Организация баз данных

Понятие системы базы данных. Реляционная модель и ее характеристики. Целостность в реляционной модели. Реляционная алгебра. Вопросы проектирования БД. Нормальные формы отношений. Проектирование БД методом сущность-связь. ER-диаграммы. Язык SQL.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 03.10.2008
Размер файла 353,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Транзакция A

Время

Транзакция B

Извлечение кортежа р

t1

-

-

t2

Извлечение кортежа р

Обновление кортежа р

t3

-

-

t4

Обновление кортежа р

рис. 15.2. Потеря в момент времени t4 результатов обновления, выполненного транзакцией A.

15.4.2 Проблема незафиксированной зависимости

Проблема незафиксированной зависимости появляется, если с помощью некоторой транзакции осуществляется извлечение (или, что еще хуже, обновление) некоторого кортежа, который в данный момент обновляется другой транзакцией, но это обновление еще не закончено. Таким образом, если обновление не завершено, существует некоторая вероятность того, что оно не будет завершено никогда. (Более того, в подобном случае может быть выполнен возврат к предыдущему состоянию кортежа с отменой выполнения транзакции.) B таком случае, в первой транзакции будут принимать участие данные, которых больше не существует. Эта ситуация показана на рис. 15.3, рис. 15.4.

В первом примере (рис. 15.3) транзакция A в момент времени t2 встречается с невыполненным обновлением (оно также называется невыполненным изменением). Затем это обновление отменяется в момент времени t3. Таким образом, транзакция A выполняется на основе фальшивого предположения, что кортеж р имеет некоторое значение в момент времени t2, тогда как на самом деле он имеет некоторое значение, существовавшее еще в момент времени t1. В итоге после выполнения транзакции A будет получен неверный результат. Кроме того, обратите внимание, что отмена выполнения транзакции B может произойти не по вине транзакции B, а, например, в результате краха системы. (К этому времени выполнение транзакции A может быть уже завершено, а потому крушение системы не приведет к отмене выполнения транзакции A.)

Транзакция A

Время

Транзакция B

-

t1

Обновление кортежа р

Извлечение кортежа р

t2

-

-

t3

Отмена выполнения транзакции

рис. 15.3. Транзакция A становится зависимой от невыполненного изменения в момент времени t2.

Транзакция A

Время

Транзакция B

-

t1

Обновление кортежа р

Обновление кортежа р

t2

-

-

t3

Отмена выполнения транзакции

рис. 15.4. Транзакция A обновляет невыполненное изменение в момент времени t2, и результаты этого обновления утрачиваются в момент времени t3.

Второй пример, приведенный на рис. 15.4, иллюстрирует другой случай. Не только транзакция A становится зависимой от изменения, не выполненного в момент времени t2, но также в момент времени t3 фактически утрачивается результат обновления, поскольку отмена выполнения транзакции B в момент времени t3 приводит к восстановлению кортежа р к исходному значению в момент времени t1. Это еще один вариант проблемы потери результатов обновления.

15.4.3 Проблема несовместимого анализа

На рис. 15.5 показаны транзакции A и B, которые выполняются для кортежей со счетами (табл. 9.1). При этом транзакция A суммирует балансы, транзакция B производит перевод суммы 10 со счета 3 на счет 1. Полученный в итоге транзакции A результат 110, очевидно, неверен, и если он будет записан в базе данных, то в ней может возникнуть проблема несовместимости. В таком случае говорят, что транзакция A встретилась с несовместимым состоянием и на его основе был выполнен несовместимый анализ. Обратите внимание на следующее различие между этим примером и предыдущим: здесь не идет речь о зависимости транзакции A от транзакции B, так как транзакция B выполнила все обновления до того, как транзакция A извлекла СЧЕТ 3.

табл. 15.1 Остатки на счетах до выполнения транзакций.

Счет

СЧЕТ 1

СЧЕТ 2

СЧЕТ 3

Остаток

40

50

30

Транзакция A

Время

Транзакция B

Извлечение кортежа СЧЕТ 1:

СУММА = 40

t1

-

Извлечение кортежа СЧЕТ 1:

СУММА = 90

t2

-

-

t3

Извлечение кортежа СЧЕТ 3:

-

t4

Обновление кортежа СЧЕТ 3:

30  20

-

t5

Извлечение кортежа СЧЕТ 1:

-

t6

Обновление кортежа СЧЕТ 1:

40  50

-

t7

Завершение выполнения транзакции

Извлечение кортежа СЧЕТ 3:

СУММА = 110 (а не 120)

t8

-

рис. 15.5. Транзакция A выполнила несовместимый анализ.

15.5 Понятие блокировки

Описанные выше проблемы могут быть разрешены с помощью методики управления параллельным выполнением процессов под названием блокировка. Ее основная идея очень проста: в случае, когда для выполнения некоторой транзакции необходимо, чтобы некоторый объект (обычно это кортеж базы данных) не изменялся непредсказуемо и без ведома этой транзакции (как это обычно бывает), такой объект блокируется. Таким образом, эффект блокировки состоит в том, чтобы "заблокировать доступ к этому объекту со стороны других транзакций", а значит, предотвратить непредсказуемое изменение этого объекта. Следовательно, первая транзакция в состоянии выполнить всю необходимую обработку с учетом того, что обрабатываемый объект остается в стабильном состоянии настолько долго, насколько это нужно.

Предположим, что в системе поддерживается два типа блокировок: блокировка без взаимного доступа (монопольная блокировка), называемая Х-блокировкой (X locks - exclusive locks), и блокировка с взаимным доступом, называемая S-блокировкой (S locks - Shared locks). Замечание. Х- и S-блокировки иногда называют блокировками записи и чтения соответственно. Предположим, что Х- и S-блокировки единственно возможные, хотя в коммерческих системах существуют блокировки других типов. Кроме того, допустим, что в кортежи являются единственным типом "блокируемого объекта", хотя опять же н в коммерческих системах могут блокироваться и другие объекты. Ниже показано функционирование механизма блокировок.

1. Если транзакция A блокирует кортеж р без возможности взаимного доступа (Х_блокировка), то запрос другой транзакции B с блокировкой этого кортежа p будет отменен.

