Агроперетворені ґрунти солонцевих комплексів сухого степу України

Особливість солонцевих ґрунтів, їх властивості та продуктивність, напрями еволюції. Кліматичні умови, рослинність, геоморфологічні, гідрологічні та гідрогеологічні умови. Вплив меліоративної плантажної оранки на урожайність сільськогосподарських культур.

Рубрика Сельское, лесное хозяйство и землепользование
Вид диссертация
Язык украинский
Дата добавления 04.03.2010
Размер файла 10,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Результати наших досліджень, представлені у табл.4.13, свідчать про те, що на 50 рік післядії меліоративної плантажної оранки профільний розподіл валових форм азоту, фосфору та калію у 0-60 см шарі солонцю каштанового плантажованого є рівномірним і відповідає профільному розподілу гумусу у цих ґрунтах. Вміст валового азоту та фосфору в орному шарі солонцю каштанового плантажованого є вищим порівняно до того ж шару контрольного варіанту. Так, вміст валового азоту складає 0,13 % на плантажі при 0,11 % на контролі, а валового фосфору 0,13 % на плантажі при 0,10 % на контролі. Імовірно це пов'язано з вищим вмістом гумусу в орному шарі плантажованих ґрунтів. За загальної тенденції рівномірного профільного розподілу калію на плантажованому варіанті, вміст його в орному шарі обох варіантів відрізняється не істотно, що пов'язано з генетичними особливостями і однорідним мінералогічним складом досліджуваних ґрунтів.

Таблиця 4.13

Валовий вміст NPK у досліджуваних ґрунтах, 2005 рік

Ґрунти

Варіант

Глибина, см

Валові форми поживних елементів, %

N

P2O5

K2O

Солонці каштанові

плантаж

0-30

0,13

0,13

2,1

30-40

0,10

0,10

2,0

40-60

0,10

0,10

2,0

контроль

0-30

0,11

0,10

2,0

30-40

0,07

0,09

1,9

40-60

0,05

0,05

1,9

Темно-каштанові слабосолонцюваті ґрунти

(зрошувані прісною водою)

плантаж

0-30

0,16

0,14

1,9

30-40

0,13

0,14

1,9

40-60

0,13

0,13

1,8

контроль

0-30

0,13

0,12

1,8

30-40

0,11

0,11

1,7

40-60

0,08

0,09

1,8

Темно-каштанові слабосолонцюваті ґрунти

(зрошувані слабомінералізованою водою)

плантаж

0-30

0,15

0,13

2,0

30-40

0,15

0,13

1,9

40-60

0,13

0,11

1,8

контроль

0-30

0,13

0,12

1,9

30-40

0,10

0,10

1,8

40-60

0,08

0,08

1,8

За результатами наших досліджень, вміст рухомих сполук азоту в цілому за варіантами істотно не відрізняється. Рівень забезпеченості мінеральним азотом на плантажованому варіанті, в залежності від погодних умов, вирощуваної культури і строку визначання [247], коливається від середнього до підвищеного. Вміст рухомого фосфору в профілі плантажованих ґрунтів дещо вищій. В орному шарі вміст його коливається в межах 3,1-3,5 при 3,0-2,5 на контролі. Вміст рухомого калію є однаково високим на обох варіантах (табл.4.14).

Дослідженнями Г.В.Новікової установлено [175] що у темно-каштанових слабосолонцюватих ґрунтах, зрошуваних прісною водою, у перші роки після проведення меліоративної плантажної оранки лише самий верхній шар, збіднений на органічну речовину відзначався деяким зниженням поживних речовин, особливо азоту. Щодо глибини проникнення активних процесів нітрифікації, в результаті яких у ґрунті накопичується нітратний азот, то плантажовані ґрунти відзначалися найвищою потужністю - до глибини 60 см тут спостерігався відносно високий його вміст. Рухомий фосфор також найбільш глибоко простежувався по профілю у плантажованих ґрунтах.

Таблиця 4.14

Вміст рухомих форм поживних елементів у досліджуваних ґрунтах

Ґрунти

Рік

Варіант

Глибина, см

Вміст елементів, мг/100г ґрунту

N-NO3

N-NH4

Мінеральний азот

P2O5

K2O

Солонці каштанові

2003

плантаж

0-30

3,5

0,4

3,9

3,1

38,6

30-40

2,3

0,1

2,9

2,1

31,6

40-60

3,0

0,1

3,1

2,3

22,4

контроль

0-30

2,2

0,6

2,8

2,5

23,6

30-40

2,7

0,6

3,3

1,6

33,6

40-60

1,3

0,8

2,1

1,0

21,2

2005

плантаж

0-30

4,0

0,5

4,5

3,5

42,2

30-40

2,4

0,1

2,5

2,2

35,4

40-60

2,3

0,1

2,4

2,7

20,3

контроль

0-30

2,0

0,2

2,2

3,0

26,5

30-40

2,2

0,1

2,4

1,8

29,8

40-60

1,3

0,8

2,1

0,8

23,9

Темно-каштанові слабосолонцюваті ґрунти

(зрошувані прісною водою)

2003

плантаж

0-30

3,5

0,9

4,4

3,3

47,6

30-40

2,2

0,3

2,5

3,3

41,6

40-60

2,1

0,2

2,3

1,8

40,6

контроль

0-30

3,6

0,4

4,0

3,1

40,6

30-40

3,1

0,3

3,4

3,0

39,6

40-60

1,7

0,1

1,8

1,0

40,4

2005

плантаж

0-30

3,9

0,7

4,6

3,3

47,4

30-40

2,7

0,2

2,9

3,3

37,4

40-60

2,0

0,2

2,2

1,6

37,4

контроль

0-30

3,9

0,4

4,3

3,0

49,4

30-40

2,8

0,2

3,0

3,0

37,4

40-60

1,7

0,1

1,8

0,7

38,4

Темно-каштанові слабосолонцюваті ґрунти

(зрошувані слабомінералізованою водою)

2003

плантаж

0-30

4,1

0,7

3,8

2,6

34,6

30-40

3,8

0,3

3,1

2,3

22,0

40-60

4,4

0,2

3,6

2,2

21,2

контроль

0-30

3,7

0,5

2,7

2,5

31,6

30-40

3,1

0,6

2,4

1,5

19,2

40-60

3,2

0,1

2,4

0,7

16,6

2005

плантаж

0-30

3,9

0,8

3,9

2,5

46,7

30-40

3,5

0,3

3,8

2,2

29,4

40-60

3,7

0,2

3,9

2,0

20,8

контроль

0-30

3,4

0,5

2,8

2,3

35,7

30-40

3,2

0,6

2,6

1,6

22,1

40-60

3,0

0,2

2,6

0,9

20,4

Нашими дослідженнями встановлено, що в тривалій післядії плантажної оранки темно-каштанові слабосолонцюваті ґрунти відрізняються дещо вищим вмістом валових форм азоту фосфору та калію у меліорованому шарі. Так, вміст валового азоту в орному шарі ґрунтів плантажованого варіанту складає 0,16 % при 0,13 % на контролі, вміст валового фосфору - 0,14 % на плантажі при 0,12 % на контролі, вміст валового калію істотно не відрізняється. При цьому, порівняно з солонцями каштановими незрошуваними вміст валового азоту у темно-каштанових слабосолонцюватих ґрунтах на обох варіантах є дещо вищим.

Вміст рухомих сполук азоту в цілому на плантажованому варіанті є дещо вищим порівняно з контролем. Вочевидь це пов'язано з різким посиленням процесів трансформації азотовмісних органічних сполук під впливом мікроорганізмів при окультурюванні [94].

Рухомого фосфору в орному шарі плантажованих ґрунтів 3,3 мг/100г ґрунту. З глибиною його кількість дещо зменшується, складаючи у шарі 40-60 1,8-1,6 мг/100г ґрунту, однак залишається вищою, порівняно з тим же шаром неплантажованих ґрунтів (1,0-0,7 мг/100г ґрунту). Вміст рухомого калію К2О в орному шарі темно-каштанових ґрунтів обох варіантів дуже високий, адже складає 47 мг/100г ґрунту.

