Проект корпоративной сети звукового обеспечения "Интеллектуального здания" на основе технологии Fast Ethernet

Оборудование и программное обеспечение сети и способы управления системой. Специализированные сетевые технологии передачи и распределения цифровых и аналоговых аудиосигналов. Построение технической модели сети. Опасные и вредные факторы в работе с ПЭВМ.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 03.03.2009
Размер файла 888,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Главными элементами рабочего места пользователя являются стол и кресло. Основным рабочим положением является положение сидя. Рабочее место для выполнения работ в положении сидя организуется в соответствии с ГОСТ 12.2.032-78.

Рабочая поза сидя вызывает минимальное утомление пользователя ПЭВМ. Рациональная планировка рабочего места предусматривает четкий порядок и постоянство размещения предметов, средств труда и документации. То, что требуется для выполнения работ чаще, расположено в зоне легкой досягаемости рабочего пространства.

Моторное поле - пространство рабочего места, в котором могут осуществляться двигательные действия человека.

Максимальная зона досягаемости рук - это часть моторного поля рабочего места, ограниченного дугами, описываемыми максимально вытянутыми руками при движении их в плечевом суставе. Оптимальная зона - часть моторного поля рабочего места, ограниченного дугами, описываемыми предплечьями при движении в локтевых суставах с опорой в точке локтя и с относительно неподвижным плечом. На рис. 5.1 показаны зоны досягаемости рук в горизонтальной плоскости.

Рисунок 5.1 - Зоны досягаемости рук в горизонтальной плоскости.

Зоны досягаемости рук в горизонтальной плоскости.

а - зона максимальной досягаемости;

б - зона досягаемости пальцев при вытянутой руке;

в - зона легкой досягаемости ладони;

г - оптимальное пространство для грубой ручной работы;

д - оптимальное пространство для тонкой ручной работы.

Рассмотрим оптимальное размещение предметов труда и документации в зонах досягаемости рук:

· МОНИТОР размещается в зоне а (в центре);

· КЛАВИАТУРА - в зоне г/д;

· СИСТЕМНЫЙ БЛОК размещается в зоне б (слева);

· ПРИНТЕР находится в зоне а (справа);

· ДОКУМЕНТАЦИЯ

1) в зоне легкой досягаемости ладони - в (слева) - литература и документация, необходимая при работе;

2) в выдвижных ящиках стола - литература, неиспользуемая постоянно.

При проектировании письменного стола следует учитывать следующее:

· высота стола должна быть выбрана с учетом возможности сидеть свободно, в удобной позе, при необходимости опираясь на подлокотники;

· нижняя часть стола должна быть сконструирована так, чтобы пользователь ПЭВМ мог удобно сидеть, не был вынужден поджимать ноги;

· поверхность стола должна обладать свойствами, исключающими появление бликов в поле зрения программиста;

· конструкция стола должна предусматривать наличие выдвижных ящиков (не менее 3 для хранения документации, листингов, канцелярских принадлежностей, личных вещей).

Параметры рабочего места выбираются в соответствии с антропометрическими характеристиками. При использовании этих данных в расчетах следует исходить из максимальных антропометрических характеристик (М+2).

При работе в положении сидя рекомендуются следующие параметры рабочего пространства:

· ширина не менее 700 мм;

· глубина не менее 400 мм;

· высота рабочей поверхности стола над полом 700-750 мм.

Оптимальными размерами стола являются:

· высота 710 мм;

· длина стола 1300 мм;

· ширина стола 650 мм.

Поверхность для письма должна иметь не менее 40 мм в глубину и не менее 600 мм в ширину.

Под рабочей поверхностью должно быть предусмотрено пространство для ног:

· высота не менее 600 мм;

· ширина не менее 500 мм;

· глубина не менее 400 мм.