2. Если транзакция A блокирует кортеж р с возможностью взаимного доступа (S_блокировка), то:

2.1. запрос со стороны некоторой транзакции B на Х_блокировку кортежа будет отвергнут;

2.2. запрос со стороны некоторой транзакции B на S_блокировку кортежа р будет принят (т.е. транзакция B также будет блокировать кортеж р с помощью S_блокировки).

Эти правила можно наглядно представить в виде матрицы совместимости, показанной на рис. 15.6, и интерпретировать ее следующим образом. Рассмотрим некоторый кортеж р и предположим, что транзакция A блокирую кортеж р различными типами блокировки (это обозначено соответствующими символами S и X, а отсутствие блокировки -- прочерком). Предположим также, что некоторая транзакция B запрашивает блокировку кортежа р, что обозначено в первом слева столбце матрицы на рис. 15.6 (для полноты картины в таблице также приведен случай "отсутствия блокировки"). В других ячейках матрицы символ N обозначает конфликтную ситуацию (запрос со стороны транзакции B не может быть удовлетворен, и сама эта транзакция переходит в состояние ожидания), a Y - полную совместимость (запрос со стороны транзакции B удовлетворен). Очевидно, что эта матрица является симметричной.

X

S

-

X

N

N

Y

S

N

Y

Y

-

Y

Y

Y

рис. 15.6. Матрица совместимости для Х- и S-блокировки.

Введем протокол доступа к данным, который на основе введения только что описанных Х- и S-блокировки позволяет избежать возникновения проблем параллелизма.

1. Транзакция, предназначенная для извлечения кортежа, прежде всего должна наложить S_блокировку на этот кортеж.

2. Транзакция, предназначенная для обновления кортежа, прежде всего должна наложить Х-блокировку на этот кортеж. Иначе говоря, если, например, для последовательности действий типа извлечение/обновление для кортежа уже задана S-блокировка, то ее необходимо заменить Х_блокировкой. Блокировки в транзакциях обычно задаются неявным образом: например, запрос на "извлечение кортежа" является неявным запросом с S-блокировкой, а запрос на "обновление кортежа" - неявным запросом с Х_блокировкой соответствующего кортежа. При этом под термином "обновление" (как и ранее) подразумеваются помимо самих операций обновления также операции вставки и удаления.

3. Если запрашиваемая блокировка со стороны транзакции B отвергается из-за конфликта с некоторой другой блокировкой со стороны транзакции A, то транзакция B переходит в состояние ожидания. Причем транзакция B будет находиться в состоянии ожидания до тех пор, пока не будет снята блокировка, заданная транзакцией A. В системе обязательно должны быть предусмотрены способы устранения бесконечно долгого состояния ожидания транзакции B.

4. Х-блокировки сохраняются вплоть до конца выполнения транзакции (до операции "завершение выполнения" или "отмена выполнения"). S_блокировки также обычно сохраняются вплоть до этого момента.

15.6 Решение проблем параллелизма

Рассмотрим решение проблем параллелизма с помощью механизма блокировок.

15.6.1 Проблема потери результатов обновления.

На рис. 15.7 приведена измененная версия процесса, показанного на рис. 15.2, с учетом применения протокола блокировки для чередующихся операций. Операция обновления для транзакции A в момент времени t3 не будет выполнена, поскольку она является неявным запросом с заданием Х-блокировки для кортежа р, а этот запрос вступает в конфликт с S-блокировкой, уже заданной транзакцией B. Таким образом, транзакция A переходит в состояние ожидания. По аналогичным причинам транзакция B переходит в состояние ожидания в момент времени t4.Обновления теперь не утрачиваются, однако возникает новая проблема - бесконечное ожидание или тупиковая ситуация. Способы решения этой проблемы рассматриваются ниже.

Транзакция A

Время

Транзакция B

Извлечение кортежа р

(задание S-блокировки для p)

t1

-

-

t2

Извлечение кортежа р

(задание S-блокировки для p)

Обновление кортежа р

(задание X-блокировки для p)

t3

-

Ожидание

t4

Обновление кортежа р

(задание X-блокировки для p)

Ожидание

Ожидание

рис. 15.7. Хотя обновления не утрачиваются, но в момент времени t4 возникает тупиковая ситуация.

15.6.2 Проблема незафиксированной зависимости.

На рис. 15.8, рис. 15.9 приведены в измененном виде примеры, показанные ранее на рис. 15.3 и рис. 15.4 соответственно. Они демонстрируют чередующееся выполнение операций согласно описанному выше протоколу блокировки. Операция для транзакции A в момент времени t2 (извлечение на рис. 15.8 и обновление на рис. 15.9) не будет выполнена. Дело в том, что она является неявным запросом с заданием блокировки для кортежа р, а этот запрос вступает в конфликт с Х-блокировкой, уже заданной транзакцией B. Таким образом, транзакция A переходит в состояние ожидания до тех пор, пока не будет прекращено выполнение транзакции B (до операции окончания или отмены выполнения транзакции B). Тогда заданная транзакцией B блокировка будет снята и транзакция A может быть выполнена. Причем транзакция A будет иметь дело с некоторым фиксированным значением (либо существовавшим до выполнения транзакции B при отмене ее выполнения, либо полученным после выполнения транзакции B). В любом случае транзакция A больше не зависит от незафиксированного обновления.

Транзакция A

Время

Транзакция B

-

t1

Обновление кортежа р

(задание X-блокировки для p)

Извлечение кортежа р

(задание S-блокировки для p)

t2

-

Ожидание

t3

Отмена выполнения транзакции

(снятие X-блокировки для p)

Итог: Извлечение кортежа р

(задание S-блокировки для p)

t4

рис. 15.8. Транзакция A предохраняется от выполнения операций с незафиксированным изменением в момент времени t2.

Транзакция A

Время

Транзакция B

-

t1

Обновление кортежа р

(задание X-блокировки для p)

Обновление кортежа р

(задание X-блокировки для p)

t2

-

Ожидание

t3

Отмена выполнения транзакции

(снятие X-блокировки для p)

Итог: Обновление кортежа р

(задание X-блокировки для p)

t4

рис. 15.9. Транзакция A предохраняется от выполнения операций с незафиксированным изменением в момент времени t2.