Відомо, що зрошення мінералізованими водами, викликаючи осолонцювання ґрунтів, суттєво впливає на їх поживний режим [86,95]. К.К.Гедройць підкреслював, що вже невеликі кількості одновалентних катіонів, особливо натрію і калію, роблять ґрунтові сполуки більш рухомими [32]. В.Д.Кисіль і Г.М.Кривоносова вказують на збільшення вмісту рухомих форм фосфору під впливом зрошення [113]. Дослідженнями Ю.Є. Кізякова виявлено високу рухомість фосфатів у шарі 0-40 см і її збільшення з підвищенням мінералізації зрошувальних вод [86,95].

Нашими дослідженнями встановлено, що на 30 рік післядії меліоративної плантажної після припинення зрошення слабомінералізованими водами вміст валового азоту в орному шарі ґрунтів плантажованого варіанту складає 0,15 % при 0,13 % на контролі, валового фосфору 0,13 % при 0,12 % на контролі, валового калію 1,9% на обох варіантах. Профільний розподіл елементів на плантажованому варіанті є рівномірним, а на контрольному - типовим для досліджуваних ґрунтів.

Вміст мінерального азоту в профілі плантажованих ґрунтів коливається в межах 3,7-3,9 мг/100г ґрунту, при 2,8-2,6 мг/100г ґрунту на контролі. Рухомого фосфору в орному шарі плантажованих ґрунтів 2,5 мг/100 г ґрунту. З глибиною його кількість дещо зменшується, складаючи у шарі 40-60 2,3 мг/100г ґрунту, однак залишається вищою, порівняно з тим же шаром неплантажованих ґрунтів (0,9 - 0,7 мг/100г ґрунту). Вміст рухомого фосфору в орному шарі ґрунтів контрольного варіанту при цьому складає 2,3 мг/100г. Не досить істотна різниця за варіантами у даному випадку вочевидь пов'язана з майже однаковим вмістом гумусу в орному шарі плантажованих і неплантажованих ґрунтів. Вміст рухомого калію К2О в орному шарі темно-каштанових ґрунтів обох варіантів дуже високий, адже коливається в межах 34,6-46,7 мг/100 г ґрунту.

Коротко підсумовуючі отримані результати вивчення поживного режиму досліджуваних ґрунтів, можна зробити наступні висновки.

1. Профільний розподіл валових форм азоту, фосфору та калію у 0-60 см шарі плантажованих ґрунтів є рівномірним і відповідає профільному розподілу гумусу у цих ґрунтах. Профільний розподіл елементів на контрольному варіанті є типовим для досліджуваних ґрунтів.

2. Рівень забезпеченості рухомими формами поживних речовин в цілому за досліджуваними варіантами істотно не відрізняється.

4.6 Зміни агрофізичних властивостей солонцевих ґрунтів

Несприятливі агрофізичні властивості є основним чинником, що лімітує родючість солонцевих ґрунтів. У вологому стані ці ґрунти липкі, в'язкі, злиті, а у сухому утворюють щільні глиби з тріщинами, що важко піддаються обробітку. Тому, зміна агрофізичних властивостей солонцевих ґрунтів є основним показником їх докорінного покращання [47,49,53,170,175,196,198,205].

У генетичному ґрунтознавстві для діагностики генетичних горизонтів ґрунтів традиційно використовують дані гранулометричного складу, зокрема вміст і характер розподілу по ґрунтовому профілю мулистих часток, основна маса і мінеральний склад яких успадковані від ґрунтоутворюючих порід [53,164,196,198].

Гранулометричний склад досліджуваних солонців каштанових малонатрієвих коливається від важкосуглинкового до легкоглинистого, що визначається відповідним складом грунтоутворюючих порід, представлених здебільшого карбонатними глинами та важкими суглинками. Солонцевим ґрунтам притаманний перерозподіл мулистих часток по профілю. Так, вміст мулистої фракції в орному шарі складає 39,5 %, а у шарі 30-40 см - 43,5 %, що співпадає з заляганням щільного солонцевого горизонту з притаманною йому призматичною структурою (табл. 4.15).

Трансформації морфологічної будови профілю солонцевих ґрунтів під впливом меліоративної плантажної оранки позитивно вплинули на агрофізичні властивості по усій глибині меліорованого шару [123,131,152,168,175,184,193]. Результати визначення гранулометричного складу чітко відображають зміни морфологічної будови солонців під впливом меліоративної плантажної оранки. Розподіл мулистих часток в усьому меліорованому шарі залишається рівномірним протягом усього періоду післядії. Вміст мулистої фракції при цьому складає 38-39 %. Таким чином підтверджується той факт, що в тривалій післядії меліоративної плантажної оранки, ілювіювання мулистих фракцій не спостерігається і формування солонцевих чи солонцюватих горизонтів не відновлюється.

Дослідження мікроагрегатного складу виявило кращу агрегованість ґрунтів плантажованого варіанту (табл.4.16). Порівнюючи дані гранулометричного і мікроагрегатного складів, можна помітити, що елементарні частки мулистих фракцій значною частиною агреговані. Якщо у гранулометричному складі вміст мулу у верхньому горизонті (0-30 см) складає 38,5 %, то у мікроагрегатному складі у цьому ж горизонті фракція мулу складає 2,9 %, що явно свідчить про перехід мулу у мікроагрегати. Це підтверджується і зменшенням фактора дисперсності, який в орному шарі плантажованих ґрунтів складає 7,5 при 10 на контролі. В утворенні агрегатів вочевидь, велику роль відіграють увібрані двовалентні катіони - кальцій і магній та органічна речовина.

Гранулометричний склад темно-каштанових слабосолонцюватих ґрунтів, зрошуваних прісною водою також коливається від важкосуглинкового до легкоглинистого. Ґрунтам контрольного варіанту притаманний перерозподіл мулистих часток по профілю. Вміст мулистої фракції в орному шарі складає 36,7%, а у шарі 30-40 см - 41,%. Порівняно з плантажованим варіантом, тут дещо збільшується вміст крупного пилу (31-32% на контролі при 28-29: на плантажі). Згідно класифікації М.А.Качинського ці ґрунти відносяться до важкосуглинкових крупнопилувато-мулуватих [53,245].

Розподіл мулистих часток у плантажованих ґрунтах залишається рівномірним протягом 40 річної післядії меліоративної плантажної оранки. Вміст мулистої фракції при цьому складає 36-37 %. Згідно класифікації М.А.Качинського ці ґрунти відносяться до легкоглинистих крупнопилувато-мулуватих[53,245]. В тривалій післядії меліоративної плантажної оранки у зрошуваних умовах також не спостерігається відновлення ілювіального горизонту.

Дослідження мікроагрегатного складу виявило дещо нижчий вміст мулистої фракції у плантажованих ґрунтах, порівняно з контролем (2,0-2,2% на плантажі при 4-5% на контролі), що обумовило відповідну різницю фактора дисперсності за Качинським (6,1 на плантажі при 10,7 на контролі).

Таблиця 4.15

Гранулометричний склад досліджуваних ґрунтів

Грунт

Варіант

Глибина, см

Розмір часток у мм, кількість у %

Назва ґрунту за гранулометричним складом

1-0,25

0,25-0,05

0,05-0,01

0,01-0,005

0,005-0,001

менше 0,001

менше

0,01

Солонці каштанові

Плантаж

0-30

0,2

5,9

31,3

12,1

12,4

38,3

58,5

Важкосуглинковий крупно- пилувато мулуватий

30-40

0,2

6,5

2/8,6

11,8

14,3

38,6

62,1

Легкоглинистий крупно- пилувато мулуватий

40-60

0,1

6,1

28,6

11,3

14,8

39,1

63,6

Легкоглинистий крупно- пилувато мулуватий

Контроль

0-30

0,3

4,8

34,9

13,1

7,3

39,5

52,9

Важкосуглинковий крупнопилувато-мулуватий

30-40

0,1

7,1

34,1

10,9

4,4

43,4

58,7

Важкосуглинковий крупнопилувато-мулуватий

40-60

0,1

7,2

34,0

11,8

4,5

42,6

49,0

Важкосуглинковий крупнопилувато-мулуватий

Темно-каштанові слабосолонцюваті ґрунти

(зрошувані прісною водою)

