

1

0

1

1

1

1

1

1

0

0

0

0

1

0

0

1

0

1

0

0

0

0

1

0

0

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

Вариант 2. Доказать одно из правил де Моргана:

X

Y

X

Y

Х- Y

Xu Y

Xu Y

X- Y

0

0

1

1

0

1

1

1

1

0

0

1

1

0

0

0

0

1

1

0

1

0

0

0

1

1

0

0

1

0

0

0

Другие варианты логических функций можно найти в учебнике: Шауцукова Л.З. Информатика: Учебное пособие для 10-- 11-х классов общеобразовательных учреждений. М.: Просвещение, 2002.

БИЛЕТ № 18

1. Программные средства и технологии обработки текстовой информации (текстовый редактор, текстовый процессор, редакционно-издательские i системы).

2. Алгоритмическая структура "выбор".

3. Задача. Перевод десятичных чисел в двоичную, восьмеричную, шестнадцатеричную системы счисления.

1. Программные средства и технологии обработки текстовой информации (текстовый редактор, текстовый процессор, редакционно-издательские системы)

Базовые понятия

Текстовый редактор, текстовый процессор, настольная издательская система, документ, основные элементы текстового документа, форматы текстовых документов.

Обязательно изложить

Текстовые редакторы (процессоры} относятся к программному обеспечению общего назначения, они предназначены для создания, редактирования, форматирования, сохранения во внешней памяти и печати текстовых документов. Обычно текстовыми редакторами принято называть программы, выполняющие простейшие операции по редактированию текста, а процессорами -- программы, обладающие расширенными по сравнению с редакторами средствами для компьютерной обработки текста. Современные текстовые процессоры по своим функциональным возможностям приближаются к издательским системам -- пакетам программ, предназначенным для верстки газет, журналов, книг.

Основные функции текстовых процессоров:

* создание документов;

* редактирование;

* сохранение документов во внешней памяти (на дисках) и чтение из внешней памяти в оперативную;

* форматирование документов;

* печать документов;

* составление оглавлений и указателей в документе;

* создание и форматирование таблиц;

* внедрение в документ рисунков, формул и др.;

* проверка пунктуации и орфографии.

Основными элементами текстового документа являются: символ, слово, строка, предложение, абзац, страница, документ.

Обычно текстовые процессоры предусматривают две основные операции изменения формата документа:

* форматирование произвольной последовательности символов (от одного до любого количества, чаще всего эта последовательность предварительно выделяется);

* форматирование абзацев.

При форматировании символов можно изменить:

* шрифт;

* начертание шрифта (полужирный, курсив, подчеркнутый);

* размер шрифта;

* межсимвольный интервал;

* применить к символам эффекты (нижний, верхний индекс, малые строчные буквы и т.д.).

При форматировании символов можно изменить:

* способ выравнивания строк абзаца (влево, вправо, по центру, по ширине);

* отступ в красной строке абзаца;

* ширину и положение абзаца на странице;

* межстрочное расстояние (интерлиньяж) и расстояние между соседними абзацами;

* создать специальные абзацы (маркированные или нумерованные списки и т.д.).

Наиболее распространенные форматы текстовых файлов: текстовый, Rich Text Format, текст DOS, документ Word, документ HTML.

Настольные компьютерные издательские системы широко используются в различных сферах производства, бизнеса, политики, науки, культуры, образова-ния и др. С их помощью верстаются бюллетени, рекламные проспекты, газеты, книги и др.

Настольные издательские системы представляют собой комплекс аппаратных и программных средств, предназначенных для компьютерного набора, верстки и издания текстовых и иллюстративных материалов. Отметим, что с аппаратной точки зрения профессиональная работа с издательской системой требует, прежде всего, монитора с достаточно большой диагональю (19--25"), производительного видеоадап-тера с достаточным объемом видеопамяти (порядка 256 Мб -- 1 Гб), производительного процессора и объемного жесткого диска. Это связано с тем, что макет чаще всего содержит немало иллюстраций высокого качества, что и требует использования приве-денных выше ресурсов.