Важным элементом рабочего места пользователя ПЭВМ является кресло. Оно выполняется в соответствии с ГОСТ 21.889-76. При проектировании кресла исходят из того, что при любом рабочем положении пользователя его поза должна быть физиологически правильно обоснованной, т.е. положение частей тела должно быть оптимальным. Для удовлетворения требований физиологии, вытекающих из анализа положения тела человека в положении сидя, конструкция рабочего сидения должна удовлетворять следующим основным требованиям:

· допускать возможность изменения положения тела, т.е. обеспечивать свободное перемещение корпуса и конечностей тела друг относительно друга;

· допускать регулирование высоты в зависимости от роста работающего человека (в пределах от 400 до 550 мм );

· радиус кривизны в горизонтальной плоскости 400мм,

· угол наклона спинки должен изменяться в пределах 90-110 град. к плоскости сидения.

Исходя из вышесказанного, приведем параметры стола пользователя ПЭВМ:

· высота стола 710 мм;

· длина стола 1300 мм;

· ширина стола 650 мм;

· глубина стола 400 мм.

Поверхность для письма:

· в глубину 40 мм;

· в ширину 600 мм.

Важным моментом является также рациональное размещение на рабочем месте документации, канцелярских принадлежностей, что должно обеспечить пользователю ПЭВМ удобную рабочую позу, наиболее экономичные движения и минимальные траектории перемещения работающего и предмета труда на данном рабочем месте.

5.4.2 Обеспечение оптимальных параметров воздуха зон

Нормирование параметров микроклимата

Для легкой категории работ представим в виде табл. 5.3 и 5.4 сравнения с фактическими нормативными параметрами параметры температуры, относительной влажности и скорости движения воздуха [17]:

Таблица 5.3 Оптимальные нормы микроклимата в помещении

Период года

Категория работ

Температура воздуха, гр.С не более

Относительная влажность воздуха, %

Скорость движения воздуха, м/с

Холодный

легкая-1а

22-24

40-60

0,1

Теплый

легкая-1а

23-25

40-60

0,1

Таблица 5.4 Фактические параметры микроклимата в помещении

Период года

Категория работ

Температура воздуха, гр.С

Относительная влажность воздуха, %

Скорость движения воздуха, м/с

Холодный

легкая-1а

22

45

0,1

Теплый

легкая-1а

23

55

0,1

Из таблиц мы видим, что фактические параметры микроклимата в помещении соответствуют нормативным.

Нормирование уровней вредных химических веществ

Источниками загрязнения помещения являются вредные вещества внешней среды и более ста соединений, выделяющихся из строительных материалов здания, мебели, одежды, обуви и биоактивные соединения (антропотоксины) самого человека.

Рассматривая загрязнение помещения вредными веществами внешней среды, надо прежде всего учитывать местоположение здания, в нашем случае это место вблизи автострады. Наиболее частыми загрязнителями, попадающими из внешней среды в помещение, являются оксид углерода, диоксид азота, диоксид серы, свинец, пыль, сажа и др.

Строительные конструкции являются источниками поступления в помещение главным образом радона и торона, при этом наиболее высокая концентрация создается в домах из бетонных конструкций при плохом проветривании.

Мебель, одежда и обувь выделяют пыль с содержанием минерального волокна, углеводороды, полиэфирные смолы и другие соединения. Из биоактивных соединений наиболее значимы диоксид углерода, сероводород и др.

К наиболее опасным загрязнителям помещения относятся продукты курения, концентрация которых при наличии курящих людей в десятки раз выше, чем в их отсутствии.

Нормирование уровней аэроионизации

Основное применение ионизаторов - создание в помещениях оптимальной концентрации отрицательно заряженных аэроионов, которые необходимы для нормальной жизнедеятельности. Лишенный аэроионов воздух - "мертвый", ухудшает здоровье и ведет к заболеваниям.

В табл. 5.6 приведем согласно СанПиН 2.2.2.542-96 уровни положительных и отрицательных аэроионов в воздухе помещения:

Таблица 5.6 Уровни ионизации воздуха помещений при работе на ВДТ и ПЭВМ

Уровни

Число ионов в 1 см. куб. воздуха

n+

n-

Минимально необходимые

400

600

Оптимальные

1500-3000

3000-5000

Максимально допустимые

50000

50000

5.4.3 Создание рационального освещения

Рациональное освещение в помещении, предназначенном для работы с ПЭВМ создается при наличии как естественного, так и искусственного освещения.