15.6.3 Проблема несовместимого анализа

На рис. 15.10 приведена измененная версия отношения (рис. 15.5) с перечислением чередующихся транзакций согласно протоколу блокировки. Операция обновления для транзакции B в момент времени t6 не будет выполнена. Дело в том, что она является неявным запросом с заданием Х-блокировки для кортежа СЧЕТ 1, а этот запрос вступает в конфликт с S-блокировкой, уже заданной транзакцией A. Таким образом, транзакция B переходит в состояние ожидания. Точно так же операция извлечения для транзакции A в момент времени t7 не будет выполнена. Дело в том, что она является неявным запросом с заданием S-блокировки для кортежа СЧЕТ 3, а этот запрос вступает в конфликт с Х_блокировкой, уже заданной транзакцией B. Таким образом, транзакция A переходит в состояние ожидания. Следовательно, блокировка хотя и помогает решить одну проблему (а именно проблему несовместимого анализа), но приводит к необходимости решения другой проблемы (а именно проблемы возникновения тупиковой ситуации).

СЧЕТ 1

40

СЧЕТ 2

50

СЧЕТ 3

30

Транзакция A

Время

Транзакция B

Извлечение кортежа СЧЕТ 1:

(задание S-блокировки для СЧЕТ 1)

СУММА = 40

t1

-

Извлечение кортежа СЧЕТ 1:

(задание S-блокировки для СЧЕТ 2)

СУММА = 90

t2

-

-

t3

Извлечение кортежа СЧЕТ 3:

(задание S-блокировки для СЧЕТ 3)

-

t4

Обновление кортежа СЧЕТ 3:

(задание X-блокировки для СЧЕТ 3)

30  20

-

t5

Извлечение кортежа СЧЕТ 1:

(задание S-блокировки для СЧЕТ 1)

-

t6

Обновление кортежа СЧЕТ 1:

(задание X-блокировки для СЧЕТ 1)

40  50

-

t7

Ожидание

Извлечение кортежа СЧЕТ 3:

(задание S-блокировки для СЧЕТ 3)

t8

Ожидание

Ожидание

Ожидание

рис. 15.10. Проблема несовместимого анализа разрешается, но в момент времени t7 возникает тупиковая ситуация.

15.7 Тупиковые ситуации

Как было показано выше, блокировку можно использовать для разрешения трех основных проблем, возникающих при параллельной обработке кортежей. К сожалению, использование блокировок приводит к возникновению другой проблемы - тупиковой ситуации. На рис. 15.11 показан обобщенный пример этой проблемы, в котором p1 и p2 представляют любые блокируемые объекты, необязательно кортежи базы данных, а выражения типа "блокировка ... без взаимного доступа" представляют любые операции с наложением блокировки без взаимного доступа, заданные как явно, так и неявно.

Транзакция A

Время

Транзакция B

Блокировка р1 без взаимного доступа

t1

-

-

t2

Блокировка р2 без взаимного доступа

Блокировка р2 без взаимного доступа

t3

-

Ожидание

t4

Блокировка р1 без взаимного доступа

Ожидание

Ожидание

рис. 15.11. Пример тупиковой ситуации.

Тупиковая ситуация возникает тогда, когда две или более транзакции одновременно находятся в состоянии ожидания, причем для продолжения работы каждая из транзакций ожидает прекращения выполнения другой транзакции.

Для обнаружения тупиковой ситуации следует обнаружить цикл в диаграмме состояний ожидания, т.е. в перечне "транзакций, которые ожидают окончания выполнения других транзакций" Поиск выхода из тупиковой ситуации состоит в выборе одной из заблокированных транзакций в качестве жертвы и отмене ее выполнения. Таким образом, с нее снимается блокировка, а выполнение другой транзакции может быть возобновлено.

На практике не все системы в состоянии обнаружить тупиковую ситуацию. Например, в некоторых из них используется хронометраж выполнения транзакций, и сообщение о возникновении тупиковой ситуации поступает, если транзакция не выполняется за некоторое предписанное заранее время.

Следует обратить внимание на то, что транзакция-жертва признается "некорректной" и отменяется "не из-за собственной некорректности". В некоторых системах предусмотрен автоматический перезапуск транзакции с самого начала при условии, что обстоятельства, которые привели к тупиковой ситуации, не повторятся вновь. A в других системах в программу, связанную с данной транзакцией, просто посылается сообщение о "вызвавшей тупиковую ситуацию транзакции-жертве" для обработки этой ситуации в самой программе С точки зрения программирования приложений предпочтительнее первый из этих подходов. Но несмотря на это, всегда рекомендуется решать данную проблему с точки зрения пользователя.

15.8 Способность к упорядочению

Чередующееся выполнение заданного множества транзакций будет верным, если оно упорядочено, т.е. при его выполнении будет получен такой же результат, как и при последовательное выполнении тех же транзакций. Обосновать это утверждение помогут следующие замечания:

1. Отдельные транзакции считаются верными, если при их выполнении база данных переходит из одного непротиворечивого состояния в другое непротиворечивое состояние.

2. Выполнение транзакций одна за другой в любом последовательном порядке также является верным. При этом под выражением "любой последовательный порядок" подразумевается, что используются независимые друг от друга транзакции.

3. Чередующееся выполнение транзакций, следовательно, является верным, если оно эквивалентно некоторому последовательному выполнению, т.е. если оно подлежит упорядочению.

Возвращаясь к приведенным выше примерам (рис. 15.2 - рис. 15.5), можно отметить, что проблема в каждом случае заключалась в том, что чередующееся выполнение транзакций не было упорядочено, т.е. не было эквивалентно выполнению либо сначала транзакции A, а затем транзакции B, либо сначала транзакции B, а затем транзакции A.

Для заданного набора транзакций любой порядок их выполнения (чередующийся или какой-либо другой) называется графиком запуска. Выполнение транзакций по одной без их чередования называется последовательным графиком запуска, а непоследовательное выполнение транзакций - чередующимся графиком запуска или непоследовательным графиком запуска. Два графика называются эквивалентными, если при их выполнении будет получен одинаковый результат, независимо от исходного состояния базы данных. Таким образом, график запуска является верным (т.е. допускающим возможность упорядочения), если он эквивалентен некоторому последовательному графику запуска.

При выполнении двух различных последовательных графиков запуска, содержащих одинаковый набор транзакций, можно получить совершенно различные результаты. Поэтому выполнение двух различных чередующихся графиков запуска с одинаковыми транзакциями может также привести к различным результатам, которые могут быть восприняты как верные.