Плантаж

0-30

0,1

6,2

28,9

9,5

18,2

37,1

64,8

Легкоглинистий крупнопилувато-мулуватий

30-40

0,1

4,6

29,8

7,8

19,7

37,9

65,4

Легкоглинистий крупнопилувато-мулуватий

40-60

0,1

8,3

28,1

7,8

19,4

36,2

62,0

Легкоглинистий крупнопилувато-мулуватий

Контроль

0-30

0,1

8,3

32,8

8,2

13,8

36,7

54,7

Важкосуглинковий крупнопилувато-мулуватий

30-40

0,1

8,1

31,8

6,8

13,2

40,0

53,8

Важкосуглинковий крупнопилувато-мулуватий

40-60

0,1

10,1

32,8

8,4

6,4

42,2

56,4

Важкосуглинковий крупнопилувато-мулуватий

Темно-каштанові слабосолонцюваті ґрунти

(вилучені зі зрошення слабомінералізованими водами)

Плантаж

0-30

0,2

5,1

32,1

12,3

12,2

38,1

62,6

Легкоглинистий крупно- пилувато мулуватий

30-40

0,32

6,7

32,5

11,9

10,3

38,4

58,9

Важкосуглинковий крупно- пилувато мулуватий

40-60

0,2

8,3

34,1

9,2

10,2

38,1

58,1

Важкосуглинковий крупно- пилувато мулуватий

Контроль

0-30

0,1

0,5

30,1

14,6

16,1

38,6

65,7

Легкоглинистий крупно- пилувато мулуватий

30-40

0,1

5,9

31,0

10,3

10,0

42,5

64,5

Легкоглинистий крупно- пилувато мулуватий

40-60

0,2

5,0

34,0

8,5

10,6

41,7

60,8

Легкоглинистий крупно- пилувато мулуватий

Таблиця 4.16

Мікроагрегатний склад досліджуваних ґрунтів

Грунт

Варіант

Глибина, см

Розмір часток у мм, кількість у %

Фактор дисперс-ності

1-0,25

0,25-0,05

0,05-0,01

0,01-0,005

0,005-0,001

менше 0,001

менше

0,01

Солонці каштанові

Плантаж

0-30

8,1

38,4

36,2

7,8

6,3

2,9

17,0

7,5

30-40

11,0

39,9

32,4

8,9

5,6

2,03

16,5

5,2

40-60

22,4

27,4

30,9

6,1

9,9

3,1

19,1

7,9

Контроль

0-30

10,1

34,0

34,0

8,0

9,7

4,19

21,8

10,0

30-40

8,6

31,5

33,8

10,9

7,2

7,8

26,0

18,0

40-60

21,3

29,1

32,7

7,9

6,8

2,1

16,3

4,9

Темно-каштанові слабосолонцюваті ґрунти

(зрошувані прісною водою)

Плантаж

0-30

11,1

34,7

36,0

7,3

8,4

2,3

18,1

6,1

30-40

5,9

40,5

37,9

7,1

11,4

2,1

33,6

5,3

40-60

4,7

33,5

38,8

8,6

10,3

3,8

22,8

10,0

Контроль

0-30

6,4

33,2

40,0

7,5

8,9

3,9

20,3

10,7

30-40

6,7

24,4

41,3

9,5

14,9

3,1

27,7

7,9

40-60

5,7

34,7

77,1

8,5

6,8

5,1

20,5

12,1

Темно-каштанові слабосолонцюваті ґрунти

(вилучені за зрошуення слабомінералізованими водами)

Плантаж

0-30

5,6

26,9

46,7

7,7

9,45

3,4

20,6

5,2

30-40

6,3

28,4

41,1

3,8

13,1

4,0

21,1

6,8

40-60

6,4

27,3

40,2

7,7

15,1

2,4

25,4

4,0

Контроль

0-30

17,2

30,5

32,4

9,1

3,18

7,4

19,7

11,3

30-40

10,7

27,5

35,2

11,3

8,37

6,9

26,4

10,8

40-60

17,6

28,9

29,4

7,7

10,1

6,0

20,4

10,0

налогічні закономірності спостерігаються і у темно-каштанових слабосолонцюватих ґрунтах, вилучених зі зрошення слабомінералізованими водами. Вміст мулистої фракції в орному шарі ґрунтів контрольного варіанту складає 38,6 % і у шарі 30-40 збільшується до 42,5 %. Порівняно з темно-каштановими слабосолонцюватими ґрунтами, зрошуваними прісною водою, у ґрунтах цього варіанту дещо більший вміст середнього та дрібного пилу. Згідно класифікації М.А.Качинського ці ґрунти відносяться до легкоглинистих крупнопилувато-мулуватих [53,245].

Зрошення слабомінералізованими водами не сприяло відновленню вихідного розподілу мулистих часток на плантажованому варіанті. На 30 рік післядії меліоративної плантажної оранки він залишається рівномірним, вміст мулистої фракції у меліорованому шарі коливається в межах 38 %.

Мікроагрегатний склад під впливом меліоративної плантажної оранки також помітно змінився. У плантажованих ґрунтах зросла кількість часток 0,05-0,01 мм. При цьому вміст мулистої фракції залишається у два рази нижчим ніж на контролі. Такий профільний розподіл обумовлює значно нижчий показник фактору дисперсності у плантажованих ґрунтах (4,0-5,2 на плантажі при 10,0-11,3 на контролі).

Численними дослідженнями встановлено, що тільки на структурних ґрунтах можна забезпечити рослини одночасно і вологою і повітрям [53,146,159,173]. Структурний склад ґрунтів є важливою діагностичною характеристикою не тільки їх генетичних особливостей, але й сучасний проявів деградаційних процесів чи окультурення. Відомо, що структурність ґрунту обумовлюється цілою низкою показників, перш за все гранулометричним та мінералогічним складом, вмістом органічної речовини та її якістю, біогенністю ґрунту та інтенсивністю його використання [53,146].

Дослідження структурно-агрегатного складу орного шару плантажованих та нелантажованих ґрунтів дозволило виявити деяку різницю за варіантами (табл. 4.17). Післядія плантажної оранки зумовлює менший вміст брилистих агрегатів (>10 мм) і підвищений вміст агрономічно цінних агрегатів (10-0,25 мм), завдяки чому коефіцієнт структурності дещо підвищується (на 0,3-0,5). Це свідчить про тенденцію поліпшення макроструктурного стану плантажованих солонцевих ґрунтів порівняно з неплантажованими аналогами.

Таблиця 4.17

Структурно-агрегатний склад орного шару досліджуваних ґрунтів

Ґрунти

Варіант

Кількість агрегатів при сухому просіюванні (%), розмір (мм)

Коефіцієнт структурності

>10

10-0,25

<0,25

Солонці каштанові

Плантаж

30,3

67,5

2,3

1,81

Контроль

37,4

60,9

1,4

1,56

Темно-каштанові слабосолонцюваті ґрунти (зрошувані прісною водою)

Плантаж

35,7

62,4

1,9

1,65

Контроль

44,2

53,9

1,9

1,16

Темно-каштанові слабосолонцюваті ґрунти (вилучені зі зрошення слабомінералізованими водами)

Плантаж

37,1

60,4

2,5

1,51

Контроль

46,2

53,8

1,9

1,08

Руйнуючи солонцевий горизонт і перемішуючи його з карбонатною породою, плантажна оранка створює рихле складення протягом тривалого періоду післядії [87,91,95,175]. На усіх досліджуваних варіантах (як в зрошуваних так і в незрошуваних умовах) відмічається лише тенденція незначного ущільнення орного шару (табл. 4.18). Проте щільність складення при цьому на 0,1-0,15 г/см3 нижча ніж на контрольному (неплантажованому) варіанті. В більш глибоких шарах ґрунту (30-60 см) щільність складення залишається майже незмінною протягом тривалого періоду післядії [26,28,29,54].

В неплантажованих солонцевих ґрунтах в незрошуваних умовах щорічний обробіток на 25-28 см, забезпечує більш-менш сприятливу для сільськогосподарських рослин щільність складення тільки в орному шарі. В солонцевому і підсолонцевому шарі щільність ґрунту в усі роки майже не змінювалася. В умовах зрошення як пісними, так і слабомінералізованими водами вже в перші роки після початку зрошення спостерігається ущільнення ґрунту на 0,15-0,17 г/см3, порівняно з вихідним незрошуваним ґрунтом. В наступні роки щільність орного шару слабо змінюється і складає в середньому 1,28-1,42 г/см3. Цей висновок співпадає з результатами ряду досліджень про негативний вплив зрошення на фізичні та фізико-механічні властивості ґрунту [11,12,77,111,144 та ін].