Недостаточное освещение приводит к сильному напряжению глаз, быстрой утомляемости, близорукости, снижению качества работы, увеличению брака. Яркое освещение раздражает сетчатку глаза, ослепляет, глаза быстро устают, растёт производственный травматизм.

В данном дипломном проекте необходимо создать оптимальную систему искусственного освещения помещения. В соответствии с СанПиН 2.2.2.542-96 освещенность на поверхности стола должно быть 300-500лк. Местное освещение не должно увеличивать освещенность экрана более 300лк.

5.4.4 Расчет искусственной освещенности помещения

Для создания нормальных условий, на рабочем месте проводят нормирование освещенности в зависимости от размеров объекта различения, контраста объекта с фоном. Определение нормированной освещенности ведется по разрядам и подразрядам выполняемых работ. Для работ, выполняемых операторам, отводится четвертый разряд и подразряд “Б”. Минимальное значение нормированной освещенности согласно СНиП 23-05-95 Emin=200 Лк для общей системы освещения.

Для расчета общего освещения воспользуемся методом коэффициента использования светового потока. Расчетная формула для вычисления светового потока для создания нужного освещения:

, (5.1)

где

Енор - нормируемая минимальная освещенность 200Лк;

Кз - коэффициент запаса, учитывающий запыленность светильников и износ источников света в процессе эксплуатации;

S - освещаемая площадь;

z - коэффициент неравномерности освещенности (отношение средней освещенности к минимальной) = 1,1;

q - коэффициент использования потока;

f - коэффициент затемнения, принимается равным 0,9;

Кз = 1,5 при условии чистки светильников не реже четырех раз в год;

Длина помещения А = 8,72м.

Ширина помещения В = 5,4м.

Высота Нпом =3м.

(5.2)

Высота подвеса светильников над рабочей поверхностью h = 2,5м.

Определяем индекс помещения:

Коэффициенты отражения стен и потолка примем равными Rст=30, Rп=50.

Для индекса i=1, коэффициентов Rст=30, Rп=50, коэффициент использования q=0,28.

Следовательно, получаем:

Выбираем в качестве источника света люминесцентную лампу ЛБ - 65, которая имеет номинальное значение светового потока 4800Лм. Тогда для создания необходимого светового потока (уровня освещенности) потребуется.

Так как в светильнике стоит по две лампы, то необходимо 7 светильников (примем число 8 для удобства), расположенных в два ряда (по четыре в каждом).

Эффективность осветительной установки определяют также и качественные показатели освещенности: цветопередача, пульсация освещенности, показатель ослепляемости, равномерность распределения яркости. индексом цветопередачи 50-55 и цветовой температурой 3500-3600К (невысокие требования к цветоразличению). Таким характеристикам соответствуют лампы типа ЛБ.

5.4.5 Защита от шума

На рабочем месте пользователя ПЭВМ, оператора, источниками шума, как правило, разговаривающие люди, внешний шум и отчасти - компьютер, принтер, вентиляционное оборудование. Они издают довольно незначительный шум, поэтому в помещении достаточно использовать звукопоглощение.

Приведем показатели нормируемых уровней шума в табл. 5.8

Таблица 5.8 Нормируемые уровни звукового давления и звуки на рабочих местах

Уровень звукового давления, дБ, в октавных полосах со среднегеометрическими частотами, Гц

Уровни звука и эквивалентные уровни звука, ДБ

63

125

250

500

1000

2000

4000

8000

71

61

54

49

45

42

40

38

50

Приведем методы защиты от шума. Строительно-акустические методы защиты от шума предусмотрены строительными нормами и правилами (СНиП-II-12-77) это:

· звукоизоляция ограждающих конструкции, уплотнение по периметру притворов окон и дверей;

· звукопоглощающие конструкции и экраны;

· глушители шума, звукопоглощающие облицовки.

