Проблемы, связанные с осуществлением телефонных переговоров по сетям с пакетной передачей и коммутацией

Базовые понятия IР-телефонии и ее основные сценарии. Межсетевой протокол IP: структура пакета, правила прямой и косвенной маршрутизации, типы и классы адресов. Автоматизация процесса назначения IP-адресов узлам сети. Обобщенная модель передачи речи.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 02.04.2013
Размер файла 2,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В качестве оконечных устройств могут использоваться: ПК с соответствующим программным обеспечением, факсимильный аппарат, телефонный аппарат, УПАТС, и т.п.

FRF.11 поддерживает такие возможности как: инициализацию и завершение вызовов для оконечных устройств, обеспечение межсетевого обмена между индивидуальными подканалами в интерфейсе VoFR и подканалами в другом типе речевого интерфейса, коммутацию вызовов.

Для того, чтобы в полной мере реализовать описанные возможности, стек протоколов должен обеспечить полнодуплексный обмен информацией. Обмен информацией осуществляется посредством передачи двух типов информационных элементов: основных информационных элементов (ИЭ) и сигнальных ИЭ.

К основным информационным ИЭ относятся:

1. Закодированна речь.

2. Закодированна факсимильная информация.

3. Кадры с данными.

К сигнальным ИЭ относятся:

1. Цифры телефонного номера: DTMF или импульсы.

2. Биты сигнализации (Внутриканальна сигнализация).

3. Индикатор аварии.

4. Сообщения о сигнализации (в случае использования сигнализации по общему каналу).

5. Закодированна факсимильная информация.

6. Дескриптор информации о паузе.

Дескриптор информации о паузе (SID) информируют о паузе в разговоре и обеспечивает передачу параметров генерации комфортного шума. SID поддерживают алгоритмы обнаружения активности речи (VAD) и схемы подавления пауз.

В случае использования VAD, подкадры SID могут быть дополнительно переданы за последним закодированным речевым подкадром. Прием подкадра SID происходит после того, как речевой подкадр был интерпретирован как явное указание конца речевого потока. Кроме того, подкадры SID могут передаваться в любое время в течение интервала тишины для коррекции генерации комфортного шума.

VoFR предусматривает организацию множества речевых подканалов и подканалов данных в единственном DLC. На Рис.4.1 представлен пример мультиплексирования речи и данных.

Рис.4.1. Возможность мультиплексирования множества речевых подканалов.

На Рис.4.2 представлен формат речевого ИЭ, где поле ”Тип кодирования” определяет тип применяемого алгоритма кодирования речи.

Рис.4.2. Формат речевого информационного элемента.

Каждый ИЭ упакован как подкадр в пределах информационного поля кадра. Подкадры (см. Рис. 4.3) могут объединяться в пределах единственного кадра Frame Relay, с тем чтобы повысить эффективность обработки и транспортировки. Каждый подкадр содержит заголовок и информационный элемент. Заголовок подкадра идентифицирует речевой подканал и, когда требуется, тип информационного элемента (основной или сигнальный) и его длину.

Минимальный заголовок подкадра - 1 октет, содержащий младшие биты идентификатора речевого подканала, а также указания расширения и длины. Октет расширения, содержащий старшие биты идентификатора речевого подканала тип ИЭ используется в случае, когда установлен бит ”Указание Расширения” (Extension Indication). Октет с длиной ИЭ используется в случае, когда установлен бит ”Указание Длины” (Length Indication).

Рис.4.3. Формат подкадра VoFR.

4.2 Наиболее вероятная схема организации речевой связи по сети передачи данных Frame Relay

При организации телефонной связи на основе сети передачи данных Frame Relay основным руководящим документом является стандарт FRF.11. В нем четко сформулированы функции VFRAD, а также способы подключения к нему телефонного оборудования и место VFRAD в структуре сети. Для кодирования речи желательно использовать вокодер ACELP, описанный в рекомендации ITU G.723.1. Выбор этого вокодера обусловлен самым выгодным соотношением качество речи / скорость потока. Характеристики вокодера можно найти в разделе 3.2.3. На Рис. 4.4 приведена схема подключения телефонного оборудования к сети Frame Relay.

Рис. 4.4. Схема организации телефонной связи по сети передачи данных Frame Relay.

Для определенности предположим, что услугами телефонной связи пользуются абоненты двух узлов. Для этого выделен постоянный виртуальный канал, в рамках которого может быть организовано до 255 речевых трактов (подканалов). Теоретически, максимальная гарантированная скорость передачи по виртуальному каналу (СIR) не может превышать величины пропускной способности физического канала связи, соединяющего узлы сети.

Положим, что в сети организован виртуальный канал, с максимально возможной гарантированной скоростью передачи, и в рамках него организовано максимально возможное количество речевых трактов. Для этого рассмотрим два типа каналов: с пропускной способностью 19,2 кбит/c и 2048 кбит/c.

4.3 Оценка количества речевых трактов при организации речевой связи по физическому каналу 19,2 кбит/с

Исходя из того, что скорость алгоритма кодирования речи составляет 5,3 кбит/c, можно делать выводы о возможном количестве речевых трактов. Ясно, что их количество по крайней мере должно быть не более 3 (19,2 / 5,3 = 3,6; где 19,2 - скорость физического канала в кбит/c, а 5,3 - скорость алгоритма в кбит/c). Это означает, что номера подканалов можно представить в виде 6 разрядного двоичного числа и тем самым уменьшить на один байт размер заголовка подкадра (см. описание структуры подкадров в разделе 4.1). Исходя из того, что размер речевого кадра составляет 20 байтов, формат речевого подкадра согласно стандарту FRF.11 будет иметь вид, представленный на Рис. 4.5.

Рис. 4.5. Формат речевого подкадра.

Предположим, что в одном виртуальном канале функционируют 3 речевых тракта. Это означает, что кадр Frame Relay, согласно стандарту FRF.11, будет иметь вид, представленный на Рис. 4.6.

Рис. 4.6. Формат кадра Frame Relay, при организации 3 речевых подканалов.