Назовем некоторые издательские системы: Express Publisher, Illustrator for Windows, Ventura Publisher, PageMaker, TeX (LaTeX) и др. Первые системы общего назначения, последняя предназначена, прежде всего, для верстки текста с преобладанием математических формул и используется многими научными физико-математическими журналами.

Для обработки изображений с целью внедрения их в текст, сверстанный в издательской системе, приме-няют такие графические пакеты, как CorelDraw, Adobe PhotoShop, и др.

Издательские системы реализованы практически для всех платформ и самых разнообразных операционных систем.

Желательно изложить

Правила компьютерного набора и оформления текстов.

Отличительные черты текстовых процессоров в разных операционных системах.

Дополнительные возможности текстовых процессоров как настольных издательских систем.

Кодирование текстовой информации. Кодировочные таблицы. Кодировки кириллицы.

Сканирование и распознавание текстовой информации.

Ссылка на материалы вопроса

"Информатика" № 14, 2003, с. 3 -- 8.

2. Алгоритмическая структура "выбор" Базовые понятия

Оператор выбора (оператор множественного ветв-ления).

Обязательно изложить

Кроме условного оператора, в качестве управляющей структуры довольно часто используется оператор выбора. Эта алгоритмическая структура позволяет переходить на одну из ветвей в зависимости от значения заданного выражения (селектора выбора). Ее особенность состоит в том, что выбор выполняемых операторов здесь осуществляется не в зависимости от истинности или ложности логического выражения, а является вычислимым. Оператор выбора позволяет заменить несколько условных операторов (в силу этого его еще называют оператором, множественного ветвления).

В алгоритмической структуре "выбор" вычисляется выражение /с и выбирается ветвь, значение метки которой совпадает со значением k. После выполне-ния выбранной ветви происходит выход из конструкции выбрра (в СН--К в отличие от Turbo Pascal, такой выход не осуществляется, а продолжают выполняться последующие операторы, поэтому для принудительного завершения оператора выбора применятся оператор break). Если в последовательности нет метки со значением, равным значению выраже-ния /с, то управление передается внешнему оператору, следующему за конструкцией выбора (это происходит в случае отсутствия альтернативы выбора; если она есть, то выполняется следующий за ней оператор, а уже затем управление передается внешнему оператору).

Запись оператора выбора: Turbo Pascal

case k of

Al : серия 1; A2 : серия 2;

AN : серия N; else серия N + 1 end;

C++

switch (k)

{case Al :

case A2 :

серия 1; break; серия 2; break;

case AN : серия N; break; default: серия N + 1;}

Любая из указанных серий операторов может состоять как из единственного оператора, так и не-скольких (в этом случае, как обычно, операторы, относящиеся к одной метке, должны быть заключены в операторные скобки begin, .end -- в Turbo Pascal и {..} -в C++).

Выражение /с здесь может быть любого порядкового типа (напомним, что к таким типам в языке Pascal относятся все целые типы, boolean, char, перечисляемый тип, диапазонный тип, базирующийся на любом из указанных выше типов).

Привести примеры задач с использованием оператора выбора.

Желательно изложить

Сравнительная характеристика условного операто-ра и оператора выбора.

Примечание для учителей

* При изучении темы необходимо показать, какие преимущества имеет данный оператор перед условным, выявить ситуации, когда его целесообразно использовать.

Ссылка на материалы вопроса

1. "Информатика" № 14, 2003, с. 3 -- 8.

2. http://comp-science.narod.ru/Progr/UsljCase.htm.

3. Перевод десятичных чисел в двоичную, восьмеричную, шестнадцатеричную системы счисления.