Уменьшение шума, проникающего в помещение извне, достигается уплотнением по периметру притворов окон и дверей. Под звукопоглощением понимают свойство акустически обработанных поверхностей уменьшать интенсивность отраженных ими волн за счет преобразования звуковой энергии в тепловую. Звукопоглощение является достаточно эффективным мероприятием по уменьшению шума. Наиболее выраженными звукопоглощающими свойствами обладают волокнисто-пористые материалы: фибролитовые плиты, стекловолокно, минеральная вата, полиуретановый поропласт, пористый поливинилхлорид и др. К звукопоглощающим материалам относятся лишь те, коэффициент звукопоглощения которых не ниже 0.2.

Звукопоглощающие облицовки из указанных материалов (например, маты из супертонкого стекловолокна с оболочкой из стеклоткани нужно разместить на потолке и верхних частях стен). Максимальное звукопоглощение будет достигнуто при облицовке не менее 60% общей площади ограждающих поверхностей помещения.

5.4.6 Обеспечение электробезопасности

Смертельно опасным для жизни человека считают ток, величина которого превышает 0.05А, ток менее 0.05А - безопасен (до 1000 В). В соответствии с правилами электробезопасности в помещении должен осуществляться постоянный контроль состояния электропроводки, предохранительных щитов, шнуров, с помощью которых включаются в электросеть компьютеры, осветительные приборы, другие электроприборы. Электрические установки, к которым относится практически все оборудование ЭВМ, представляют для человека большую потенциальную опасность, так как в процессе эксплуатации или проведении профилактических работ человек может коснуться частей, находящихся под напряжением. Реакция человека на электрический ток возникает лишь при протекании последнего через тело человека.

Проходя через организм, электрический ток оказывает термическое, электролитическое и биологическое действия. Термическое действие выражается в ожогах, нагреве кровеносных сосудов и других тканей. Электролитическое - в разложении крови и других органических жидкостей.

Биологическое действие выражается в раздражении и возбуждении живых тканей организма.

Определим класс нашего помещения, влияющий на вероятность поражения человека электрическим током:

· полы покрыты однослойным поливинилхлоридным антистатическим линолеумом, следовательно, являются нетокопроводящими;

· относительная влажность воздуха не превышает 60 %, следовательно, помещение является сухим;

· температура воздуха не превышает плюс 30 градусов по Цельсию;

· возможности одновременного прикосновения человека к имеющим соединение с землей корпусам технологического оборудования и другим заземленным частям с одной стороны и к металлическим корпусам электрооборудования или токоведущим частям с другой стороны не имеется (при хорошей изоляции проводов, так как напряжение не превышает 1000 В);

· химически активные вещества отсутствуют.

Согласно ГОСТ 12.1.013-78.ССБТ данное помещение можно классифицировать как помещение без особой опасности.

Для обеспечения электробезопасности в нашем случае нужно рассмотреть возможность заземления - по ГОСТ 12.1.030-81 в помещениях без повышенной опасности защитное заземление и зануление является обязательным при напряжении 380В и выше переменного и 440В и выше постоянного тока. В нашем случае - напряжение 220 В, следовательно защитное заземление и зануление не требуется, но рекомендуется.

Для защиты от поражения электротоком при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции, рекомендую в соответствии с ГОСТ 12.1.030-81 применять следующие технические способы:

· защитное заземление

· зануление

· выравнивание потенциалов

· защитное отключение

· изоляция нетоковедущих частей

· электрическое разделение сети

· малое напряжение

· контроль изоляции и СНЗ

5.4.7 Защита от статического электричества

Устранение образования значительных статического электричества достигается при помощи следующих мер:

· Заземление металлических частей производственного оборудования;

· Увеличение поверхностной и объемной проводимости диэлектриков;

· Предотвращение накопления значительных статических зарядов путем установки в зоне электрозащиты специальных увлажняющих устройств.

Все проводящее оборудование и электропроводящие неметаллические предметы должны быть заземлены независимо от применения других мер защиты от статического электричества.

Неметаллическое оборудование считается заземленным, если сопротивление стекания тока на землю с любых точек его внешней и внутренней поверхностей не превышает 107 Ом при относительной влажности воздуха 60%. Такое сопротивление обеспечивает достаточно малое значение постоянной времени релаксации зарядов.