Из Рис. 4.6 видно, что общий размер кадра Frame Relay составляет 28 байтов. Из них 20 байтов - полезная нагрузка. Исходя из того условия, что каждый речевой кадр должен быть передан со скоростью 5,3 кбит/c, скорость передачи кадра Frame Relay по каналу связи должна составить 7,4 кбит/c (20 байтов, составляющих речевой кадр, должны быть переданы со скоростью 5,3 кбит/c, следовательно 28 байтов кадра Frame Relay должны быть переданы со скоростью 7,4 кбит/c для своевременной доставки речевого кадра). Этот вывод показывает, что для организации 3-х речевых трактов потребуется 22,2 кбит/c пропускной способности физического канала (7,4 кбит/c x 3 = 22,2 кбит/c), и это означает, что невозможно организовать 3 речевых тракта в канале 19,2 кбит/c. Возможна организация лишь 2 речевых трактов. В случае организации двух речевых трактов, необходимо 14,8 кбит/c пропускной способности канала связи.

Воспользуемся такой возможностью метода VoFR как мультиплексирование различных подканалов в единственном кадре Frame Relay и попробуем вложить в кадр Frame Relay 3 речевых подкадра различных пользователей. В этом случае, в соответствии со стандартом FRF.11, кадр Frame Relay, будет иметь формат, представленный на Рис.4.7.

Рис. 4.7. Формат кадра Frame Relay с несколькими речевыми кадрами.

Из рисунка видно, что общий размер кадра Frame Relay составляет 73 байта. Из них 60 байтов - полезная нагрузка. Исходя условия, что каждый речевой кадр должен быть передан со скоростью 5,3 кбит/c, скорость передачи кадра Frame Relay по каналу связи должна составить 19,3 кбит/c (20 байтов, составляющих речевой кадр, должны быть переданы со скоростью 5,3 кбит/c, следовательно 73 байта кадра Frame Relay должны быть переданы со скоростью 19,3 кбит/c, для своевременной доставки речевого кадра). Т.о. даже в случае мультиплексирования нескольких речевых кадров в пределах одного кадра Frame Relay нельзя организовать 3 речевых тракта в канале 19,2 кбит/c.

На основании полученных данных можно сделать вывод о том, что при использовании физического канала связи с пропускной способностью 19,2 кбит/c и алгоритма кодирования речи G.723.1 (ACELP - 5,3 кбит/c) для передачи речи по сети Frame Relay можно организовать 2 речевых тракта.

4.4 Оценка количества речевых трактов, при организации речевой связи по физическому каналу 2048 кбит/с

При определении размера кадра Frame Relay будем исходить из того, что в одном кадре Frame Relay передается один речевой кадр. Дело в том, что мультиплексирование различных подканалов в пределах одного кадра Frame Relay приводит к дополнительной задержке.

Количество речевых трактов для данного физического канала по крайней мере должно быть не более 386 (2048 / 5,3 = 386,4; где 2048 - скорость физического канала в кбит/c, а 5,3 - скорость алгоритма в кбит/c). Рассмотим виртуальный канал с максимальным числом речевых трактов (т.е. 255 речевых подканалов). Это означает, что номера 63 первых подканалов будут представлены 6 разрядным двоичным числом, поэтому заголовок подкадра будет составлять 1 байт, а номера последующих 192 подканалов будут представлены в виде 8 разрядного двоичного числа, т.е заголовок подкадра будет иметь размер 2 байта (см. описание структуры подкадров в разделе 4.1). Кроме того, каждый речевой кадр должен быть снабжен фиксированным заголовком в 1 байт. Таким образом размер 63 кадров Frame Relay составит 28 и размер 192 кадров - 29 байтов.

Рассматривается час наибольшей нагрузки, когда все речевые тракты одновременно активны. Исходя из того условия, что каждый речевой кадр должен быть передан со скоростью 5,3 кбит/c, 63 кадра Frame Relay должны быть переданы со скоростью не менее 7,4 кбит/c, а 192 кадра - со скоростью 7,7 кбит/c, для своевременной доставки речевых кадров. Исходя из этого условия можно определить полосу пропускания необходимую для организации 255 речевых трактов ([63 * 7,4 кбит/c] + [192 * 7,7 кбит/c] = 1945 кбит/c).

Видно, что при использовании канала 2048 кбит/с остается еще 103 кбит/c пропускной способности, где можно организовать дополнительный виртуальный канал для нужд речевой связи.

Количество речевых подканалов по крайней мере не будет превышать 19 (103 / 5,3 = 19). Это означает, что номера подканалов могут быть представлены 6 разрядным двоичным числом, и следовательно размер кадра составит 28 байтов. Исходя из того, что каждый речевой кадр должен быть передан со скоростью 5,3 кбит/c, кадр Frame Relay должен быть передан со скоростью не менее 7,4 кбит/c. Это означает, что в случае активности всех речевых трактов для данной пропускной способности их число составит 13.

Окончательно можно сделать вывод о том, что при использовании физического канала связи с пропускной способностью 2048 кбит/c и алгоритма кодирования речи G.723.1 (ACELP - 5,3 кбит/c) для передачи речи по сети Frame Relay можно организовать 2 виртуальных канала с общим числом речевых трактов равным 268.

4.5 Анализ задержки передачи речи по сети передачи данных Frame Relay

Основным показателем качества передачи речи является совокупная задержка передачи речевого сигнала, поэтому основное внимание следует обратить именно на этот показатель качества телефонной связи.

Основными составляющими, которые необходимо учитывать при расчете полной задержки являются:

· задержка при обработке сигнала кодеком (величина постоянная, tобраб);

· задержка в выходной и входной очередях (величина переменная, зависит от загрузки маршрутизатора, канала и способа приоритезации, tнакопл);

· задержка в сглаживающем буфере коммутатора (величина переменная, tпосл.комм);

· задержка трафика при распространении по ЛВС и по КСПД (величины переменные, tЛВС и tpacnp, соответственно).

На Рис.4.8 представлена схема распределения задержек, возникающих при передачи речи по сети Frame Relay корпоративной сети передачи данных.

Рис. 4.8. Схема распределения задержек в сети передачи данных Frame Relay.

Опираясь на приведенную схему распределения задержек можно с достаточной точностью определить величину совокупной задержки передачи речевого сигнала по сети передачи данных Frame Relay в соответствии со следующим соотношением:

Величины задержек накопления и обработки были приведены при описании основных характеристик вокодеров, в разделе 3.2.3

4.6 Пример практического внедрения метода передачи речи VoFR

В качестве средств обеспечения VoFR можно использовать концентраторы доступа Cisco MC3810, которые поддерживают все возможности стандарта FRF.11.