Теорема двухфазной блокировки (не имеет отношения к протоколу двухфазной фиксации), которая может быть сформулирована следующим образом:

Если все транзакции подчиняются "протоколу двухфазной блокировки", то для всех возможных чередующихся графиков запуска существует возможность упорядочения.

При этом протокол двухфазной блокировки, в свою очередь, формулируется следующим образом.

1. Перед выполнением каких-либо операций с некоторым объектом (например, с кортежем базы данных) транзакция должна заблокировать этот кортеж.

2. После снятия блокировки транзакция не должна накладывать никаких других блокировок.

Таким образом, транзакция, которая подчиняется этому протоколу, характеризуется двумя фазами: фазой наложения блокировки и фазой снятия блокировки.

Характеристика упорядочения может быть выражена следующим образом. Если A и B являются любыми двумя транзакциями некоторого графика запуска, допускающего возможность упорядочения, то либо A логически предшествует B, либо B логически предшествует A, т.е. либо B использует результаты выполнения транзакции A, либо A использует результаты выполнения транзакции B. (Если транзакция A приводит к обновлению кортежей р, q, ... r и транзакция B использует эти кортежи в качестве входных данных, то используются либо все обновленные с помощью A кортежи, либо полностью не обновленные кортежи до выполнения транзакции A, но никак не их смесь.) Наоборот, график запуска является неверным и не подлежит упорядочению, если результат выполнения транзакций не соответствует либо сначала выполнению транзакции A, а затем транзакции B, либо сначала выполнению транзакции B, а затем транзакции A.

В настоящее время с целью понижения требований к ресурсам и, следовательно, повышения производительности и пропускной способности в реальных системах обычно предусмотрено использование не двухфазных транзакций, а транзакций с "ранним снятием блокировки" (еще до выполнения операции прекращения транзакции) и наложением нескольких блокировок. Однако следует понимать, что использование таких транзакций сопряжено с большим риском. Действительно, при использовании недвухфазной транзакции A предполагается, что в данной системе не существует никакой другой чередующейся с ней транзакции B (в противном случае в системе возможно получение ошибочных результатов).

15.9 Уровни изоляции транзакции

Термин уровень изоляции, грубо говоря, используется для описания степени вмешательства параллельных транзакций в работу некоторой заданной транзакции. Но при обеспечении возможности упорядочения не допускается никакого вмешательства, иначе говоря, уровень изоляции должен быть максимальным. Однако, как уже отмечалось, в реальных системах по различным причинам обычно допускаются транзакции, которые работают на уровне изоляции ниже максимального.

Уровень изоляции обычно рассматривается как некоторое свойство транзакции. В реальных СУБД может быть реализовано различное количество уровней изоляции.

Кроме того помимо кортежей могут блокироваться другие единицы данных, например целое отношение, база данных или (пример противоположного характера) некоторое значение атрибута внутри заданного кортежа.

15.10 Поддержка в языке SQL

SQL поддерживает операции COMMIT и ROLLBACK для фиксации и отката транзакции соответственно.

Специальный оператор SET TRANSACTION используется для определения некоторых характеристик транзакции, которую нужно будет инициировать, такие, как режим доступа и уровень изоляции.

В стандарте языка SQL не предусмотрена поддержка явным образом возможности блокировки (фактически, блокировка в нем вообще не упоминается). Блокировки накладываются неявно, при выполнении операторов SQL.

Литература:

1. Дейт К.Дж. Введение в системы баз данных. -Пер. с англ. -6-е изд. -К. Диалектика, 1998. Стр. 354-392.

ЛЕКЦИЯ 16. Технологии СУБД

  • 16.1 Распределенные базы данных
    • 16.2 Принципы функционирования распределенной БД
    • 16.3 Системы типа клиент/сервер
    • 16.4 Серверы баз данных

16.1 Распределенные базы данных

16.1.1 Предварительные замечания.

Системы дистрибутивных баз данных состоят из набора узлов, связанных вместе коммуникационной сетью, в которой:

1. каждый узел обладает своими собственными системами баз данных;

2. узлы работают согласованно, поэтому пользователь может получить доступ к данным на любом узле сети, как будто все данные находятся на его собственном узле.

Из этого следует, что так называемая "распределенная база данных" на самом деле является типом виртуального объекта, части которого физически сохраняются в ряду отдаленных "реальных" баз данных на удаленных узлах (фактически, это логическая единица всех этих реальных баз данных).

Каждый узел обладает своими собственными базами данных, собственными локальными пользователями, собственной СУБД и программным обеспечением для управления транзакциями (включая собственное программное обеспечение для блокирования, регистрации, восстановления и т.д.), а также своим собственным локальным диспетчером передачи данных. В частности, пользователь может на собственном локальном узле выполнять операции с данными так, как будто этот узел вовсе не является частью распределенной системы.

16.2 Принципы функционирования распределенной БД

Теперь, после краткого введения, можно привести формулировку фундаментального принципа распределенной базы данных: для пользователя распределенная система должна выглядеть точно так же, как нераспределенная система.

Изложенный фундаментальный принцип приводит к следующему набору правил и целе9ф:1. Локальная автономия;2. Независимость от центрального узла;3. Непрерывное функционирование;4. Независимость от расположения

5. Независимость от фрагментации;

6. Независимость от репликации;

7. Обработка распределенных запросов;

8. Управление распределенными транзакциями;

9. Независимость от аппаратного обеспечения;

10. Независимость от операционной системы;

11. Независимость от сети;

12. Независимость от СУБД.

16.2.1 Локальная автономия

В распределенной системе узлы следует делать автономными. Локальная автономия означает, что операции на данном узле управляются этим узлом, т.е. функционирование любого узла X не зависит от успешного выполнения некоторых операций на каком-то другом узле Y (в противном случае может возникнуть крайне нежелательная ситуация, а именно: выход из строя узла Y может привести к невозможности исполнения операций на узле X, даже если с узлом X ничего не случилось). Из принципа локальной автономии также следует, что владение и управление данными осуществляется локально вместе с локальным ведением учета.

16.2.2 Независимость от центрального узла

Под локальной автономией подразумевается, что все узлы должны рассматриваться как равные. Следовательно, не должно существовать никакой зависимости и от центрального "основного" узла с некоторым централизованным обслуживанием, например централизованной обработкой запросов, централизованным управлением транзакциями или централизованным присвоением имен.