Таблиця 4.18

Щільність складення меліорованих і немеліорованих солонцевих ґрунтів, г/см3

Об'єкт

Рік

Варіант

Плантаж

Контроль

Глибина, см

0-30

30-60

0-30

30-60

Солонці каштанові малонатрієві

1955

1,30

1,31

1,22

1,53

1958

1,11

1,28

1,28

1,50

1961

1,27

1,27

1,28

1,52

1968

1,29

1,29

1,36

1,59

1969

1,20

1,22

1,34

1,45

2003

1,20

1,31

1,34

1,34

2005

1,22

1,34

1,37

1,43

НІР0,95

0,2

0,2

0,2

0,3

Темно-каштанові слабосолонцюваті ґрунти

(зрошувані прісною водою)

1966

1,20

1,32

1,29

1,43

1969

1,17

1,30

1,33

1,47

1970

1,20

1,26

1,34

1,48

1978

1,15

1,15

1,27

1,32

1980

1,13

1,25

1,24

1,27

2003

1,13

1,28

1,19

1,37

2005

1,15

1,24

1,21

1,35

НІР0,95

0,3

0,3

0,2

0,3

Темно-каштанові слабосолонцюваті ґрунти

(зрошувані слабомінералізованою водою)

1974

1,39

1,30

1,35

1,56

1976

1,20

1,23

1,35

1,50

1977

1,30

1,22

1,39

1,51

1978

1,18

1,30

1,36

1,45

1979

1,29

1,28

1,42

1,46

1980

1,28

1,32

1,35

1,45

2003

1,32

1,42

1,41

1,53

2005

1,29

1,37

1,34

1,47

НІР0,95

0,2

0,3

0,3

0,3

Примітка. У таблиці використані дані Г.В.Новікової (щільність складення у солонцях каштанових малонатрієвих у 1955-1969 р.р. та у темно - каштанових слабосолоцюватих ґрунтах, зрошуваних прісною водою у 1966-1980 р.р.) та Ю.Є. Кізякова (щільність складення у темно - каштанових слабосолоцюватих ґрунтах, зрошуваних слабомінералізованою водою у 1974-1980 рр.) [87,160,175]

Отже, з наведеної у цьому підрозділі інформації випливає наступне:

1. Плантажованим солонцевим ґрунтам притаманний рівномірний розподіл мулистої фракції в меліорованому шарі протягом усього періоду післядії меліоративної плантажної оранки, ілювіювання мулистих фракцій не спостерігається і формування солонцевих чи солонцюватих горизонтів не відновлюється.

2. Елелементарні частки мулистих фракцій у плантажованих ґрунтах значною частиною агреговані, що підтверджується показником фактора дисперсності.

3. Вміст агрономічно цінних агрегатів та коефіцієнт структурності плантажованих ґрунтів вищий, порівняно з контролем.

4. Меліоративна плантажна оранка створює рихле складення протягом тривалого періоду післядії. Щільність складення на 0,1-0,15 г/см3 нижча ніж на контрольному (неплантажованому) варіанті.

4.7 Вміст важких металів

Динамічний розвиток техногенезу обумовлює надходження значних кількостей важких металів (ВМ) техногенного, в тому числі й агрогенного походження в усі компоненти навколишнього середовища. Проблемі забруднення ґрунтів важкими металами в останні роки приділяється пильна увага. Для агроландшафтів України було встановлено як кількісні значення вмісту важких металів у ґрунтах і ґрунтоутворюючих породах, так і закономірності їх географічного розподілу. Вміст важких металів у плантажованих ґрунтах на сьогодні залишається майже не вивченим [71,72,73,153,157,217,237].

Вважається, що найбільшу здатність переходити з увібраних ґрунтом форм у рослини і відповідно справляти на них певний корисний або токсичний вплив мають метали, що вилучаються із ґрунту ацетат-амонійною буферною витяжкою при рН=4,8, отже основна увага у ході наших досліджень приділялася саме цій формі важких металів. Оцінка небезпеки забруднення ґрунтів комплексом металів при цьому проводиться за сумарним показником забруднення (Zc)[30].

Як показали наші дослідження вміст і розподіл рухомих форм важких металів у плантажованих солонцях каштанових в незрошуваних умовах у верхній 0-100 см знаходиться на рівні допустимого забруднення (табл.4.19)..

Таблиця 4.19

Вміст рухомих форм важких металів у солонці каштановому малонатрієвому

Варіант

Глибина, см

Вміст елементів, мг/кг ґрунту

Zc

Оцінка забруднення

Zn

Cd

Ni

Co

Fe

Mn

Pb

Cu

Cr

плантаж

0-30

0,4

0,2

0,5

0,3

1,2

11,2

2,0

0,3

0

5,0(2)*

допустима

30-40

0,4

0,2

0,6

1,0

1,2

9,7

2,1

0,7

0

6,6(4)

допустима

40-60

0,6

0,2

0,5

1,0

1,2

9,7

2,0

0,6

0

6,2(4)

допустима

60-75

0,8

0,1

0,8

1,5

1,6

9,7

3,4

0,3

0,2

9,8(3)

допустима

75-100

0,8

0,2

0,8

1,2

1,5

11,0

3,8

0,5

0,2

12,0(4)

допустима

100-125

0,7

0,3

0,6

1,6

1,5

11,2

4,2

1,1

0,5

16,8(5)

помірно небезпечна

125-150

0,7

0,2

0,7

1,6

1,5

12,4

4,2

1,3

0,5

17,2(5)

помірно небезпечна

150-175

0,8

0,3

0,7

1,5

1,5

12,8

3,6

1,5

0,5

17,2(5)

помірно небезпечна

175-200

1,0

0,3

0,7

1,6

1,8

14,0

4,0

1,1

0,7

18,4(5)

помірно небезпечна

контроль

0-30

0,4

0,2

0,5

0,4

2,1

8,0

0

1,0

0

3,1(3)

допустима

30-40

0,5

0,3

0,6

1,1

2,2

7,9

2,0

0,9

0

8,1(5)

допустима

40-60

0,4

0,3

0,6

1,5

2,0

11,2

4,0

0,3

0

12,0(3)

допустима

60-75

03

0,3

0,6

1,3

2,5

13,5

4,1

0,5

0,2

13,1(5)

допустима

75-100

0,8

0,4

0,8

1,3

1,4

11,3

4,0

0,7

0,4

16,0(5)

допустима

100-125

0,9

0,3

0,9

1,0

1,6

14,8

3,2

1,1

0,5

14,5(5)

допустима

125-150

0,9

0,3

0,8

1,1

2,0

14,1

4,2

0,8

0,5

16,2(5)

помірно небезпечна

150-175

1,0

0,3

0,7

1,2

2,1

14,0

3,1

0,8

0,7

16,2(6)

помірно небезпечна

175-200

1,0

0,2

0,8

1,6

2,1

14,0

3,1

0,7

0,7

15,8(6)

допустима

ФОН [237]

1,0

0,10

1,0

0,50

2,0

43,0

0,50

0,50

0,10

-

-

ГДК [30,217]

23,0

-

4,0

5,0

-

500

6,0

3,0

6,0

-

-

Забезпеченість рослин мікроелементами

низька

<5,0

-

-

<0,3

-

<20,0

-

<0,5

-

-

-

середня

5,0-10,0

-

-

0,3-0,7

-

20,0-40,0

-

0,5-1,0

-

-

-

*- тут і надалі у дужках - кількість елементів, вміст яких перевищує фоновий

Сумарний показник забруднення тут складає 5-12. У верхній меліорованій частині (0-60 см) не спостерігається перевищення фону по жодному з досліджуваних елементів. Деяке перевищення фону по Cd, Со, Pb, та Cr відзначається у шарах 60-75 та 75-100 см. Спостерігається певна диференціація ґрунтового профілю за вмістом важких металів. Концентрація їх підвищується від верхніх шарів до нижніх. Акумуляція металів починається зі 100 см (Zc складає 16,8) і з глибиною поступово збільшується. На глибині 200 см сумарний показник забруднення складає 18,4, що відповідає помірно небезпечному рівню забруднення. У цій частині профілю спостерігається перевищення фону по Cd, Со, Pb, Cu та Cr. При цьому вміст усіх металів на рівні ГДК.