Cisco MC3810 подключается к любой стандартной УПАТС и внутренней коммутирующей телефонной системе, позволяя установить до 30 речевых трактов. Для сжатия (вплоть до 8 кбит/с) применяется стандартный алгоритм G.729 CS-ACELP. Анализ показывает, что при использовании этого алгоритма в канале 2048 кбит/с можно организовать до 138 речевых подканалов. Кроме того, концентратор доступа MC3810 подавляет эхо в речевых каналах и поддерживает механизм обнаружения пауз в разговоре.

MC3810 поддерживает различные варианты обработки вызовов при речевых соединениях и способен работать в режиме двухтонального многочастотного набора (DTMF), а на небольших узлах телефоны и магистральные каналы можно подключать к MC3810, чтобы он играл роль местного коммутатора телефонных вызовов. Благодаря этому, устраняется необходимость в УПАТС и других аналогичных средствах коммутации.

Концентратор доступа MC3810 использует тот же интерфейс управления, что и другие системы компании Cisco, и использует расширенный список команд для управления передачей речи и видео. Для управления концентратором доступа MC3810 можно также использовать приложение сетевого управления CiscoView, комплект управляющих инструментов Netsys Technologies и новейшие средства управления, которые компания Cisco разработала для телекоммуникационных компаний.

На Рис. 4.9 приведено техническое решение межрегионального (в смысле реализации технологии VoFR) узла КСПД на базе оборудования фирмы Cisco.

Рис.4.9 Техническое решение межрегионального узла.

Глава 5. Анализ возможности передачи речи по сети передачи данных IP

Как и в предыдущей главе, целью данного анализа является оценка возможного числа речевых трактов, которые можно организовать на основе физических каналов сети передачи данных пропускной способности 19,2 и 2048 кбит/c, а также анализ общей задержки, возникающей при передаче речи по сети передачи данных IP корпоративной сети передачи данных.

5.1 Метод передачи речи по сетям передачи данных IP

В настоящее время разработкой и исследованием стандартов связанных с передачей речи по сетям IP (и в частности по сети Internet), занимается Форум Voice over IP (VoIP Forum). Это рабочая группа Международного Консорциума Мультимедийных Телеконференций (International Multimedia Teleconferencing Consortium), организованная с целью обеспечения взаимодействия персональных компьютеров и телефонов в сети Internet. Членами Форума являются многие ведущие компании - разработчики сетевого оборудования: Cisco Systems Inc., 3Com, Action Consulting, Creative Labs, Dialogic, MICOM Communications, Microsoft, NetSpeak, Nortel, Nuera Communications, Octel, U.S. Robotics, Vienna Systems, Vocaltec и Voxware. Деятельность Форума имеет несколько направлений: выработка набора открытых, последовательных руководящих принципов для реализации устройств, обеспечивающих передачу речи по сетям передачи данных IP; гарантирование полной совместимости оборудования и программных средств, а также высокого качества услуг. Форум VoIP подготовил так называемое соглашение о внедрении (Implementation Agreement - IA 1.0 [20]), регламентирующее основные принципы и эталонную модель передачи речи по сетям передачи данных IP.

Соглашение о внедрении Форума VoIP основывается на рекомендации ITU Н.323[18]. Кроме того, VoIP IA 1.0 определяет комплексный каталог и службу управления вызовами (Management Agent System), которая объединяет имеющуюся в сети службу каталогов с динамической адресацией IP и обеспечивает инфраструктуру для усовершенствованной службы управления вызовами. В качестве средства обеспечения гарантированного качества услуг рекомендовано использование протокола RSVP.

5.1.1 Основные положения стандарта H.323

Вообще говоря, H.323 это не один стандарт, а целая серия стандартов для поддержки передачи речи и видео по сетям без обеспечения качества услуг. Он содержит спецификации алгоритмов кодирования речи и видео, протоколы установления и управления соединениями, меры для обеспечения передачи в реальном времени, интерфейсы с другими сетями и т. д. H.323 не привязан к какому-либо конкретному типу сети, однако H.323 нашел применение преимущественно именно в сетях на базе IP.

Стек протоколов H.323, приведен на Рис. 5.1.

Рис.5.1 Cтек протоколов H.323

H.323 включает также такие стандарты кодирования речи, как G.711, G.722, G.723.1, G.728 и G.729, из которых G.711 является основным. Несмотря на обязательность применения G.711 и достаточную пропускную способность локальных сетей для поддержки предусматриваемых им скоростей передачи, эксперты предсказывают широкую популярность другому стандарту кодирования речи, а именно G.723.1, так как ему требуется очень небольшая скорость передачи, а это обстоятельство становится очень важным при передаче по территориально распределенным сетям.

Особое положение занимает подгруппа стандартов для контроля вызовов, в том числе для установления соединения, управления потоками, контроля доступа, передачи служебных сообщений и т. п. Ключевым компонентом этой подгруппы является протокол управляющего канала H.245 для передачи разного рода служебной информации во время сеансов H.323. Он применяется для согласования конечными точками взаимоприемлемых параметров, открытия и закрытия логических каналов, передачи сообщений для управления потоками и других необходимых команд и запросов.

Соединение же между двумя устройствами H.323 устанавливается и закрывается с помощью другого протокола данной подгруппы - протокола сигнализации вызова Q.931, а регистрация и контроль доступа, контроль за доступной пропускной способностью и статусом устройств H.323 осуществляются посредством третьего протокола этой подгруппы - RAS (в его названии перечислены основные выполняемые им функции - регистрация (Registration), контроль доступа (Admission) и мониторинг статуса (Status)).

H.323 использует транспортировку информации как с гарантией доставки, так и без нее. Первая применяется для передачи служебных сообщений и данных, так как в этом случае потери информации недопустимы, а вторая - для речи и видео, поскольку запоздавший пакет вряд ли будет полезен соответствующему приложению. Доставка с гарантией обеспечивается протоколом TCP, а доставка без гарантии осуществляется посредством UDP.

Доставка речи и видео в реальном масштабе времени обеспечивается протоколами RTP (Real-Time Transfer Protocol) и RTCP (Real-Time Transfer Control Protocol).

Каждый пакет RTP имеет основной заголовок, а также дополнительные поля, в случае, когда число участников сеанса больше двух.

На Рис. 5.2 представлена структура пакета RTP в случае организации речевой связи между двумя абонентами.