Зависимость от центрального узла нежелательна по крайней мере по двум причинам. Во-первых, центральный узел может быть "узким" местом всей системы, а во-вторых, более важно то, что система в таком случае становится уязвимой, т.е. при повреждении центрального узла может выйти из строя вся система.

16.2.3 Непрерывное функционирование

Одним из основных преимуществ распределенных систем является то, что они обеспечивают более высокую надежность и доступность.

1. Надежность (вероятность того, что система исправна и работает в любой заданный момент) повышается благодаря работе распределенных систем не по принципу "все или ничего", а в постоянном режиме; т.е. работа системы продолжается, хотя и на более низком уровне, даже в случае неисправности некоторого отдельного компонента, например отдельного узла.

2. Доступность (вероятность того, что система исправна и работает в течение некоторого промежутка времени) повышается частично по той же причине, а частично благодаря возможности репликации данных (подробнее это описывается ниже).

16.2.4 Независимость от расположения

Основная идея независимости от расположения (которая также называется прозрачностью расположения) достаточно проста: пользователям не следует знать, в каком физическом месте хранятся данные, наоборот, с логической точки зрения пользователям следовало бы обеспечить такой режим, при котором создается впечатление, что все данные хранятся на их собственном локальном узле.

16.2.5 Независимость от фрагментации

В системе поддерживается фрагментация данных, если некое хранимое отношение в целях физического хранения можно разделить на части, или "фрагменты". Фрагментация желательна для повышения производительности системы, поскольку данные лучше хранить в том месте, где они наиболее часто используются. При такой организации многие операции будут чисто локальными, что снизит нагрузку на сеть.

Существует два основных типа фрагментации - горизонтальная и вертикальная, которые связаны с реляционными операциями выборки и проекции соответственно. Иначе говоря, фрагментом может быть любое произвольное подчиненное отношение, которое можно вывести из исходного отношения с помощью операций выборки и проекции. При этом следует учесть приведенные ниже допущения.

Предполагается без утраты общности, что все фрагменты данного отношения независимы, т.е. ни один из фрагментов не может быть выведен из других фрагментов либо иметь выборку или проекцию, которая может быть выведена из других фрагментов. (Если есть необходимость сохранить одну и ту же информацию в нескольких разных местах, для этого следует использовать механизм репликации системы.).Проекции не должны допускать потерю информации.

16.2.6 Независимость от репликации

В системе поддерживается независимость от репликации, если заданное хранимое отношение или заданный фрагмент могут быть представлены несколькими различными копиями, или репликами, хранимыми на нескольких различных узлах.

16.2.7 Обработка распределенных запросов.

Вопрос оптимизации более важен для распределенной, нежели для централизованной системы. Основная причина заключается в том, что для выполнения охватывающего несколько узлов запроса существует довольно много способов перемещения данных по сети. В таком случае чрезвычайно важно найти наиболее эффективную стратегию.

16.2.8 Управление распределенными транзакциями.

Существует два основных аспекта управления обработкой транзакций, а именно: управление восстановлением и управление параллелизмом, каждому из которых в распределенных системах должно уделяться повышенное внимание.

16.2.9 Независимость от аппаратного обеспечения.

Подразумевает возможность работы узлов системы на разном аппаратном обеспечении.

16.2.10 Независимость от операционной системы.

Подразумевает возможность работы узлов системы под управлением различных операционных систем.

16.2.11 Независимость от сети.

Подразумевает возможность работы узлов системы в гетерогенных сетях, с использованием различного сетевого оборудования

16.2.12 Независимость от СУБД.

Эта цель подразумевает использование несколько менее точной формулировки предположения о строгой однородности. В новой форме это предположение означает, что все экземпляры СУБД на различных узлах поддерживают один и тот же интерфейс, хотя они не обязательно должны быть копиями одного и того же программного обеспечения.

16.2.13 Распространение обновления

Как указывалось выше, основной проблемой репликации данных является то, что обновление любого логического объекта должно распространяться на все хранимые копии этого объекта. Трудности возникают из-за того, что некоторый узел, содержащий данный объект, может быть недоступен (например, из-за краха системы или данного узла) именно в момент обновления.

Общая схема устранения этой проблемы (и не единственно возможная в этом случае), называемая схемой первичной копии, будет описана далее.

1. Одна копия каждого реплицируемого объекта называется первичной копией, а все остальные - вторичными.

2. Первичные копии различных объектов находятся на различных узлах (таким образом, эта схема является распределенной).

3. Операции обновления считаются завершенными, если обновлены все первичные копии. В таком случае в некоторый момент времени узел, содержащий такую копию, несет ответственность за распространение операции обновления на вторичные копии.

16.3 Системы типа клиент/сервер

Системы клиент/сервер могут рассматриваться как особый случай распределенных систем. Точнее, система клиент/сервер является распределенной системой, в которой одни узлы являются клиентами, а другие - серверами,, все данные хранятся на серверах, все приложения исполняются клиентами, а "места их соединения не скрыты от пользователя" (т.е. не достигается цель независимости от расположения).

Термин "клиент/сервер" относится преимущественно к архитектуре или логике распределения ответственности, поэтому клиент - это приложение, т.е. внешний интерфейс, а сервер - СУБД, т.е. внутренний интерфейс для непосредственной работы с базами данных. Таким образом, система может быть четко разделена на две части с использованием двух разных типов компьютеров. Эта последняя возможность настолько притягательна, что термин "клиент/сервер" стал применяться почти исключительно в случаях, когда клиент и сервер действительно находятся на разных компьютерах.

Реальное распространение архитектуры "клиент-сервер" стало возможным благодаря развитию и широкому внедрению в практику концепции открытых систем.

Основным смыслом подхода открытых систем является упрощение комплексирования вычислительных систем за счет международной и национальной стандартизации аппаратных и программных интерфейсов. Главной побудительной причиной развития концепции открытых систем явились повсеместный переход к использованию локальных компьютерных сетей и те проблемы комплексирования аппаратно-программных средств, которые вызвал этот переход. В связи с бурным развитием технологий глобальных коммуникаций открытые системы приобретают еще большее значение и масштабность.

Ключевой фразой открытых систем, направленной в сторону пользователей, является независимость от конкретного поставщика. Ориентируясь на продукцию компаний, придерживающихся стандартов открытых систем, потребитель, который приобретает любой продукт такой компании, не попадает к ней в рабство. Он может продолжить наращивание мощности своей системы путем приобретения продуктов любой другой компании, соблюдающей стандарты.