У солонцях каштанових неплантажованих спостерігається перевищення фону по Cd, Fe, Cu вже в орному шарі, а до глибини 200 см помітне перевищення по Cd, Co, Pb, Cu, Cr. Помірно небезпечний рівень забруднення спостерігається з глибини 125 см. Сумарний показник забруднення тут складає 16,2. Вміст усіх металів при цьому нижче ГДК.

Вміст рухомої форми більшості важких металів у кореневмісному шарі плантажованих та неплантажованих темно-каштанових слабосолонцюватих ґрунтів під впливом зрошення прісною водою дещо вищий порівняно з тим же шаром незрошуваних солонців каштанових. Це може свідчити як про додаткове внесення ВМ з поливною водою, так і про перехід частини ВМ з малорозчинних сполук ґрунту під впливом поливної води у форми, більш розчинні в ацетат-амонійній витяжці (табл.4.20).

Разом з тим, порівняно з контрольним варіантом, у плантажованих ґрунтах з орного і підорного шарів вилуговуються Zn, Ni, Cu та Cr. Причинами цього може бути, окрім покращання агрофізичних властивостей ґрунтів цього варіанту, перехід у більш рухомі форми ґрунтових резервів важких металів під впливом змін умов ґрунтового середовища (зниження рН, активізація мікрофлори, тощо) [153]. В результаті пересування цих елементів відбувається їх концентрація на глибині 150-175 см. Відповідно Zc підвищується від допустимого до помірно небезпечного. Нижче фонового вмісту тут лише Mn та Cr.

Таблиця 4.20

Вміст рухомих форм важких металів у темно-каштанових слабосолонцюватих ґрунтах, зрошуваних прісною водою

Варіант

Глибина, см

Вміст елементів, мг/кг ґрунту

Zc

Оцінка забруднення

Zn

Cd

Ni

Co

Fe

Mn

Pb

Cu

Cr

плантаж

0-30

0,5

0,2

1,0

1,2

2,5

18,2

1,2

0,5

0,1

5,1(4)

допустима

30-40

2,4

0,2

1,0

1,2

2,5

10,5

1,7

0,4

0,1

6,1(4)

допустима

40-60

0,5

0,2

1,2

1,4

2,5

12,2

2,0

0,3

0,1

7,3(5)

допустима

60-75

0,5

0,3

1,2

1,4

2,5

10,0

2,4

0,3

0,1

9,1(5)

допустима

75-100

1,1

0,3

1,3

0,8

3,7

9,5

1,6

1,2

0,1

8,5(7)

допустима

100-125

1,3

0,5

1,1

0,8

3,7

14,5

1,5

1,0

0,1

9,9(7)

допустима

125-150

1,2

0,5

1,2

1,5

3,7

15,0

3,2

1,0

0,1

14,7(7)

допустима

150-175

1,1

0,5

1,3

3,6

4,0

17,4

3,4

1,1

0,1

19,6(7)

помірно небезпечна

175-200

1,2

0,5

1,5

4,2

3,2

15,3

3,0

1,1

0,1

19,6(7)

помірно небезпечна

контроль

0-30

0,9

0,3

1,0

1,5

2,5

13,0

2,0

0,3

0,1

8,2(4)

допустима

30-40

0,6

0,3

1,2

1,8

2,7

11,5

2,1

0,4

0,1

9,4(5)

допустима

40-60

0,9

0,5

1,5

1,4

2,7

9,7

2,5

0,5

0,1

11,6(5)

допустима

60-75

1,0

0,5

1,0

2,3

3,0

11,7

2,3

0,5

0,1

12,7(4)

допустима

75-100

1,3

0,6

1,7

1,5

3,0

11,9

1,9

0,9

0,1

11,6(7)

допустима

100-125

1,3

0,5

1,2

1,9

3,0

15,6

2,2

1,0

0,1

13,2(7)

допустима

125-150

1,3

0,5

1,5

2,1

3,2

16,2

3,4

1,0

0,1

16,4(7)

помірно небезпечна

150-175

1,4

0,6

1,5

1,8

2,7

18,4

3,1

1,2

0,1

16,4(7)

помірно небезпечна

175-200

1,0

0,6

1,6

1,8

4,0

17,5

3,0

1,2

0,1

16,6(6)

помірно небезпечна

ФОН[237]

-

1,0

0,10

1,0

0,50

2,0

43,0

0,50

0,50

0,10

-

-

ГДК[30,217]

-

23,0

-

4,0

5,0

-

500

6,0

3,0

6,0

-

-

Забезпеченість рослин мікроелементами

низька

<5,0

-

-

<0,3

-

<20,0

-

<0,5

-

-

-

середня

5,0-10,0

-

-

0,3-0,7

-

20,0-40,0

-

0,5-1,0

-

-

-

У грунтах неплантажованого варіанту лише орний шар характеризується вилугованістю від Zn, Mn, Cu та Cr. Концентрація важких металів, починаючи з глибини 125 см, знаходиться на рівні помірно небезпечного забруднення. Сумарний показник забруднення складає 16,4. Слід відмітити, що вміст всіх елементів при цьому нижче ГДК.

В умовах вилучення зі зрошення слабомінералізованими водами в грунтових профілях плантажованих та неплантажованих темно-каштанових слабо солонцюватих слабосолонцюватих ґрунтів дещо вищій вміст Ni, Fe, Pb порівняно з тим же шаром зрошуваних ґрунтів, що може буди обумовлено якістю поливної водиу період зрошення (табл.4.21). Рівень забруднення цього шару на обох варіантах залишається допустимим. Сумарна концентрація металів складає відповідно 4,7-15,2 та 3,0-15,6. Горизонт акумуляції важких металів на плантажованому варіанті спостерігається з глибини 100 см. Усі елементи, окрім марганцю, тут перевищують фоновий вміст. Сумарна концентрація металів тут відповідає рівню помірно небезпечного забруднення і складає 18,9. На контрольному варіанті акумуляційний горизонт важких металів спостерігається з 75 см. Сумарний показник забруднення тут складає 21,0, що відповідає помірно небезпечному рівню забруднення. Слід зазначити, що при цьому вміст важких металів у ґрунтових профілях обох варіантів не перевищує ГДК.

Встановлено, що в умовах посиленого техногенного навантаження (зокрема у великих промислових зонах) у карбонатному горизонті ґрунтів може спостерігатися акумуляція важких металів, іноді вище рівня ГДК, що при застосуванні меліоративної плантажної оранки може викликати забруднення ґрунтів та рослинницької продукції важкими металами. Зокрема для ґрунтів Донецького регіону такий акумуляційний горизонт зафіксовано на глибині 50-60 см [157].

Наочне уявлення про вертикальний розподіл рухомих форм ВМ по профілях усіх досліджуваних ґрунтів, дають таблиці 4.19 - 4.21. Як видно з таблиць, характер розподілу всіх токсичних металів на плантажованих варіантах практично однаковий для всіх досліджуваних ґрунтів. Зокрема вони відзначаються досить рівномірним розподілом металів у меліорованій частині ґрунтового профілю (0-60 см) усіх варіантів, а горизонт максимальної акумуляції рухомих форм усіх ВМ спостерігається на глибині більше 100 см.