Рис.5.2 Формат пакета RTP.

Заголовок RTP состоит из следующих полей:

· поле версии (2 бита): текущая версия вторая;

· P - поле заполнения (1 бит): это поле сигнализирует о наличии заполняющих октетов в конце полезной нагрузки. (Заполнение применяется, когда приложение требует, чтобы размер полезной нагрузки был кратен, например, 32 битам.) В этом случае последний октет указывает число заполняющих октетов;

· X - поле расширения заголовка (1 бит): когда это поле задано, то за основным заголовком следует еще один дополнительный, используемый в экспериментальных расширениях RTP;

· CC - поле числа отправителей (4 бита): это поле содержит число идентификаторов отправителей, чьи данные находятся в пакете, причем сами идентификаторы следуют за основным заголовком; поле маркера (1 бит): смысл бита маркера зависит от типа полезной нагрузки. Бит маркера используется обычно для указания границ потока данных. В случае передачи видео он задает конец кадра. В случае передачи речи он задает начало разговора после периода молчания;

· поле типа полезной нагрузки (7 бит): это поле идентифицирует тип полезной нагрузки и формат данных, включая сжатие и шифрование. В стационарном состоянии отправитель использует только один тип полезной нагрузки в течение сеанса, но он может его изменить в ответ на изменение условий, если об этом сигнализирует протокол управления передачей в реальном времени (Real-Time Transport Control Protocol);

· поле порядкового номера (16 бит): каждый источник начинает нумеровать пакеты с произвольного номера, увеличиваемого затем на единицу с каждым посланным пакетом данных RTP. Это позволяет обнаружить потерю пакетов и определить порядок пакетов с одинаковой отметкой о времени. Несколько последовательных пакетов могут иметь одну и ту же отметку о времени, если логически они порождены в один и тот же момент (например, пакеты, принадлежащие к одному и тому же видеокадру);

· поле отметки о времени (32 бита): здесь записывается момент времени, в который был создан первый октет данных полезной нагрузки. Единицы, в которых время указывается в этом поле, зависят от типа полезной нагрузки. Значение определяется по локальным часам отправителя;

· поле идентификатора источника синхронизации: генерируемое случайным образом число, уникальным образом идентифицирующее источник в течение сеанса;

· поле полезной нагрузки: в случае передачи речи, полезной нагрузкой являются речевые кадры, сформированные вокодером. Размеры речевых кадров различных типов вокодеров были приведены в разделе 3.2.3.

Протокол RTP используется только для передачи пользовательских данных. Отдельный протокол управления передачей в реальном времени (RTCP) работает с несколькими адресатами для обеспечения обратной связи с отправителями данных RTP и другими участниками сеанса. RTCP использует тот же самый базовый транспортный протокол, что и RTP (обычно UDP), но другой номер порта. Сообщения отправителя позволяют получателям оценить скорость данных и качество передачи. Сообщения получателей содержат информацию о проблемах, с которыми они сталкиваются, включая утерю пакетов и избыточную неравномерность передачи.

5.1.2 Операционная среда VoIP

Операционная среда VoIP описывает физические элементы, которые обеспечивают передачу речи по сети IP в соответствии со стандартом VoIP IA 1.0 и могут взаимодействовать друг с другом. Эти элементы представлены на Рис.5.3.

Рис.5.3 Операционная среда VoIP.

Терминалы H.323 - это конечные точки сети, с помощью которых пользователи могут взаимодействовать друг с другом в реальном времени. Типичными примерами терминалов могут служить клиентские ПК с программным обеспечением аудио- или видеоконференций типа NetMeeting компании Microsoft; в последнее время их число пополнили так называемые Internet-телефоны. В обязательном порядке все терминалы должны поддерживать сжатие голоса по алгоритму G.711, H.245 - для согласования параметров соединения, Q.931 - для установления и контроля соединения, канал RAS - для взаимодействия с привратником (gatekeeper), а также RTP/RTCP - для оптимизации доставки речи и/или видео.

Другим архитектурным компонентом H.323 является шлюз. Его основная функция состоит в преобразовании форматов и протоколов передачи. Шлюз позволяет связать терминалы H.323 с другими, не поддерживающими данный стандарт конечными устройствами, в частности с обычными телефонами, а также с терминальными устройствами ISDN. Терминалы передают шлюзам необходимую информацию с помощью протоколов H.245 и Q.931.

Шлюз является необязательным компонентом и применяется только в случае необходимости организации взаимодействия с другими сетями. Многие функции шлюзов оставлены на усмотрение разработчика. Например, стандарт не оговаривает, сколько терминалов, соединений, конференций должен поддерживать шлюз и какие преобразования форматов и протоколов он обязан выполнять.

Третий, и наиболее важный, компонент любой сети H.323 - это привратник. Он выступает в качестве центра обработки вызовов внутри своей зоны и выполняет важнейшие функции управления вызовами. (Зона определяется как совокупность всех терминалов и шлюзов под юрисдикцией данного привратника.) Кроме того, привратник выполняет контроль доступа, т. е. идентификацию вызовов с помощью RAS.

Сервер DNS (Domain Name System) используется в системе адресации и хранит соответствия между всеми именами хостов и адресами IP для данного домена (домен охватывает все нижележащие ветви для данного узла дерева DNS).

5.2 Наиболее вероятная схема организации речевой связи по сети передачи данных IP

Основными устройствами, обеспечивающими передачу речи, являются шлюз VoIP, к которому может быть подключена УПАТС или отдельные телефонные аппараты, и речевой терминал. В качестве речевого терминала, в частности, может выступать персональный компьютер удаленного абонента корпоративной сети, снабженный соответствующими аппаратными и программными средствами.

Как правило, в сетях передачи данных используется оборудование не позволяющее в полной мере реализовать все требования стандарта VoIP IA 1.0, так как не все маршрутизаторы поддерживают протокол резервирования ресурсов RSVP, который рассматривался в этом стандарте как средство обеспечения гарантированного качества передачи речи.

Для кодирования речи будет использоваться вокодер ACELP, описанный в рекомендации ITU G.723.1. Выбор этого вокодера обусловлен самым выгодным соотношением качество речи / скорость потока. Характеристики вокодера можно найти в разделе 3.2.3.

На Рис. 5.4 приведена схема подключения телефонного оборудования к сети IP.