Заземление устройства для защиты от статического электричества, как правило, соединяется с защитными заземляющими устройствами электроустановок. Практически, считают достаточным сопротивление заземляющего устройства для защиты от статического электричества около 100 Ом.

Также, нейтрализация электрических зарядов может осуществляться путем ионизации воздуха, разделяющего заряженные тела. На практике применяются ионизаторы индукционные, высоковольтные или радиационные.

5.4.8 Обеспечение пожаробезопасности

Для решения проблем пожаробезопасности нам необходимо сначала определить и обосновать категорию помещения, руководствуясь НПБ 105-95:

Одной из наиболее важных задач пожарной защиты является защита помещений от разрушений и обеспечение их достаточной прочности в условиях воздействия высоких температур при пожаре. Учитывая высокую стоимость телекоммуникационного и звукового оборудования помещений областного Центра Детского и Юношеского Творчества, а также категорию его пожарной опасности, здание должно быть 1 и 2 степени огнестойкости.

Для изготовления строительных конструкций используются, как правило, кирпич, железобетон, стекло, металл и другие негорючие материалы. Применение дерева должно быть ограниченно, а в случае использования необходимо пропитывать его огнезащитными составами. Также необходимо предусмотреть противопожарные преграды в виде перегородок из несгораемых материалов устанавливают между помещениями нашего офиса.

Таблица 5.9. Категории помещений по взрывопожарной и пожарной опасности

Категория помещения

Характеристика веществ и материалов, находящихся (обращающихся) в помещении

1

2

А

взрывопожароопасная

Горючие газы, легковоспламеняющиеся жидкости с температурой вспышки не более 28° С в таком количестве, что могут образовывать взрывоопасные парогазовоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа.

Вещества и материалы, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом в таком количестве, что расчетное избыточное давление взрыва в помещении превышает 5 кПа

Б

взрывопожароопасная

Горючие пыли или волокна, легковоспламеняющиеся жидкости с температурой вспышки более 28° С, горючие жидкости в таком количестве, что могут образовывать взрывоопасные пылевоздушные или паровоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа

В1 -- В4

пожароопасные

Горючие и трудногорючие жидкости, твердые горючие и трудногорючие вещества и материалы (в том числе пыли и волокна), вещества и материалы, способные при взаимодействии с водой, кислородом воздуха или друг с другом только гореть при условии, что помещения, в которых они имеются в наличии или обращаются, не относятся к категориям А или Б

Г

Негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистой теплоты, искр и пламени; горючие газы, жидкости и твердые вещества, которые сжигаются или утилизируются в качестве топлива

Д

Негорючие вещества и материалы в холодном состоянии

Исходя из таблицы, мы делаем вывод, что в нашем случае помещение относится к категории В.

К средствам тушения пожара, предназначенных для локализации небольших загораний, относятся пожарные стволы, внутренние пожарные водопроводы, огнетушители, сухой песок, асбестовые одеяла и т. п.

В зданиях пожарные краны устанавливаются в коридорах, на площадках лестничных клеток и входов. Вода используется для тушения пожаров в помещениях пользователей ПЭВМ, архиве и вспомогательных и служебных помещениях. Применение воды в помещениях с ПЭВМ, хранилищах носителей информации, помещениях контрольно-измерительных приборов ввиду опасности повреждения или полного выхода из строя дорогостоящего оборудования возможно в исключительных случаях, когда пожар принимает угрожающе крупные размеры. При этом количество воды должно быть минимальным, а ПЭВМ, звуковое оборудование необходимо защитить от попадания воды, накрывая их брезентом или полотном [18].

Для тушения пожаров на начальных стадиях широко применяются огнетушители.

В помещениях с ПЭВМ применяются главным образом углекислотные огнетушители, достоинством которых является высокая эффективность тушения пожара, сохранность электронного оборудования, диэлектрические свойства углекислого газа, что позволяет использовать эти огнетушители даже в том случае, когда не удается обесточить электроустановку сразу.

Все помещения областного Центра Детского и Юношеского Творчества необходимо оборудовать установками стационарного автоматического пожаротушения. Наиболее целесообразно применять установки газового тушения пожара, действие которых основано на быстром заполнении помещения огнетушащим газовым веществом с резким сжижением содержания в воздухе кислорода.