Таблиця 4.21

Вміст рухомих форм важких металів у темно-каштанових солонцюватих ґрунтах, вилучених зі зрошення слабомінералізованими водами

Варіант

Глибина, см

Вміст елементів, мг/кг ґрунту

Zc

Оцінка забруднення

Zn

Cd

Ni

Co

Fe

Mn

Pb

Cu

Cr

плантаж

0-30

0,3

0,2

2,3

1,2

1,7

10,7

0

0,3

0

4,7(3)

допустима

30-40

0,3

0,2

0,1

0,8

1,2

11,2

2,5

0,2

0

6,6(3)

допустима

40-60

0,4

0,2

4,0

1,4

2,0

8,0

2,5

0,5

0

10,8(4)

допустима

60-75

1,1

0,6

4,0

2,8

3,2

11,2

0

1,2

2,0

14,7(7)

допустима

75-100

1,0

0,5

4,0

3,0

3,2

12,0

3,2

1,5

2,1

15,2(7)

допустима

100-125

1,5

0,5

3,5

3,7

4,5

11,7

3,2

1,3

2,1

18,9(8)

помірно небезпечна

125-150

0,7

0,6

3,5

3,7

3,2

11,7

3,2

1,4

1,2

18,9(7)

помірно небезпечна

150-175

1,0

0,6

3,3

4,0

3,2

11,7

3,2

1,3

1,5

17,1(7)

помірно небезпечна

175-200

1,0

0,5

3,7

3,5

4,5

10,7

3,2

1,2

1,5

16,0(7)

допустима

контроль

0-30

0,3

0,2

0,3

1,0

1,2

12,5

0

0,3

0

3,0(2)

допустима

30-40

0,6

0,2

1,2

0,7

1,2

7,2

0

0,2

0

2,6(3)

допустима

40-60

0,3

0,2

1,5

1,1

1,7

7,0

0

0,3

0

3,7(3)

допустима

60-75

1,5

0,5

4,0

3,6

3,0

7,0

0

1,2

2,1

15,6(6)

допустима

75-100

1,5

0,5

4,0

3,0

2,5

10,0

3,0

1,6

0,5

21,0(7)

помірно небезпечна

100-125

1,0

0,6

3,1

4,0

4,0

9,5

4,2

1,5

0,5

24,5(6)

помірно небезпечна

125-150

1,3

0,6

4,0

4,0

4,0

9,5

4,2

1,8

2,3

26,3(8)

помірно небезпечна

150-175

1,3

0,6

3,8

4,1

4,0

10,0

4,2

1,8

2,0

28,3(8)

помірно небезпечна

175-200

1,0

0,6

3,6

4,1

4,5

10,0

4,2

1,7

2,0

27,9(7)

помірно небезпечна

ФОН[237]

-

1,0

0,10

1,0

0,50

2,0

43,0

0,50

0,50

0,10

-

-

ГДК[30,217]

-

23,0

-

4,0

5,0

-

500

6,0

3,0

6,0

-

-

Забезпеченість рослин мікроелементами

низька

<5,0

-

-

<0,3

-

<20,0

-

<0,5

-

-

-

середня

5,0-10,0

-

-

0,3-0,7

-

20,0-40,0

-

0,5-1,0

-

-

-

Необхідно пам'ятати про умовність негативного аспекту терміну «важкі метали», оскільки серед них багато елементів, фізіологічну роль яких доведено [237]. Їх концентрації в ґрунтах, водах, рослинах можуть бути нижчі за оптимальні і тоді вони розглядаються як мікроелементи. Вміст мікроелементів у рослинах, їх вплив на ріст, розвиток, кількісну і якісну продуктивність сільськогосподарських культур визначається вмістом мікроелементів у ґрунтах, який у свою чергу обумовлений факторами ґрунтоутворення, що визначають процеси розчинності йосадження речовин, міграції, акумуляції й перерозподілу мікроелементів у ґрунтовому профілі. Мікроелементи потрібні рослинам у малих кількостях. Незважаючи на це, вони відіграють важливу роль у біохімічних процесах: входять до складу ферментів або активізують їх діяльність[53,237].

Нашими дослідженнями встановлено високий та середній ступінь забезпеченості рослин міддю та кобальтом, висока забезпеченість на які є зональною особливістю досліджуваних ґрунтів [175,237]. Іншими досліджуваними мікроелементами ґрунти забезпечені слабо. Ця обставина імовірно пояснюється виносом цих елементів з урожаями сільськогосподарських культур, при зниженні, а інколи і припиненні, застосування мінеральних добрив, крім того може мати місце вимивання солей важких металів чому сприяє розущільнення ґрунту [71,212,227].

Таким чином, підсумовуючи вищенаведену інформацію, необхідно зазначити наступне:

1. Вміст рухомих форм ВМ у кореневмісному шарі усіх досліджуваних ґрунтів на рівні фонових і не досягає ГДК. На усіх досліджуваних варіантах концентрація ВМ підвищується від верхніх горизонтів до нижніх. При цьому рівень забруднення ґрунту ВМ змінюється від допустимого в верхніх горизонтах до помірно небезпечного в нижніх.

2. Розподіл всіх токсичних металів на плантажованих варіантах відзначається рівномірністю у меліорованій частині ґрунтового профілю (0-60 см), а горизонт максимальної акумуляції рухомих форм усіх ВМ спостерігається на глибині більше 125-150 см. В неплантажованих ґрунтах акумуляційний горизонт важких металів спостерігається на глибині 75-100 см. При цьому вміст важких металів тут знаходиться на рівні ГДК.

3. В орному шарі зрошуваних та вилучених зі зрошення ґрунтів дещо більший вміст окремих елементів порівняно з незрошуваними умовами, що може бути обумовлене додатковим їх надходженням зі зрошувальною водою.

4. Ґрунти характеризуються низьким вмістом мікроелементів (окрім Со та Сu), що пояснюється виносом цих елементів з урожаями сільськогосподарських культур, при зниженні, а інколи і припиненні, застосування мінеральних добрив.

4.8 Валовий хімічний склад солонцевих ґрунтів

Валовий хімічний склад дозволяє судити про кількість хімічних елементів, що містяться в ґрунті в цілому і їх зміни як за генетичними горизонтами так і під впливом антропогенного чинника [53]. Серед численної інформації щодо властивостей солонцевих ґрунтів нами не виявлено спеціальних досліджень щодо валового хімічного складу цих ґрунтів, тому вивчення цього питання нам здалося своєчасним та актуальним.

Дані валового хімічного складу досліджуваних ґрунтів представлено у таблиці 4.22.

Як видно з таблиці, в орному і підорному шарах усіх досліджуваних ґрунтів переважає кремній (SiO2 - 52-62 %), потім алюміній (Al2O3 - 11-13 %), залізо (Fe2O3 - 5-6 %), калій (K2O - 2,0-2,4 %), кальцій (CaO - 1,3-7,1 %), та натрій (Na2O - 0,4-0,6 %).

В цілому, у валовому хімічному складі солонцевих ґрунтів не спостерігається істотної різниці за генетичними горизонтами. Звертає на себе увагу той факт, що плантажованим ґрунтам усіх варіантів притаманний більш рівномірний розподіл усіх досліджуваних елементів у ґрунтовому профілі, тоді як на неплантажованих варіантах помітне деяке збільшення вмісту MgO (3,5-3,95 на контролі при 2,74-3,3 на контролі) та Na2O (0,4 на плантажі при 0,6 на контролі) у шарах 30-40 та 40-60 см. Крім того, порівняно з неплантажованими варіантами, в орному шарі спостерігається дещо більший вміст СаО, за рахунок залучення карбонатів кальцію в результаті меліоративного обробітку.

Порівняння валового складу зрошуваних та незрошуваних солонцевих ґрунтів не виявило істотної різниці між ними.

Таблиця 4.22

Валовий хімічний склад плантажованих та неплантажованих солонцевих ґрунтів

Ґрунти

Варіант

Глибина, см

Концентрації компонентів (вагові проценти)

SiO2

TiO2

Al2O3

Fe2O3

MnO

MgO

CaO

Na2O

K2O

P2O5

S

Cl

H2O

РРР

Солонці каштанові

плантаж

0-30

62,4

0,76

13,1

5,91

0,12

2,25

1,33

0,44

2,45

0,16

0,03

0,02

4,43

6,6

30-40

61,6

0,77

12,8

5,89

0,12

2,47

1,92

0,55

2,32

0,15

0,03

0,02

4,38

6,9

40-60

51,4

0,65

11,0

5,14

0,09

3,90

10,4

0,50

1,83

0,19

0,03

0,03

4,03

10,8

контроль

0-30

61,8

0,75

13,1

6,04

0,12

2,12

1,04

0,57

2,46

0,15

0,03

0,04

4,48

7,3

30-40

54,7

0,69

11,8

5,59

0,11

3,95

7,13

0,66

2,01

0,18

0,03

0,03

4,50

8,6

40-60

51,8

0,66

11,0

5,27

0,09

3,94

9,94

0,61

1,87

0,18

0,04

0,03

3,91

10,6

Темно-каштанові слабосолонцюваті ґрунти

(зрошувані прісною водою)