Рис. 5.4. Схема организации телефонной связи по сети передачи данных IP.

В качестве протокола канального уровня, при передачи информации между узлами сети, используется протокол Frame Relay. Для передачи информации, между соседними узлами сети выделяется виртуальный канал с максимально возможной согласованной скоростью передачи.

5.3 Оценка количества речевых трактов, при организации речевой связи по физическому каналу 19,2 кбит/с

Исходя из того, что размер речевого кадра составляет 20 байтов, формат пакета IP согласно стандарту VoIP IA 1.0 будет иметь вид, представленный на Рис. 5.5.

Рис. 5.5. Формат пакета IP.

При передачи этот пакет упаковывается в кадр Frame Relay, который добавляет еще 6 байтов служебной информации (2 байта - флаги, 2 байта - FCS, 2 байта - стандартный заголовок). Итого, полный размер кадра Frame Relay составит 74 байта.

Исходя из того условия, что каждый речевой кадр должен быть передан со скоростью 5,3 кбит/c, скорость передачи кадра Frame Relay по каналу связи должна составить 19,6 кбит/c (20 байтов, составляющих речевой кадр, должны быть переданы со скоростью 5,3 кбит/c, следовательно 74 байта кадра Frame Relay должны быть переданы со скоростью 19,6 кбит/c, для своевременной доставки речевого кадра). Т.о. канал пропускной способности 19,2 кбит/c нельзя использовать для передачи речи в соответствии со стандартом VoIP IA 1.0.

5.4 Оценка количества речевых трактов при организации речевой связи по физическому каналу 2048 кбит/с

Как и в предыдущем случае, рассуждения основаны на том, что между соседними узлами на базе физического канала 2048 кбит/c создан виртуальный канал с максимально возможной согласованной скоростью передачи.

В рамках этого канала передаются речевые пакеты IP от различных абонентов, одновременно ведущих телефонные переговоры. Требуется определить максимально возможное количество телефонных абонентов, которые будут иметь возможность одновременно использовать данный канал.

Размер пакета IP составляет 68 байтов, и таким образом размер кадра Frame Relay составит 74 байта (2 байта - флаги, 2 байта - FCS, 2 байта - стандартный заголовок, 68 байтов - пакет IP).

Необходимо вычислить, какое количество кадров Frame Relay можно передать по каналу 2048 кбит/c за 30 мс (это условие обосновывается тем, что речевой кадр размером 20 байтов любого из абонентов должен быть передан от узла к узлу со скоростью не менее 5,3 кбит/с). Количество речевых кадров, а значит и число возможных абонентов составит 104.

Таким образом, проведенный анализ показывает, что в физическом канале пропускной способности 2048 кбит/с можно организовать одновременную передачу речевой информации от 104 различных абонентов КСПД (имеющих различные адреса IP), что равносильно организации 104 отдельных речевых трактов.

5.5 Анализ задержки передачи речи по сети передачи данных IP

Напомню, что основными составляющими, которые необходимо учитывать при расчете полной задержки являются:

· задержка при обработке сигнала кодеком (величина постоянная, tобраб);

· задержка в выходной и входной очередях (величина переменная, зависит от загрузки маршрутизатора, канала и способа приоритезации, tнакопл);

· задержка в сглаживающем буфере коммутатора (величина переменная, tпосл.комм);

· задержка в маршрутизаторе (величина постоянная при данных скорости канала и размере пакета, tмаршр);

· задержка трафика при распространении по ЛВС и по КСПД (величины переменные, tЛВС и tpacnp, соответственно).

На Рис. 5.6 представлена схема распределения задержек при передачи речи по сети IP КСПД.

Рис. 5.6. Схема распределения задержек в сети IP.

Опираясь на приведенную схему распределения задержек, а также учитывая количество транзитных узлов, при передачи речевого сигнала от абонента к абоненту, можно с достаточной точностью определить величину совокупной задержки передачи речевого сигнала по сети передачи данных IP КСПД, в соответствии со следующим соотношением:

В качестве примера, в табл. 5.1 представлены величины задержек, возникающих при передаче речи между абонентами некоторых узлов корпоративной сети с коммутацией пакетов, построенной на основе цифровых каналов 2048 кбит/с.

Таблица 5.1 Односторонняя задержка передачи речевого сигнала по сети IP.

 

Москва-1

С.-Петербург

Екатеринбург

Новосибирск

Хабаровск

ЦУС

190 мс

193 мс

193 мс

256 мс

327 мс

Москва-1

 

193 мс

193 мс

256 мс

327 мс

С.-Петербург

 

 

253 мс

316 мс

387 мс

Екатеринбург

 

 

 

196 мс

267 мс

Новосибирск

 

 

 

 

204 мс

5.6 Пример практического внедрения метода передачи речи VoIP

Создание телефонной сети на базе имеющейся сети передачи данных видимо эффективнее осуществлять с использованием метода VoFR, но когда речь идет об обеспечении услугами речевой связи обычных удаленных пользователей локальных сетей, необходимо вспомнить о технологии VoIP - именно в этом заключается вся ее привлекательность.

Однако выбор оборудования и процесс внедрения подобной технологии должен быть всесторонне обоснован, поскольку реализация приемлемой речевой связи требует решения целого ряда сложных и взаимосвязанных технических и организационных проблем.

В настоящее время лидером сетевой индустрии является компания Cisco Systems и, по мнению экспертов, предлагающая наилучшие решения по передаче речевого трафика в сетях передачи данных. В частности, для обеспечения качества речи в сетях IP фирма Cisco Systems предусматривает использование в своем оборудовании таких возможностей как: RTP, RSVP, IP precedence, Weighted Fair Queing (WFQ), сжатие заголовков RTP и другие. Для уменьшения требований к полосе пропускания поддерживаются практически все стандарты сжатия речи, в том числе G.711, G.729 и G.723.1.

В качестве оборудования для передачи речи по сетям IP можно выделить такие серии как: Cisco AS5300 и Cisco 3600.

Универсальный сервер доступа серии AS5300 представляет собой многоцелевую платформу, обеспечивающую функции сервера доступа, маршрутизатора и пула цифровых модемов на едином шасси.