Теоретический материал к этой задаче содержится в билете № 13, вопрос 2. Примеры перевода с подробными пояснениями и варианты заданий можно найти на сайте http:\comp-science.narod.ru\ Progr\Syst_Sch.html и в газете "Информатика" № 19, 2002, с. 5--7.

БИЛЕТ № 19

1. Программные средства и технологии обработки числовой информации (электронные калькуляторы и электронные таблицы). Назначение и принципы работы.

2. Событийное объектно-ориентированное программирование. Событийные и общие процедуры.

3. Компьютерные вирусы. Практическое задание. Исследование дискет на наличие вируса с помощью антивирусной программы.

1. Программные средства и технологии обработки числовой информации (электронные калькуляторы и электронные таблицы). Назначение и принцип работы

Примечания для учителей

Сегодня хочется начать именно с примечаний, поскольку у автора текста этого ответа есть серьезные сомнения по поводу того, что именно надо рассказывать по данному вопросу. Следовательно, и содержимое остальных разделов будет существенным образом зависеть от того, что написано в примечании.

Согласно тексту вопроса, от нас требуется рассказать о двух технологиях обработки числовой информации на компьютере -- на калькуляторе и с помощью электронной таблицы (обращаю ваше внимание на тот факт, что в тексте не содержится ни малейшего намека на существование других технологий даже с помощью традиционного "и т.д."). Подобная постановка вопроса мне кажется неудачной как минимум по следующим причинам.

* Существуют другие программные средства и технологии, причем не менее эффективные, чем электронные таблицы, позволяющие обрабатывать числовую информацию на современном компьютере. Тезис об электронной таблице Excel как о вершине обработки числовых данных по крайней мере неубедителен.

* Стандартные учебники не обсуждают сформулированный вопрос в явном виде. Включать подобного типа вопросы в билеты некорректно как по отношению к ученикам, так и к учителям (откуда им взять информацию для объяснения?!).

* Ответ на данный вопрос без литературы с помощью самостоятельных рассуждений затруднителен. Например, я честно скажу, что не готов описать прин-цип работы программы-калькулятора в Windows, если только под принципом не понимается описание способа набора чисел и порядка манипуляций при выполнении на нем арифметических действий.

1 Словами "принцип работы программы" обычно принято обозначать описание внутренней логики устройства программы и методы, которыми она обрабатывает информацию; хотя, конечно, практические приемы использования можно назвать принципами работы с программой (знать бы, что именно авторы вопроса имели в виду...).

Итак, как можно поступить в данной ситуации? Возможно несколько путей.

1. Принять максимально простое толкование сформулированного вопроса: есть примитивный калькулятор, позволяющий выполнить небольшой объем вычислений, и есть электронные таблицы, которые дают возможность обработки большого количества чисел по одинаковым формулам.

2. Воспользоваться допустимым правом учителя в разумных пределах варьировать формулировку вопроса и, убрав упоминание о калькуляторах, оставить традиционный и понятный вопрос об электронных таблицах как технологии обработки числовой информации, их назначении и принципах работы.

3. Рассмотреть вопрос "в полной постановке", т.е. обсудить основные технологии обработки числовой информации и место электронных таблиц среди них. Материалы можно взять из предыдущей публикации (см. ссылку в конце вопроса).

Примечание. Как довольно отчетливо показала дискуссия о новом стандарте школьного, курса информатики, опубликованная недавно в газете, те, кто формулирует стратегические документы по содержанию курса, не особенно стремятся учитывать возможности и мнения учителей, которые эти документы воплощают в жизнь. По-моему, данный вопрос билета является одним из примеров такою сорта (будет и еще один подобный вопрос в билете 25). К счастью, в случае, когда формулировка отдельного вопроса билета из-за некоторой двусмысленности или непродуманности недостаточно ясна, учителя имеют возможность внести некоторые уточнения, которые сделают вопрос более понятным и подходящим для реальных учеников.

Базовые понятия

Технологии обработки числовой информации на современном компьютере. Электронные таблицы.