плантаж

0-30

59,5

0,74

12,8

5,99

0,12

2,87

2,99

0,56

2,40

0,18

0,03

0,02

4,60

7,2

30-40

52,0

0,64

11,4

5,14

0,10

2,85

3,48

0,47

2,04

0,16

0,04

0,02

5,09

16,5

40-60

56,4

0,72

12,3

5,75

0,11

3,32

5,62

0,56

2,20

0,17

0,06

0,03

4,45

8,3

контроль

0-30

60,0

0,74

12,6

6,15

0,13

2,72

2,48

0,51

2,42

0,17

0,03

0,02

4,76

7,3

30-40

60,0

0,74

12,7

6,13

0,13

2,74

2,38

0,46

2,44

0,17

0,03

0,03

5,12

6,9

40-60

48,3

0,60

10,4

5,04

0,07

4,39

12,0

0,46

1,85

0,19

0,05

0,04

4,19

12,4

Темно-каштанові слабосолонцюваті ґрунти

(зрошувані слабомінералізованою водою)

плантаж

0-30

60,6

0,77

13,0

6,08

0,11

2,49

1,86

0,67

2,36

0,17

0,04

0,03

4,90

6,9

30-40

59,7

0,77

12,9

6,04

0,11

2,67

2,42

0,65

2,32

0,20

0,04

0,02

5,17

6,9

40-60

58,3

0,77

12,4

5,86

0,11

2,83

4,32

0,66

2,21

0,18

0,03

0,05

4,80

7,5

контроль

0-30

61,7

0,77

12,7

6,20

0,12

2,14

1,18

0,67

2,44

0,17

0,04

0,02

5,22

6,6

30-40

62,3

0,76

12,8

6,02

0,12

2,21

1,22

0,61

2,42

0,16

0,03

0,02

6,75

4,5

40-60

59,7

0,79

13,1

6,21

0,11

2,75

2,32

0,68

2,31

0,17

0,04

0,03

6,95

4,8

Розділ 5. Вплив меліоративної плантажної оранки на УРОЖАЙНІСТЬ СІЛЬСЬКОГОСПОДАРСЬКИХ КУЛЬТУР

5.1 Урожайність сільськогосподарських культур

Урожай є основним показником рівня родючості ґрунтів і умов ведення сільськогосподарського виробництва. Застосування різних меліоративних заходів спрямовані перш за все на отримання додаткової продукції. А отже, рівень врожаїв основних сільськогосподарських культур є головним критерієм визначення позитивних виробничих якостей ґрунтів для їх оцінки.

Згідно з законом обмежуючих причин, розвиток рослин і рівень урожайності будь-якої культури визначається факторами, що знаходяться в недостачі або в надлишку, а також іншими обмежуючими причинами [53,77].

Низька насиченість солонців кальцієм, наявністю у вбирному комплексі натрію, лужна реакція ґрунтового розчину, несприятливі агрофізичні властивості обумовлюють низьку родючість солонців у природному стані. Культурні рослини розвиваються на солонцях погано, і , навіть у сприятливі щодо зволоження роки врожайність на них у 2-3 рази нижча, ніж на зональних ґрунтах, а у посушливі роки вона знижується майже до нуля. Тому наявність солонців у ґрунтовому покриві розглядають як негативне явище в агрономічному розумінні [53,175,196,198,212,227].

Покращання основних властивостей солонцевих ґрунтів під впливом меліоративної плантажної оранки, за даними різних авторів, сприяє збільшенню врожайності сільськогосподарських культур [95,123,151,170,175,244]. Дослідження С.П.Семенової-Забродіної та М.М.Лаврентьєва показують [175,222,223], що вже в перший рік після проведення цього меліоративного заходу на плантажованих ділянках схожість і розвиток рослин були краще. При врахуванні урожаю за варіантами біло виявлено, що ґрунти не тільки не втрачають родючість відразу після плантажування, а навіть збільшують її за рахунок покращання повітряного режиму, збільшення продуктивної вологи та активізації мікробіологічної діяльності у меліорованому шарі. Як наслідок, врожай вирощуваних сільськогосподарських культур на плантажованому варіанті був вищим, порівняно з контролем. Подібна тенденція спостерігалася і у наступні роки післядії, навіть за умов несприятливих (посушливих) погодних умов.

Аналіз урожайних даних показує, що у незрошуваних умовах прибавка врожаїв зернових культур на солонцях каштанових плантажованих достовірно збільшувалася з кожним наступним роком післядії [175] (рис.5.1).

Рис. 5. 1. Вплив меліоративної плантажної оранки на урожайність зернових культур на солонцях каштанових в незрошуваних умовах

На 50 рік післядії, згідно наших досліджень, меліоративна плантажна оранка зберігає позитивний вплив на продуктивність сільськогосподарських культур. Так, врожайність на плантажованих ділянках, як і в перші 10-15 років, була вищою в порівнянні з контрольними варіантами. Приріст врожаю зерна озимої пшениці на плантажованих ґрунтах складає 20-25 %.

В умовах Сухого Степу України фактором, нестачу якого майже постійно відчувають культурні рослини, є волога. Отже, зрошення (тобто ліквідація дефіциту вологи ) стає в цих умовах одним з потужних меліоративних засобів, що при оптимальному застосуванні здатен істотно підвищити урожайність вирощуваних сільськогосподарських культур.

У зрошуваних умовах прибавка врожаїв сільськогосподарських культур протягом усього періоду післядії була значно вищою порівняно з незрошуваними умовами [165]. Проведеними нами дослідженнями встановлено, що приріст врожаю зерна озимого ячменю на 40 рік післядії на плантажованих темно-каштанових солонцюватих ґрунтах в умовах зрошення становить, 40-50 % (рис. 5.2).

Рис. 5.2. Вплив меліоративної плантажної оранки на урожайність зернових культур на темно-каштанових слабосолонцюватих ґрунтах в умовах зрошення прісною водою.

При зрошенні мінералізованими водами ефективність плантажної оранки виявилася дещо нижчою (рис.5.3) [95]. У перші три роки прирости врожаїв озимої пшениці були відсутні, очевидно, через збіднення орного шару на органічну речовину, пов'язані з нею рухомі форми поживних елементів та прояв в таких умовах токсичного впливу натрію зрошувальних вод на розвиток рослин. Вирівнювання цих показників у наступні роки а також покращені агрофізичні властивості ґрунтів плантажованого варіанту обумовили прибавку на рівні 3,3-5,9 %. На 30-й рік післядії на плантажованій ділянці урожайність озимої пшениці була вищою, ніж на контролі.

Рис. 5.3. Вплив меліоративної плантажної оранки на урожайність зернових культур на темно-каштанових слабосолонцюватих ґрунтах (зрошення та післядія зрошення слабомінералізованими водами)

Отже, покращання основних властивостей солонцевих ґрунтів під впливом меліоративної плантажної оранки сприяло збільшенню врожайності сільськогосподарських культур. Аналіз урожайних даних показує, що в умовах незрошуваного землеробства прибавка врожаїв зернових культур на солонцях каштанових плантажованих 50 рік післядії складає 20-25 %, у зрошуваних умовах 40-50%. В умовах зрошення слабомінералізованими водами меліоративна плантажна оранка не виявляла позитивної дії на продуктивність сільськогосподарських культур, незначні прибавки спостерігаються в умовах припинення зрошення.

5.2 Математичне моделювання урожайності сільськогосподарських культур на солонцевих ґрунтах

Відомо, що модель оцінки ґрунтової родючості вважається адекватною лише тоді коли теоретичні дослідження, які побудовано на підставі логічних уявлень і припущень, підтверджуються аналізом експериментальних даних і математичним описом процесів і результатів. Застосування математичних методів і інтерпретацій у ґрунтових дослідженнях посилює елемент їх об'єктивності і дозволяє підвищити вирішення задач ґрунтознавства, особливо, якщо йдеться про різноманітність кількісних оцінок ґрунтових характеристик [15,22,24,48,62,82].

Величина врожаю будь-яких сільськогосподарських культур залежить від властивостей ґрунту, кліматичних умов попереднього і поточного року, рельєфу місцевості і цілого комплексу агротехнічних чинників (культури-попередники, обробіток ґрунту, добрива, якість насіння, сорт рослин і т.і.) [48,62,117].