AS5300 имеет модульную архитектуру и может быть укомплектован различными интерфейсными модулями со встроенными модемами, что позволяет создавать конфигурации, точно соответствующие требованиям пользователя. Кроме того, это позволяет динамически наращивать конфигурацию по мере необходимости путем добавления требуемых модулей. Серверы являются полностью управляемыми платформами через программное обеспечение SNMP.

Недавно для устройств серии Cisco AS5300 была выпущена специальная карта (voice/fax feature card), которая обеспечивает передачу речевого трафика через сети IP. С появлением этой карты появилась возможность использовать устройство Cisco AS5300 Access Server как шлюз VoIP между сетями IP и телефонными сетями общего пользования (с соответствующим программным обеспечением). Каждая карта обеспечивает 24 цифровых речевых тракта для канала T1 или 30 речевых трактов для канала E1. В каждое устройство AS5300 можно установить до 2 карт, что обеспечивает 48/60 речевых трактов в одном шасси. Кодирование речи осуществляется согласно стандартам G.711, G.729 G.723.1, G.726, G.728, G.729a. Кроме того, Cisco AS5300 может быть укомплектован программным обеспечением Cisco Voice Manager (СVM). CVM является Web-совместимым приложением сетевого управления, которое предоставляет простое в использовании, но мощное решение для конфигурирования, мониторинга и диагностики сетей, построенных в соответствии с технологией VoIP. Cisco Voice Manager автоматически определяет речевую активность, включает средства решения сетевых проблем, и предоставляет детальную информацию о звонках, включая информацию о качестве связи. CVM устанавливает соединения с устройствами VoIP и шлюзами через сеть IP. Взаимодействие между сервером CVM и клиентским браузером Web осуществляется по протоколу HTTP, а взаимодействие между сервером CVM и речевым устройством - по протоколам SNMP и Telnet.

В качестве примера внедрения технологии VoIP в КСПД, можно предложить техническое решение центрального (в смысле реализации технологии VoIP) узла КСПД на базе оборудования фирмы Cisco, представленное на Рис. 5.7.

Рис.5.7. Структура центрального узла сети.

Модульные маршрутизаторы серии Cisco 3600 являются многофункциональными платформами, предоставляющими множество решений по интеграции голоса и данных, доступа к ISDN, глобальным и локальным сетям.

Сетевые модули речь/факс для устройств серии Cisco 3600 обеспечивают передачу речи и факсимильной информации по сети IP. В устройства серии Cisco Cisco 3620 может быть установлен 1 голосовой модуль с двумя слотами расширения, а в устройство Cisco 3640 можно установить до 3 таких модулей. Каждый модуль можно укомплектовать двухпортовыми картами FXS, FXO или E&M. Таким образом, максимальное количество речевых портов в устройствах серии Cisco 3620 равно 4, а в устройстве Cisco 3640 равно 12.

На Рис. 5.8 приведена схема межрегионального узла КСПД с возможностью подключения речевых абонентов в соответствии с методом VoIP.

Рис.5.8. Узел с возможностью подключения речевых абонентов.

Глава 6. Сравнение методов передачи речи VoFR и VoIP

6.1 Сравнение размеров служебной информации кадра Frame Relay и пакета IP

Основное различие VoIP и VoFR состоит в том, что размер служебной информации пакета IP существенно больше кадра Frame Relay. Сравним оба метода на предмет использования полосы пропускания, и в качестве примера рассмотрим вокодер G.723.1 (5,3 кбит/c). Усредненное потребление полосы пропускания при использовании методов VoFR и VoIP приведено соответственно в Табл.6.1 и Табл.6.2.

Таблица.6.1 Заголовок кадра FR и усредненное потребление полосы пропускания.

Полоса пропускания используемая кодером

5,3 кбит/c

Для передачи служебной информации кадра Frame Relay с речью

2,1 кбит/c

Суммарное использование полосы пропускания в сети Frame Relay.

7,4 кбит/c

Удаление пауз речи (60%)

- 4,4 бит/c

Окончательное использование полосы пропускания, усредненное за период 20-30 секунд разговора.

3 кбит/c

Необходимо заметить, что при сравнении не учитывается размер служебной информации, добавляемой к пакету IP, при его передаче на канальном уровне.

Таблица.6.2. Заголовок пакета IP и усредненное потребление полосы пропускания.

Полоса пропускания используемая кодером

5,3 кбит/c

Для передачи служебной информации речевого пакета IP

12,7 кбит/c

Суммарное использование полосы пропускания в сети IP

18 кбит/c

Удаление пауз речи (60%)

- 7,2 кбит/c

Окончательное использование полосы пропускания, усредненное за период 20-30 секунд разговора.

10,8 кбит/c

6.2 Сравнение VoFR и VoIP с точки зрения использования полосы пропускания

Предприятия обычно не имеют собственных линий связи между территориально распределенными объектами и для организации своей сети должны арендовать каналы у других операторов или создавать спутниковую сеть. Арендная плата за каналы составляет основную долю расходов на содержание сети, поэтому экономия полосы пропускания является в большинстве случаев основным критерием при выборе технологии пакетной передачи голоса и данных.

Скорость пакетной передачи речи зависит от нескольких факторов: скорости кодирования сигнала, размера речевого пакета, объема служебной информации протоколов канального, сетевого и транспортного уровней, наличия или отсутствия механизма сжатия заголовков пакетов, числа передаваемых по линии телефонных каналов, степени использования механизма детектирования речевого сигнала (Voice Activity Detection - VAD), a также от того, какова допустимая доля потерянных пакетов при перегрузке выходного порта мультиплексора Frame Relay или маршрутизатора.

Рассмотрим влияние этих факторов на скорость передачи телефонного трафика по одному телефонному каналу на примере использования кодека G.729. Он обеспечивает сжатие речи до 8 Кбит/с, при этом минимальная длительность отрезка анализируемого сигнала составляет 10 мс. За этот интервал времени кодек выдает битовую последовательность длиной 10 байт. Далее формируются речевые пакеты - к полезной нагрузке добавляется заголовок длиной от 1 до 3 байтов. Этот заголовок обеспечивает передачу информации о типе сообщения (речь, факс или данные) и сигнализации, параметрах VAD и длине пакета. Типичная длина заголовка речевого пакета составляет 2 байта, поэтому полная длина такого пакета может составлять 12, 22 байта и т. д. - до 82 байт в зависимости от числа помещенных в один пакет элементарных 10-байт последовательностей полезной нагрузки.