ЗАКЛЮЧЕНИЕ

В проекте приводится описание создания локальной корпоративной сети звукового обеспечения для областного Центра Детского и Юношеского Творчества г. Астрахани. В проекте рассмотрены вопросы, связанные с установкой системы звукообеспечения на основе аппаратно-программного комплекса и сетевой технологии дистрибьюции звуковых сигналов в реальном времени, с прокладкой витой пары категории 5e и сильноточных кабелей звукового обеспечения по территории завода, их способ подключения к оптическим передатчикам коммутационного оборудования. Произведен выбор оборудования СЗО, СИУ и телекоммуникационного оборудования.

В графической части показаны: общая структурная схема системы звукового обеспечения, скелетная поэтажная схема сети звукового обеспечения, план прокладки кабельных линий и размещения оборудования 1-го этажа.

Произведен расчёт необходимой длины кабельной линии медного кабеля (витой пары), длины сильноточного звукового кабеля, затухания линии, защищенности и помехоустойчивости линии, переходного затухания и приведены технические характеристики коммутационного, звукового оборудования и оборудования СИУ для реализации проекта локальной корпоративной сети звукового обеспечения. Ввод в эксплуатацию проекта сети внесёт существенный вклад в создание многофункциональной системы жизнеобеспечения центра в целом, которая включает в себя различные функции звукообеспечения, такие как зонное оповещение, трансляция, конференц-связь, экстренное оповещение, проведение различных мероприятий, а также оборудование и каналы для передачи звуковых и управляющих данных.

В технико-экономическом расчёте определены затраты на реализацию проекта и дана оценка экономической эффективности проекта.

В проекте также рассмотрены вопросы охраны труда и вопросы техники безопасности при работе с ПЭВМ. Представлены Нормы освещения, Нормы электрической безопасности по работе с ПЭВМ.

Таким образом, подводя итоги, мы можем утверждать, что за счет использования аппаратно-программного комплекса управления звуком мы смогли сократить 4 стационарных и 7 мобильных систем до 1 с небольшим дополнением специального оборудования (например, микшерный пульт в локальной аппаратной актового зала). Все функции как собственно оповещения, так и других видов звукообеспечения реализованы в полной мере, при поддержании достаточно высоких электроакустических параметров для каждой из зон (за счет применения более качественного оконечного оборудования и широких возможностей по обработке звуковых сигналов). При этом повышение удельной стоимости единицы оборудования компенсируется его значительным общим сокращением, уменьшением объемов монтажных работ, коммутационных трасс и помещений для аппаратуры, а также снижением численности обслуживающего персонала.

СПИСОК ЛИТЕРАТУРЫ

1. Департамент «Media-Matrix центр» http://installsound.ru

2. Журнал “Звукорежиссер” (№ 2, 2005 г.), - М., 80 с.

3. Компания «Digigram» http://www.ethersound.com

4. Журнал “Install-Pro” (№ 5, 2004 г.) - М., 90 с.

5. "Руководство по проектированию Систем Звукового Обеспечения (СЗО)”. Разработано: Ю.В. Шихов (ЗАО "Дом Звука") - руководитель работы, ЗАО "Дом Звука" (инж. Кременчугский А.В., инж. Карих Д.В., инж. Плотников И.Г.), М., 2000

6. Журнал “Музыкальное оборудование” (№ 10, октябрь 2004 г.), - М., 100 с.

7. Компания «Арис» http://www.aris-pro.ru

8. Компания «Транстелеком» http://www.tt.ru

9. http://www.softintegro.ru

10. http://www.sitforum.ru

11. Семёнов А.Б. Проектирование и расчёт структурированных кабельных систем и их компонентов. - М.: ДМК Пресс; М.: Компания АйТи, 2003.-416+16с.: ил.

12. П.А. Самарский. Основы структурированных кабельных систем. Часть II. Базовые сведения об оптоволокне и волоконно-оптические компоненты структурированной кабельной системы, Москва, 2004.