Кількісну оцінку впливу різних чинників на урожай можна визначити двома способами: перший з використанням принципу єдиної різниці, другий з використанням математичних методів, перш за все методів математичної статистики. Перший шлях практично неможливий у зв'язку з великою різноманітністю природних чинників. Вплив кожного з них вимагає великого числа спостережень. Другий шлях виявляється можливим при використанні методів багатофакторних кореляцій і регресій [65,66,83,118,269].

Моделювання досліджуваної системи (врожай-природні умови) здійснювалося у декілька етапів, що являють собою чергування кількісного і якісного аналізу вихідної інформації.

Початковий етап моделювання передбачав визначення розміру вибіркової сукупності. Загальновідомо, що адекватність математичної моделі істотно пов'язана з кількістю досліджуваних показників вибірки, а саме - при збільшенні об'єму вибірки зростає об'єктивність одержаних даних. Об'єктом моделювання слугували природні умови (ґрунтові і кліматичні) формування врожаю сільськогосподарських культур на плантажованих ґрунтах.

Прагнучи отримати максимально достовірні результати для створення моделі продуктивності плантажованих ґрунтів ми використали наступні агрокліматичні та ґрунтові показники. З агрокліматичних показників вивчалися температура повітря, кількість атмосферних опадів та запаси продуктивної вологи в кореневмісному шарі ґрунтів за усі роки проведення досліджень. З ґрунтових показників вивчалися вміст загальних та токсичних солей, карбонатів кальцію, загального гумусу, валові та рухомі форми поживних елементів, активність іонів кальцію та натрію, гранулометричний та мікроагрегатний склад, щільність складення, структурно-агрегатний склад. До моделі залучалися ґрунтові показники шарів ґрунту 0-30 см, 30-40 см, 40-60 см. Таким чином загальна вибірка становила 122 показника для кожного з досліджуваних варіантів (плантаж та контроль).

З метою виявлення ролі ґрунтових характеристик та агрокліматичних критеріїв у формуванні врожаю, було застосовано декілька методів статистико-математичного аналізу, а саме: кореляційний, окремо парних кореляцій, факторний та багатофакторний кореляційно-регресійний із створенням моделей залежності урожайності основних сільськогосподарських культур і досліджуваних властивостей.

Розрахунки коефіцієнтів кореляції між врожаєм культур, ґрунтовими і кліматичними показниками було проведено за всіма показниками (Додаток Б).

Детальна статистична обробка даних дозволяє не тільки простежити залежності між врожаєм, ґрунтовими показниками та погодними умовами, а й кількісно визначити долю впливу кожного окремого показника (або їх сукупності) у формуванні величини врожаю. Це, в свою чергу створює можливість для розробки більш загальних математичних моделей та визначення динаміки змін впливу окремих показників за різних природно-антропогенних умов [15,22,24,48,62,117,118,129,221,238,240].

Основним недоліком існуючих методичних підходів є відсутність оцінки чистого дольового внеску кожного критерію у загальну роботу чинників ґрунтової родючості. Вирішити це питання, а також встановити величину очікуваного врожаю при фіксованих значеннях показників та простежити характер змін продуктивності ґрунтів за умов варіацій декількох чинників, можливо при застосуванні складних методів математичного аналізу і статистичного моделювання [24].

Статистичне моделювання складається з математичної формалізації закономірностей у вигляді абстрактних математичних аналогів, що інформаційно відображають поведінку реальної системи. Створена при цьому математична модель є системою математичних співвідношень і знакових логічних виразів, які імітують поведінку реальної системи у змінному середовищі. Оскільки строго математично відобразити усе різноманіття умов, чинників і взаємозв'язків природного оригіналу майже неможливо, закономірності поведінки системи виражають за допомогою найістотніших рис реальних об'єктів, процесів і явищ [221,240].

Розробку регресійних моделей великої розмірності (122 показники) пов'язано з такою методологічною складністю, як небезпека колінеарності та мультиколінеарності факторів (кореляція між парами або декількома факторами одночасно). Система «ґрунт-урожай», як частина біогеоценозу під антропогенним впливом, на практиці нараховує декілька десятків показників і кілька сотень об'єктів. Останні тісно пов'язані між собою множинними кореляційними залежностями, що не дозволяє виокремити вплив окремого показника на результативну ознаку. Це сприяє появі помилкових кореляцій і приховуванню інших зв'язків[78].

Математично обґрунтоване уникнення подібної плутанини досягається обробкою даних методом факторного аналізу, який спроможній вирішувати задачі великої розмірності. У цьому випадку використання регресійного аналізу при мультиколінеарних зв'язках між початковими змінними вважається коректним і досить ефективним. Перехід до системи агрегованих показників (факторів) дозволяє стиснути початкову інформацію (скорочення векторного простору) до певних розмірів, при яких зберігаються істотні риси початкового простору. При цьому, із даних витягаються найбільш істотні зв'язки, а другорядні і випадкові відкидаються [78]. Сама класифікація здійснюється вже не за вихідними ознаками, а за їх лінійною комбінацією, тобто інтегрованими показниками - факторами, кількість яких є значно меншою [78]. Метод дозволяє виявити «грубі помилки» у вибірці і досить точно визначити оцінки досліджених параметрів.

Після проведення факторного аналізу за всіма досліджуваними показниками було виділено 5 факторних груп сукупний відсоток векторних навантажень урожаю яких складає 70 %. Таким чином було виявлено достовірно наявні залежності. Інші 30 % факторного навантаження урожаю знаходяться в більш глибинних зв'язках, які, як правило, виражені у криволінійній формі, а тому не здатні проявляти свій вплив без додаткової трансформації даних.

Виявлені 5 факторних груп, у таблиці факторного аналізу було розміщено за зменшенням рівня навантаження на визначальний показник. Величини векторів факторного навантаження виражено у вигляді коефіцієнтів детермінації.

Першою за порядком слідування виявилася факторна група, сумарний вплив чинників якої на формування величини врожаю сільськогосподарських культур складає 37,4 %. Визначальну роль тут відіграють з агрокліматичних показників опади у вегетаційний період (коефіцієнт детермінації R2= 0,8 - 0,6 ), запаси продуктивної вологи у березні - серпні (R2= 0,5- 0,6 ) з ґрунтових - вміст токсичних солей (R2= 0,2- 0,4 ) та запаси гумусу у шарі 0-60 см (R2= 0,4- 0,6).

Другою є факторна група з долею впливу 15,4 %. Визначальну роль тут також відіграють з агрокліматичних показників опади у вегетаційний період (коефіцієнт детермінації R2= 0,5 - 0,7 ), запаси продуктивної вологи у березні - серпні (R2= 0,5- 0,6 ) з ґрунтових - вміст токсичних солей (R2= 0,2- 0,4 ) та запаси гумусу у шарі 0-60 см (R2= 0,4- 0,6), вміст рухомих поживних речовин (R2= 0,2- 0,3).

Основна маса ґрунтових показників виявилася у третій групі, сумарний вплив якої у формуванні величини врожаю складає 10%. Основний вплив тут чинять, вміст валових і рухомих форм поживних речовин, вміст гумусу, агрофізичні властивості (щільність складення, гранулометричний склад) , активність натрію та кальцію, водорозчинні солі.

Четверта факторна група впливає на величину врожаю на 4,25 %. Тут головний вплив чинять продуктивна волога, опади, вміст токсичних солей, увібрані катіони.

Остання факторна група з долею впливу 2,09% складається з таких показників як продуктивна волога та опади у зимові місяці, мікроагрегатний склад, структурно-агрегатний склад, вміст водорозчинних солей, співвідношення водорозчинного кальцію до натрію та ін.

Статистичні моделі дають можливість встановити кількісні зв'язки окремих факторів з урожайністю сільськогосподарських культур. Регресійні зв'язки дозволяють інтерпретувати окремі результати для конкретних умов, в яких проводився дослід. Якщо умови змінюються по відношенню до експериментальних, то регресійні моделі втрачають свою достовірність. Тому більш надійними є моделі динаміко-статистичні та динамічні, що розробляються на основі диференціальних рівнянь. Ці моделі враховують процеси в динаміці і є більш адекватними до природних явищ. Проте, для визначення взаємодії ґрунтових та агрокліматичних показників і їх впливу на врожайність сільськогосподарських культур на плантажованих ґрунтах доцільно використовувати еліптичну модель. Її перевага полягає у тому, що вона визначає взаємодію усіх чинників за аналогом математичних дій з векторами [129,130].


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.