В случае использования протокола Frame Relay речевой пакет помещается в кадр этого протокола с заголовком 6 байт (общий объем полей служебной информации конкретного протокола). На этом подготовка к передаче речевой информации заканчивается. Затем кадры VoFR поступают в сетевой порт вместе с кадрами данных, если, конечно, речь передается совместно с данными.

Скорость передачи одного телефонного канала для варианта VoFR определяем по известному полному объему кадра в битах и времени, в течение которого он должен быть передан. Например, если речевой пакет содержит две элементарные последовательности битов полезной нагрузки, общее время анализа речевого сигнала составит 2*10= 20 мс, а объем передаваемой информации - 8*(22 + 6) = 224 бит, в результате скорость передачи будет равна 11,2 Кбит/с. При длине речевого пакета 62 байт скорость равнялась бы 9,07 Кбит/с.

Когда речь передается с помощью протокола IP, речевые пакеты по стандарту G.729 формируются точно так же, как и для варианта VoFR, однако последующие процедуры гораздо сложнее. Прежде всего речевой пакет помещается в поле данных пакета протокола RTP (Realtime Transfer Protocol), заголовок которого имеет размер 12 байт. Затем этот пакет помещается в поле данных пакета протокола транспортного уровня UDP с заголовком длиной 8 байт, и, наконец, наступает очередь собственно протокола IP, пакет которого имеет заголовок 20 байт. Таким образом, общая величина накладных расходов протоколов IP/UDP/RTP составляет 40 байт.

Но пакет IP по сети перемещается при помощи протокола канального уровня: РРР, HDLC, Frame Relay, ATM или любого другого. В поле данных кадров этих протоколов помещается пакет IP, после чего он готов для передачи по сети. Типичным вариантом организации IP-сетей является использование протокола РРР с заголовком длиной 8 байт. В результате для рассмотренного ранее случая передачи речевых пакетов стандарта G.729 с полезной нагрузкой 20 байт полная длина IP-пакета составит 22 + 40 + 8 = 70 байт. Передать эти данные за те же 20 мс можно при условии, что скорость в канале будет равна 28 Кбит/с - это примерно в 2,5 раза больше, чем при передаче такого же речевого пакета посредством технологии VoFR.

6.3 Сравнение сегментации кадров VoFR и пакетов VoIP

Принцип последовательной передачи пакетов по каналу связи приводит к тому, что передача длинного пакета с данными может существенно увеличить время ожидания передачи речевого пакета. Например, передача 1500 байтового пакета Ethernet по каналу доступа 56 кбит/с составит более 200 мс.

Следовательно для УСПРД важно, чтобы имелась возможность просегментировать любые длинные пакеты данных, особенно для низкоскоростных каналов доступа. Ограничения на размеры пакетов с данными приведены в Табл.6.3.

Таблица.6.3 Максимальные размеры пакетов с данными.

Размер полосы пропускания канала доступа (кбит/c)

Максимальный размер пакета (байт)

56/64

256

128

512

192

768

256

1024

384

1536

512

2048

1544

6144

Последствием сегментации пакетов данных является уменьшение эффективности предачи данных. Поскольку есть фиксированный заголовок для каждого пакета, то создание небольших пакетов увеличивает процент служебной информации. Последствия сегментации в сетях Frame Relay менее чувствительны, чем в сетях IP поскольку размер заголовка Frame Relay существенно меньше.

В сетях IP эффективность функционирования сети может уменьшиться на 10-15%; в сетях Frame Relay - на 2-4%.

При использовании метода VoFR, сегментация пакетов происходит автоматически в VFRAD всякий раз, когда есть речевой вызов. В случае завершения разговора сегментация прекращается.

При использовании VoIP сегментация пакетов происходит в маршрутизаторе доступа по команде администратора сети или под управлением протокола “шлюз-маршрутизатор”, как например, RSVP. При использовании RSVP, устанавливается сеанс RSVP с маршрутизатором, в течении которого маршрутизатор сегментирует пакеты с данными.

Поскольку большинство маршрутизаторов и шлюзов VoIP не поддерживают RSVP или аналогичный управляющий протокол, принудительная сегментация, при использовании VoIP, в среднем на 10%-15% снижает эффективность функционирования сети на низкоскоростных каналах, независимо от того, присутствуют или нет телефонные вызовы.

Если сравнивать технологии VoFR и VoIP с точки зрения эффективности использования ресурсов корпоративной сети при условии обеспечения качества речи, то следует предпочесть VoFR.

Основными преимуществами VoFR над VoIP являются:

· более эффективное использование полосы пропускания каналов;

· меньшие показатели задержек передачи речи;

· автоматическая сегментация данных.

Заключение

В данной дипломной работе в Главе №1 излагаются базовые понятия IP-телефонии, необходимые для понимания обобщенной модели.

Глава №2 посвящена межсетевому протоколу IP.

В Главе №3 проведен анализ обобщенной модели передачи речи по сетям передачи данных с пакетной коммутацией. А именно: рассмотрены способы организации передачи речи, структура необходимого для этого программного обеспечения, основные характеристики наиболее известных типов вокодеров. Так же описаны методы оценки качества речи, факторы влияющие на качество речи и меры по обеспечению гарантированного качества передачи речи.

В Главах №4 и №5 была проанализирована возможность передачи речи по сетям Frame Relay и IP соответственно.

В Главе №6 приводится сравнение методов передачи речи VoFR и VoIP с точки зрения размеров служебной информации кадра, использования полосы пропускания и сегментации кадров.

В результате можно сделать следующие выводы:

- Для передачи речи по сети передачи данных IP в соответствии с рекомендацией ITU-T H.323 необходима скорость передачи канала связи 19,6 кбит/с, при условии, что для кодирования речи используется алгоритм G.723.1 (ACELP; 5,3 кбит/c), обладающий наиболее выгодным соотношением качество речи / скорость передачи, и рассматривался сеанс речевой связи абонентов двух узлов в час наибольшей нагрузки при отсутствии трафика данных и трафика систем управления. В физическом канале со скоростью передачи 2048 кбит/с можно организовать 104 отдельных речевых тракта. С этих позиций можно делать выводы о количестве абонентов КСПД, имеющих возможность вести телефонные переговоры по сети IP.

Вносимая в речь задержка может достигать значительных величин, существенно превышающих рекомендованное ITU-T в рекомендации G.114 значение 150 мс.