Обязательно изложить

ЭВМ была создана для обработки числовой информации. Более чем полувековое совершенствование вычислительной техники многократно увеличило ее возможности.

Бытующее мнение о том, что "умная" машина способна правильно выполнить любые вычисления и сделать это с абсолютной точностью, не всегда оказывается верным. Нежелание (а порой и неумение) учитывать применимость тех или иных методов к решаемой задаче и тем более их оптимальность, оценить достоверность полученных результатов на практике может приводить к конфузам. Например, о том, сколько знаков в выданном компьютером ответе являются достоверными, задумываются немногие: "машина не может ошибаться!" -- единодушно (и в чем-то даже правильно) в один голос заявляют и школьник, и бухгалтер, и экономист, добросовестно используя все выведенные на экран цифры числа. Тем не менее, установить количе-ство отображаемых знаков после запятой в современной электронной таблице несоизмеримо проще, чем понять, сколько именно нужно их оставить.


Подобные документы

  • Возможности использования Internet-ресурсов в средней школе. Мониторинг качества образовательных сайтов в России. Создание образовательного сайта по информатике для 10-го класса. Анализ практического использования образовательного сайта "Информатика".

    дипломная работа [3,2 M], добавлен 10.03.2012

  • Cущность ЕГЭ как основной формы контроля уровня знаний за курс средней школы. Анализ раскрытия технологии программирования в учебниках по информатике 10-11 классов. Разработка уроков по подготовке школьников к решению заданий по программированию.

    дипломная работа [988,7 K], добавлен 18.07.2014

  • Общеобразовательное и прикладное направления обучения кибернетике и информатике в средней школе. Появление первого школьного учебника по информатике в СССР. Начало преподавания дисциплины в массовой школе, обязательный минимум содержания образования.

    презентация [199,4 K], добавлен 19.10.2014

  • Предмет "Информатика и информационно-коммуникационные технологии" в программе начальной школы. Цели обучения информатике. Кодирование информации – ее преобразование в форму, удобную для хранения и передачи. Разработка учебных материалов нового поколения.

    курсовая работа [2,0 M], добавлен 27.11.2010

  • Использование обучающих программ для формирования знаний и умений по информатике. Главное окно среды программирования Delphi, окна дерева объектов и кода программы. Требования к оборудованию и описание обучающей программы "Информатика в играх и загадках".

    курсовая работа [1,3 M], добавлен 03.05.2012

  • Основы организации и формы внеклассной работы по информатике. Разработка внеклассного мероприятия по информатике через деловую игру. Деловая игра в практике внеклассного занятия. Общие положения, этапы и содержание деловой игры "Чья фирма успешнее?".

    курсовая работа [57,3 K], добавлен 18.09.2010

  • Основные понятия алгебры высказываний. Характеристика главных законов алгебраической логики, сущность логических операций и определение порядка их проведения. Практическое применение в информатике табличного и алгебраического задания булевских функций.

    курсовая работа [662,0 K], добавлен 23.04.2013

  • Социальная информатика - новое направление в современной информатике. Разработка элективного курса по дисциплине. Понятие "информационное общество", классификация его ресурсов. Защита прав личности, общества и государства на конфиденциальность информации.

    курсовая работа [220,7 K], добавлен 27.11.2010

  • Сведения об окружающем мире и протекающих в нем процессах. Информационная ценность сообщения. Общая схема ЭВМ. Возможность обмена данными между компьютерами. Средства взаимодействия в информатике. Цели и задачи информатики. Информатика как наука.

    контрольная работа [34,6 K], добавлен 19.08.2010

  • Основы организации и управления школьными проектами по информатике с помощью онлайн-платформ. Преимущества и недостатки применения GitHub в школьной проектной работе. Алгоритм создания репозитория. Организация совместной работы учащихся над проектом.

    дипломная работа [1,3 M], добавлен 25.04.2021

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.