13. Семёнов А.Б., Стрижаков С.К., Сунчелей И.Р. Структурированные кабельные системы / Семёнов А.Б., Стрижаков С.К., Сунчелей И.Р. - 5-е изд. - М.: Компания АйТи; ДМК Пресс, 2004. - 640+16 с.: ил.

14. Компания «Macrosoud Construction» http://www.macrosound.ru

15. Компания «Peak Audio» http://www.peakaudio.com

16. Методические указания к разработке экономического раздела дипломных проектов для специальности 200900 «Сети связи и системы коммутации». Составители: Первицкая Т.В. Астрахань,2004 г., 90 стр.

17. Б. Е. Гаврилов. “Безопасность жизнедеятельности”, М., 1995. - 294 с.

18. Нормы пожарной безопасности «Перечень зданий, сооружений, помещений и оборудования, подлежащих защите автоматическими установками пожаротушения и автоматической пожарной сигнализацией (НПБ 105-95).


Подобные документы

  • Технология построения сетей передачи данных. Правила алгоритма CSMA/CD для передающей станции. Анализ существующей сети передачи данных предприятия "Минские тепловые сети". Построение сети на основе технологии Fast Ethernet для административного здания.

    дипломная работа [2,5 M], добавлен 15.02.2013

  • Выбор и обоснование технологии построения ЛВС. Анализ среды передачи данных. Выбор и обоснование аппаратного обеспечения сети, коммуникационные устройства. Расчет пропускной способности сети Fast Ethernet. Программное обеспечение управления сетью.

    курсовая работа [1,2 M], добавлен 04.03.2014

  • Особенности проектирования локальной сети для учебного учреждения на основе технологии Ethernet, с помощью одного сервера. Описание технологии работы сети и режимов работы оборудования. Этапы монтажа сети, установки и настройки программного обеспечения.

    курсовая работа [1,9 M], добавлен 16.02.2010

  • Проектирование компьютерной локальной сети по технологии Ethernet 10Base-T, 1000Base-LX , выбор топологии и необходимого аппаратное и программное обеспечение. Расчет затрат на сетевое оборудование, проектирование и монтаж локальной сети организации.

    курсовая работа [73,5 K], добавлен 09.07.2014

  • Разработка высокоскоростной корпоративной информационной сети на основе линий Ethernet c сегментом мобильной торговли для предприятия ООО "Монарх". Мероприятия по монтажу и эксплуатации оборудования. Расчет технико-экономических показателей проекта.

    курсовая работа [417,5 K], добавлен 11.10.2011

  • Основная цель и модели сети. Принцип построения ее соединений. Технология клиент-сервер. Характеристика сетевых архитектур Ethernet, Token Ring, ArcNet: метод доступа, среда передачи, топология. Способы защиты информации. Права доступа к ресурсам сети.

    презентация [269,0 K], добавлен 26.01.2015

  • Сравнительный анализ различных топологий сетей. Исследование элементов структурированной кабельной системы. Методы доступа и форматы кадров технологии Ethernet. Локальные сети на основе разделяемой среды: технология TokenRing, FDDI, Fast Ethernet.

    курсовая работа [1,2 M], добавлен 19.12.2014

  • Современные технологии локальных сетей. Методы доступа в локальную вычислительную сеть (ЛВС). Особенности эталонной модели ЛВС. Расчет сети доступа на базе Fast Ethernet. Расчет максимального времени задержки сигналов в каждой компьютерной группе.

    курсовая работа [1,1 M], добавлен 27.03.2012

  • Обоснование выбора оптимальных сетевых решений на базе многозадачных операционных систем для построения компьютерной сети стандартов Fast Ethernet с учетом необходимых требований к сети. Методы расчета спроектированной конфигурации сети на корректность.

    курсовая работа [3,1 M], добавлен 06.12.2012

  • Разработка проекта компьютерной сети на основе технологии Fast Ethernet. Выбор топологии сети, кабельной системы, коммутатора, платы сетевого адаптера, типа сервера и его аппаратного обеспечения. Характеристика существующих мобильных операционных систем.

    курсовая работа [381,4 K], добавлен 06.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.