16.4 Серверы баз данных

Обычно для обозначения всей СУБД, основанной на архитектуре "клиент-сервер", включая и серверную, и клиентскую части используют термин "сервер баз данных". Такие системы предназначены для хранения и обеспечения доступа к базам данных.

Доступ к базе данных от прикладной программы или пользователя производится путем обращения к клиентской части системы. В качестве основного интерфейса между клиентской и серверной частями выступает язык баз данных SQL.

В типичном на сегодняшний день случае на стороне клиента СУБД работает только такое программное обеспечение, которое не имеет непосредственного доступа к базам данных, а обращается для этого к серверу с использованием языка SQL.

Следует отметить и другие варианты этой основной темы.

1. Несколько клиентов могут использовать один и тот же сервер (действительно, это довольно обычная ситуация).

2. Один клиент может осуществить доступ к нескольким серверам. Эта ситуация может быть реализована двумя путями.

2.1. Клиент в заданный момент времени может осуществить доступ только к одному серверу, т.е. каждый отдельный запрос к базе данных должен быть направлен только к одному серверу и внутри одного запроса нельзя комбинировать данные, размещенные на двух или более серверах. Кроме того, пользователь должен знать, какие данные и на каких серверах хранятся.

2.2. Клиент в заданный момент времени может осуществить доступ к нескольким серверам, т.е. в отдельном запросе к базе данных могут комбинироваться данные, размещенные на двух или более серверах. Это значит, что данные для пользователя выглядят так, как если бы они действительно были размещены на одном сервере. В таком случае пользователю не нужно знать, какие данные и на каких серверах хранятся.

Второй способ, по сути, является формулировкой истинной распределенной системы, смысл которой не соответствует широко распространенному смыслу термина "клиент/сервер".

Литература:

1. Дейт К.Дж. Введение в системы баз данных. -Пер. с англ. -6-е изд. -К. Диалектика, 1998. Стр. 564-590.

ЛЕКЦИЯ 17. Современные постреляционные модели БД

  • 17.1 Системы управления базами данных следующего поколения
    • 17.2 Ориентация на расширенную реляционную модель
    • 17.3 Объектно-ориентированные СУБД

17.1 Системы управления базами данных следующего поколения

В этом разделе очень кратко рассматриваются основные направления исследований и разработок в области так называемых постреляционных систем, т.е. систем, относящихся к следующему поколению (хотя термин "next-generation DBMS" зарезервирован для некоторого подкласса современных систем).

Хотя отнесение СУБД к тому или иному классу в настоящее время может быть выполнено только условно (например, иногда объектно-ориентированную СУБД O2 относят к системам следующего поколения), можно отметить три направления в области СУБД следующего поколения. Чтобы не изобретать названий, будем обозначать их именами наиболее характерных СУБД.

1. Направление Postgres. Основная характеристика: максимальное следование (насколько это возможно с учетом новых требований) известным принципам организации СУБД (если не считать коренной переделки системы управления внешней памятью).

2. Направление Exodus/Genesis. Основная характеристика: создание собственно не системы, а генератора систем, наиболее полно соответствующих потребностям приложений. Решение достигается путем создания наборов модулей со стандартизованными интерфейсами, причем идея распространяется вплоть до самых базисовых слоев системы.

3. Направление Starburst. Основная характеристика: достижение расширяемости системы и ее приспосабливаемости к нуждам конкретных приложений путем использования стандартного механизма управления правилами. По сути дела, система представляет собой некоторый интерпретатор системы правил и набор модулей-действий, вызываемых в соответствии с этими правилами. Можно изменять наборы правил (существует специальный язык задания правил) или изменять действия, подставляя другие модули с тем же интерфейсом.

В целом можно сказать, что СУБД следующего поколения - это прямые наследники реляционных систем.

17.2 Ориентация на расширенную реляционную модель

Одним из основных положений реляционной модели данных является требование нормализации отношений: поля кортежей могут содержать лишь атомарные значения. Для традиционных приложений реляционных СУБД - банковских систем, систем резервирования и т.д. - это вовсе не ограничение, а даже преимущество, позволяющее проектировать экономные по памяти БД с предельно понятной структурой.

Однако с появлением эффективных реляционных СУБД их стали пытаться использовать и в менее традиционных прикладных системах - САПР, системах искусственного интеллекта и т.д. Такие системы обычно оперируют сложно структурированными объектами, для реконструкции которых из плоских таблиц реляционной БД приходится выполнять запросы, почти всегда требующие соединения отношений.

Приведение исходного табличного представления предметной области к "плоскому" виду является обязательным первым шагом в процессе проектирования реляционной базы данных на основе принципов нормализации. С другой стороны, абсолютно очевидно, что такое "уплощение" таблиц хотя и является необходимым условием получения неизбыточной и "правильной" схемы реляционной базы данных, в дальнейшем потенциально вызывает выполнение многочисленных соединений, наличие которых может свести на нет все преимущества "хорошей" схемы базы данных.

В "ненормализованных" реляционных моделях данных допускается хранение в качестве элемента кортежа кортежей (записей), массивов (регулярных индексированных множеств данных), регулярных множеств элементарных данных, а также отношений. При этом такая вложенность может быть, по существу, неограниченной. К настоящему времени фактически полностью сформировано теоретическое основание реляционных баз данных с отказом от нормализации.

17.2.1 Абстрактные типы данных

Одной из наиболее известных СУБД третьего поколения является система Postgres, (создатель этой системы М.Стоунбрекер).Одно свойство системы Postgres сближает ее со свойствами объектно-ориентированных СУБД. В Postgres допускается хранение в полях отношений данных абстрактных, определяемых пользователями типов.

17.2.2 Генерация систем баз данных, ориентированных на приложения

Идея очень проста: никогда не станет возможно создать универсальную систему управления базами данных, которая будет достаточна и не избыточна для применения в любом приложении. Например, если посмотреть на использование универсальных коммерческих СУБД, то можно легко увидеть, что по крайней мере в 90% случаев применяется не более чем 30% возможностей системы. Тем не менее, приложение несет всю тяжесть поддерживающей его СУБД, рассчитанной на использование в наиболее общих случаях.