В случае передачи речи по сети передачи данных Frame Relay в соответствии со стандартом FRF.11 количество возможных телефонных абонентов в сети увеличивается. В канале пропускной способности 19,2 кбит/с можно организовать 2 речевых тракта, а в канале 2048 кбит/c - 268.

Величина вносимой в речь задержки несколько ниже, чем при передаче речи по сети IP, но и она может достигать значительных величин.

Литература

1. А. Г. Жданов, Д. А. Рассказов, Д. А. Смирнов, М. М. Шипилов. Передача речи по сетям с коммутацией пакетов (IP-телефония)//СПб.: СПбГУТ, 2001.

2. Б.С. Гольдштейн, А.В. Пинчук, А.Л. Суховицкий. IP-ТЕЛЕФОНИЯ// M.: Радио и связь, 2001.

3. Рабинер Л. Р., Шафер Р. В. Цифровая обработка речевых сигналов// М.: Радио и связь, 1981.

4. Сигнализация в сетях IP-телефонии. Б. Мюнх, С. Скворцова// Сети и системы связи, №13, 1999.

5. Что нужно для успешного внедрения IP-телефонии. Д. Уиллис// Сети и системы связи, №4, 1999.

6. АТС на базе IP работает, и неплохо. Э. Холл// Сети и системы связи, №12, 1998.

7. Передача голоса: подходы, проблемы, решения. Алексей Шереметьев, Александр Непомнящий, Алексей Любимов // PC WEEK/RE №30-31, 1998.

8. Качество обслуживания. Наталья Олифер//LAN/ЖУРНАЛ СЕТЕВЫХ РЕШЕНИЙ, 11, 2001

9. Пакетная телефония. Габриэль ДЮСИЛЬ// Сети, №10, 1998

10. Всё в одном флаконе. Александр Авдуевский// LAN/ЖУРНАЛ СЕТЕВЫХ РЕШЕНИЙ №10, 1999.

11. ITU-Т Recommendation G.711. Pulse Code Modulation of Voice Frequencies, 1988.

12. ITU-T Recommendation G.114. One-way transmission time, March 1993.

13. ITU-T Recommendation G.723.1. Dual Rate Speech Coder for Multimedia Communications Transmitting at 5.3 & 6.3 kbit/s, March 1996.

14. ITU-T Recommendation G.726. 40, 32, 24, 16 kbit/s Adaptive Differential Pulse Code Modulation, March 1991.

15. ITU-T Recommendation G.727. 5-,4-,3- and 2 bits Sample Embedded Adaptive Differential Pulse Code Modulation, November 1994.

16. ITU-T Recommendation G.728. Coding of Speech at 16 kbit / s Using Low_delay Code Excited Linear Prediction (LD_CELP). -1992.

17. ITU-T Recommendation G.729. Speech codec for multimedia telecommunications transmitting at 8 / 13 kbit / s. - 1996.

18. ITU-T Recommendation H.323. Packet based multimedia communication systems. - Geneva, 1998.

19. FRF.11. Voice over Frame Relay Implementation Agreement, May 1997.

20. IMTC Voice over IP Forum Service Interoperability Implementation Agreement1.0, December 1997.

Размещено на Allbest.ru


Подобные документы

  • Структура протокола TCP/IP. Взаимодействие систем коммутации каналов и пакетов. Характеристика сети с коммутацией пакетов. Услуги, предоставляемые ОАО "МГТС" с использованием сети с пакетной коммутацией. Расчет эффективности внедрения проектируемой сети.

    дипломная работа [2,3 M], добавлен 22.05.2012

  • Основные понятия IP телефонии, строение сетей IP телефонии. Структура сети АГУ. Решения Cisco Systems для IP-телефонии. Маршрутизаторы Cisco Systems. Коммутатор серии Catalyst 2950. IP телефон. Настройка VPN сети. Способы и средства защиты информации.

    дипломная работа [1,1 M], добавлен 10.09.2008

  • История деятельности Московской городской телефонной сети. Структура протокола TCP/IP. Взаимодействие систем коммутации каналов и пакетов. Характеристика сети с коммутацией пакетов. Услуги перспективной сети, экономическая эффективность ее внедрения.

    дипломная работа [2,5 M], добавлен 10.07.2012

  • Создание топологии соединения офисов в разных частях города. Настройки IP адресов, маршрутизации, безопасности. Конфигурация Web сервера и E-mail с сопоставлением символьных имен IP адресов. Оборудование, необходимое для создания корпоративной сети.

    курсовая работа [3,5 M], добавлен 25.02.2015

  • Зарождение концепции многоуровневой иерархической структуры сети телефонной связи. Электронная технология, позволившая перевести все средства телефонии на элементную базу. Развитие IР-телефонии, обеспечивающей передачу речи по сетям пакетной коммутации.

    реферат [25,4 K], добавлен 06.12.2010

  • Описание архитектуры компьютерной сети. Описание и назначение адресов узлам сети. Выбор активного сетевого оборудования, структурированной кабельной системы сети. Расчет конфигурации и стоимости сети. Возможность быстрого доступа к необходимой информации.

    контрольная работа [878,1 K], добавлен 15.06.2015

  • Цель, сферы использования и основные этапы построения систем видеоконференцсвязи. Системы передачи данных в сети Internet, в том числе беспроводные. Возможности пакетной IP-телефонии. Экономическое обоснование пакета оборудования для видеоконференции.

    дипломная работа [1,6 M], добавлен 18.06.2011

  • Алгоритмы сети Ethernet/Fast Ethernet: метод управления обменом доступа; вычисления циклической контрольной суммы (помехоустойчивого циклического кода) пакета. Транспортный протокол сетевого уровня, ориентированный на поток. Протокол управления передачей.

    контрольная работа [149,6 K], добавлен 14.01.2013

  • Построение логической схемы локальной-вычислительной сети для организации. Выбор технологии, топологии, кабельной среды и программного обеспечения. Настройка модели сети, адресов, статической маршрутизации. Подключение устройств файлового и web-серверов.

    курсовая работа [2,9 M], добавлен 17.11.2017

  • Проектирование информационной вычислительной сети организации, состоящей из нескольких территориально разнесенных подразделений. Схема логической адресации сетевого уровня. Разработка схемы автоматизации назначения логических адресов сетевого уровня.

    курсовая работа [2,2 M], добавлен 21.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.