Поэтому очень заманчиво производить не законченные универсальные СУБД, а нечто вроде компиляторов (сompiler compiler), позволяющих собрать систему баз данных, ориентированную на конкретное приложение (или класс приложений). Существуют как минимум два экспериментальных прототипа таких систем - Genesis и Exodus.

17.2.3 Поддержка исторической информации и темпоральных запросов

Обычные БД хранят мгновенный снимок модели предметной области. Любое изменение в момент времени t некоторого объекта приводит к недоступности состояния этого объекта в предыдущий момент времени. Самое интересное, что на самом деле в большинстве развитых СУБД предыдущее состояние объекта сохраняется в журнале изменений, но возможности доступа со стороны пользователя нет.

Конечно, можно явно ввести в хранимые отношения явный временной атрибут и поддерживать его значения на уровне приложений. Более того, в большинстве случаев так и поступают. Недаром в стандарте SQL появились специальные типы данных date и time. Но в таком подходе имеются несколько недостатков: СУБД не знает семантики временного поля отношения и не может контролировать корректность его значений; появляется дополнительная избыточность хранения (предыдущее состояние объекта данных хранится и в основной БД, и в журнале изменений); языки запросов реляционных СУБД не приспособлены для работы со временем.

Существует отдельное направление исследований и разработок в области темпоральных БД. В этой области исследуются вопросы моделирования данных, языки запросов, организация данных во внешней памяти и т.д. Основной тезис темпоральных систем состоит в том, что для любого объекта данных, созданного в момент времени t1 и уничтоженного в момент времени t2, в БД сохраняются (и доступны пользователям) все его состояния во временном интервале [t1,t2].

17.3 Объектно-ориентированные СУБД

Направление объектно-ориентированных баз данных (ООБД) возникло сравнительно давно. Публикации появлялись уже в середине 1980-х. Однако наиболее активно это направление развивается в последние годы. С каждым годом увеличивается число публикаций и реализованных коммерческих и экспериментальных систем.

В компьютерных технологиях сегодня отчетливо просматривается стремление с минимальными потерями перенести в виртуальный мир объекты мира реального. Объектно-ориентированная СУБД - именно то средство, которое обеспечивает запись объектов в базу данных "как есть". Данное обстоятельство стало решающим аргументом в пользу выбора ООСУБД для переноса семантики объектов и процессов реального мира в сферу информационных систем.

Использование объектного подхода к проектированию систем поднимает роль ООСУБД как средства для наиболее естественного хранения и манипулирования создаваемыми объектами. Несмотря на наличие многих теоретических проблем, ключевой из которых, безусловно, является сложность строгой формализации объектной модели данных, многие эксперты полагают, что за этими системами будущее.

Единого мнения по поводу того, как конкретно следует организовывать ООСУБД, нет. Тем не менее, можно указать ряд непременных свойств, которым они должны удовлетворять. Эти свойства продекларированы в "Манифесте систем объектно-ориентированных баз данных", а впоследствии закреплены в документах ODMG, организации, объединяющей ведущих производителей ООСУБД, ставящей своей целью выработать стандарты, соблюдение которых обеспечивало бы переносимость приложений. Используемая в статье терминология отражает требования стандарта ODMG 2.0, однако при описании примеров, взятых из различных коммерческих ООСУБД, авторы в первую очередь опирались на документацию соответствующих производителей.

17.3.1 Модель данных ООБД

В соответствии со стандартом ODMG 2.0 объектная модель

Базовыми примитивами являются объекты и литералы. Каждый объект имеет уникальный идентификатор, литерал не имеет идентификатора.

1. Объекты и литералы различаются по типу. Все элементы одного типа имеют одинаковый диапазон изменения состояния (множество свойств) и одинаковое поведение (множество определенных операций). Объект, на который можно установить ссылку, называется экземпляром; он хранит определенный набор данных.

2. Состояние объекта определяется набором значений, реализуемых множеством свойств. Этими свойствами могут быть атрибуты объекта или связи между объектом и одним или несколькими другими объектами.

3. Поведение объекта определяется набором операций, которые могут быть выполнены над объектом или самим объектом. Операции могут иметь список входных и выходных параметров строго определенного типа. Каждая операция может также возвращать типизированный результат.

4. База данных хранит объекты, позволяя совместно использовать их различным пользователям и приложениям. База данных основана на схеме данных, определяемой языком определения данных, и содержит экземпляры типов, определенных схемой.

рис. 17.1. Основные элементы ООСУБД.

Каждый тип имеет внешнюю спецификацию и одну или несколько реализации. Спецификация определяет внешние характеристики типа: пользователю для работы с объектом предоставляется набор операций и набор атрибутов объекта, при помощи которых можно работать с реальными экземплярами. Реализация определяет внутреннее содержание объектов, например операции.

Тип также является объектом. Поддерживается иерархия супертипов и подтипов, реализуя стандартный механизм объектно-ориентированного программирования - наследование.

ООСУБД обслуживает множество баз данных, каждая из которых содержит определенное множество типов. В базах данных могут содержаться объекты соответствующего типа из этого множества. Тип имеет набор свойств, а объект характеризуется состоянием в зависимости от значения каждого свойства. Операции, определяющие поведение типа, едины для всех объектов одного типа. Свойство едино для всего типа, а все объекты типа также имеют одинаковый набор свойств. Значение свойства относится к конкретному объекту.

17.3.2 Идентификатор объекта

Каждый объект в базе данных уникален. Существует несколько подходов для идентификации объекта. Самый простой - присвоить ему уникальный номер (OID - object identificator) в базе и никогда больше не повторять этот номер, даже если пре базах могут оказаться объекты одного класса, а уникальность номеров соблюдается только в пределах одной базы. Преимущество подхода - в простоте извлечения объектов нужного класса: объекты одного класса будут иметь идентификатор, имеющий общую часть. Идеальный же вариант - использование OID, состоящего из трех частей: номер базы, номер класса, номер объекта. Однако и при этом остается вопрос о том, как обеспечить уникальность номеров баз и классов на глобальном уровне - при использовании ООСУБД на различных платформах, в разных городах и странах.

17.3.3 Новые типы данных

Одним из принципиальных отличий объектных баз данных от реляционных является возможность создания и использования новых типов данных. Концептуально объект характеризуется поведением и состоянием. Определение типа заключается в определении поведения, т.е. операций, которые могут быть выполнены объектом или над состоянием объекта - набором атрибутов определенных типов (атрибут может иметь любой объявленный в базе тип). Важная особенность ООСУБД состоит в том, что создание нового типа не требует модификации ядра базы и основано на принципах объектно-ориентированного программирования: инкапсуляции, наследовании, перегрузке операций и позднем связывании.

табл. 17.1. Различие атрибутов типа и объекта

Атрибуты типа

Значение атрибутов типа

Значение атрибутов объекта

Название подразделения

Подразделение учета входящей корреспонденции

Нет

Название входящего документа

Нет

Постановление правительства № 357

Запрос на уточнение данных о продукте

Поздравление с праздником

Как правило, в ООСУБД для объектов, которые предполагается хранить в базе, (постоянные объекты), требуется, чтобы их предком был конкретный базовый тип, определяющий все основные операции взаимодействия с сервером баз данных.

Поэтому для создания своего типа необходимо унаследовать свойства любого имеющегося типа, наиболее подходящего по своему поведению и состоянию к типу, который требуется получить, расширить недостающие операции и атрибуты и переопределить, по необходимости, уже имеющиеся.

Пример на рис. 17.2 иллюстрирует возможность наращивания типа "Человек", который может быть "Мужчиной", "Женщиной", "Взрослым" или "Ребенком". Соответственно возможны попарные пересечения этих типов. Каждый из этих типов может иметь свой набор свойств и операций. Любой объект типа "Мужчина", "Женщина", "Взрослый" или "Ребенок" является объектом типа "Человек". Аналогично объект подтипа "Мужчина Взрослый", полученного наследованием типов "Мужчина" и "Взрослый" является человеком, мужского пола, взрослым и, соответственно, может пользоваться свойствами и операциями всех своих супертипов.

рис. 17.2. Пример наследования типов.

Функционирование базы основано на схеме данных. Как уже отмечалось в определении объектной модели, любой тип является объектом, следовательно, схемы данных являются уровнем интерпретации специфических служебных объектов, использующих свойства этих объектов как схему для создания новых типов. Схема данных может быть как первичной, для создания классов, которые собирается использовать программист, так и вторичной, выделяемой из созданных на языке программирования (скажем, на C++) классов и загружаемой в базу. Язык ODL разработан ODMG как универсальный язык описания объектов и не претендует на то, чтобы называться полноценным языком программирования. Для целей разработки этой же организацией предусмотрены элементы расширения классических объектных языков C++, Smalltalk, Java, позволяющих описать структуру объектов, их связи и типы связей.

В объектных базах данных также различают два вида операций и атрибутов, распространяющих свое действие только на конкретный экземпляр или на весь тип.

В примере из табл. 17.1 определен тип "Подразделение учета входящей корреспонденции", атрибут "Название подразделения". Все объекты входящей корреспонденции данного подразделения могут относиться только к этому подразделению и, для того, чтобы не засорять базу данных лишней информацией, название подразделения хранится в коде пользовательских программ, а не в объектах, хранимых в базе. Это справедливо в том случае, если название подразделения не меняется.

Для атрибутов объектов, значение которых может меняться, такой механизм не подходит: атрибут "Название входящего документа" в различных экземплярах может иметь различные значения. Аналогичный механизм применим и для операций: пользователь может определять операции для конкретного экземпляра. Базы данных, которые могут хранить код операции в экземпляре типа и способны его выполнить, называются активными объектными базами.


Подобные документы

  • Сущность и характеристика типов моделей данных: иерархическая, сетевая и реляционная. Базовые понятия реляционной модели данных. Атрибуты, схема отношения базы данных. Условия целостности данных. Связи между таблицами. Общие представления о модели данных.

    курсовая работа [36,1 K], добавлен 29.01.2011

  • Понятие реляционной модели данных, целостность ее сущности и ссылок. Основные этапы создания базы данных, связывание таблиц на схеме данных. Проектирование базы данных книжного каталога "Books" с помощью СУБД Microsoft Access и языка запросов SQL.

    курсовая работа [838,9 K], добавлен 25.11.2010

  • Построение концептуальной модели, процесс моделирования смыслового наполнения базы данных. Основные компоненты концептуальной модели. Построение реляционной модели. Целостность данных в реляционной базе. Нормализация. Проектирование базы данных в ACCESS.

    курсовая работа [1,8 M], добавлен 29.10.2008

  • Понятие нормализации таблиц базы данных и ее цели. Этапы процесса нормализации. Пример ненормализованных данных. Нормальные формы, к которым приводятся таблицы. Реляционная алгебра над учебной базой. База данных для предметной области "Учебные пособия".

    контрольная работа [216,1 K], добавлен 30.07.2010

  • Базы данных и их использование в вычислительной технике. Особенности и основная конструктивная единица сетевой модели данных. Иерархическая модель, объекты предметной области. Реляционная модель, ее наглядность, представление данных в табличной форме.

    реферат [115,8 K], добавлен 19.12.2011

  • Базы данных с двумерными файлами и реляционные системы управления базами данных (СУБД). Создание базы данных и обработка запросов к ним с помощью СУБД. Основные типы баз данных. Базовые понятия реляционных баз данных. Фундаментальные свойства отношений.

    реферат [57,1 K], добавлен 20.12.2010

  • Современные системы управления базами данных (СУБД). Анализ иерархической модели данных. Реляционная модель данных. Постреляционная модель данных как расширенная реляционная модель, снимающая ограничение неделимости данных, хранящихся в записях таблиц.

    научная работа [871,7 K], добавлен 08.06.2010

  • Цели проектирования баз данных (БД). Возникающие в процессе проектирования БД проблемы, особенности из разрешения в процессе нормализации отношений. Понятие функциональных зависимостей. Нормальные формы, обоснованные функциональными зависимостями.

    контрольная работа [193,1 K], добавлен 21.06.2016

  • Функции автоматизированной системы "Отдел аспирантуры". Проектирование реляционной модели и разработка SQL-кода базы данных. Анализ информационного обеспечения функций. Проектирования глобальной ER-модели. Спецификации локальных ограничений и правил.

    курсовая работа [428,4 K], добавлен 01.04.2011

  • Определенная логическая структура данных, которые хранятся в базе данных. Основные модели данных. Элементы реляционной модели данных. Пример использования внешних ключей. Основные требования, предъявляемые к отношениям реляционной модели данных.

    презентация [11,7 K], добавлен 14.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.