Экономическая целесообразность и обоснованность внедрения производства бактериальных удобрений

Современное состояние сельскохозяйственной биотехнологии. Достоинства и недостатки бактериальных удобрений. Характеристика регуляторов роста растений. Использование фитогормонов и физиологически активных веществ. Способы компостирования и силосования.

Рубрика Сельское, лесное хозяйство и землепользование
Вид дипломная работа
Язык русский
Дата добавления 28.05.2014
Размер файла 60,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Детальное изучение различных способов компостирования навоза показало, что чем выше при компостировании поднимается температура, тем больше теряется азота. Поэтому основное условие правильного компостирования для всех районов РФ, как в навозохранилищах, так и в поле - плотная укладка его в штабеля шириной не менее 3-4 м и высотой 1,5-2 м. При такой укладке навоз сильно не разогревается и потери азота бывают минимальными.

Очень популярны компосты из навоза и фосфорной муки и из навоза и простого суперфосфата. Установлено, что суперфосфат и фосфоритная мука способствуют увеличению скорости разложения органического вещества навоза, фосфор переходит в более подвижные формы, значительно сокращаются потери азота из навоза.

6.1.2 Торфяные компосты

В районах нечерноземной полосы имеются огромные возможности для увеличения производства высокоценных органических удобрений (компостов) путём широкого использования торфа, запасы которого практически не ограничены.

6.1.2.1 Торфонавозные компосты

Торфонавозные компосты готовят вблизи животноводческих помещений, в навозохранилищах или полевых штабелях. Отношение навоза к торфу в компосте зависит от качества компонентов и обеспеченности ими - зимой это обычно 1:1, а летом до 1:3. Для компостирования пригодны любые торфы с влажностью до 60%.

Выделяют:

Послойное компостирование, которое возможно в любое время года; при этом торф слоем до 50 см разравнивают на подготовленных местах шириной 4-5 м и длиной в зависимости от возможностей. Затем покрывают его слоем навоза, который вновь покрывают торфом, затем вновь - навозом и т.д. Слои торфа и навоза чередуют, пока высота штабеля не достигнет 2 м. Толщина слоёв зависит от принятого соотношения компонентов. Завершают укладку слоем торфа.

Очаговое компостирование предпочтительнее зимой, когда навоз по подготовленному (50-60 см) слою торфа размещают непрерывным или прерывистым слоем 70-80 см и шириной на 1,0-1,5 м меньше нижележащего торфа. При недостатке навоза его размещают прерывистым слоем (кучами) на торфе и, как в первом случае, со всех сторон укрывают торфом слоем 50-70 см. Зимой штабель очагового компоста закладывают за 1-2 дня, обычно во время оттепелей, когда температура внутри него не опускается ниже 25-30 градусов.

Ценность компостирования торфа с навозом определяется тем, что торф отличаясь высокой поглотительной способностью, полностью связывает аммиак, который мог бы улетучиться из навоза при его хранении.

Кроме того, под влиянием навоза устраняется кислотность торфа, создаются благоприятные условия для энергичной деятельности микроорганизмов, с помощью которых азот, содержащийся в торфе, переходит в аммиак и нитраты, то есть в соединения, доступные для питания. Особенно быстро это происходит, если температура в компосте достигает 50-600. Установлено, что под влиянием нагревания во влажной среде до 50-700 действие торфа как источника азота на урожай сельскохозяйственных культур превосходит действие обычного навоза.

6.1.2.2 Торфонавознофосфоритные компосты

Качество торфонавозного компоста резко повышается при добавлении к нему фосфоритной муки (1-3% от веса компоста).

Доля приготовления высококачественного торфонавознофосфоритного компоста необходимо применять хорошо проветренный торф (торфяную крошку) влажностью не более 50-70%. Под влиянием фосфоритной муки в компосте усиливается деятельность микроорганизмов, способных переводить азот воздуха в соединения, доступные для питания растений.

Часто в торфонавознофосфоритном компосте не только полностью сохраняется азот, который содержится в компостируемом материале (навозе, торфе), но при благоприятных условиях дополнительно накапливается значительное кол-во связанного азота 20-25 кг на 20 т компоста.

6.1.3 Торфожижевые и торфофекальные компосты

Одним из крупнейших резервов повышения урожайности сельскохозяйственных культур являются навозная жижа и фекалии. К сожалению, навозная жижа и фекалии используются в крайне незначительном количестве. Между тем при компостировании торфа с навозной жижей и фекальными массами можно получать высокоценные органические удобрения, так как в них почти полностью сохраняется азот навозной жижи и фекалий, а питательные вещества торфа переводятся в соединения, усвояемые растениями.

6.1.3.1 Приготовление торфожижевых компостов

Их готовят с любым торфом, кроме известкового (содержание СаО более 5%), зимой в навозохранилищах или рядом с животноводческими помещениями, а летом в полевых штабелях или на осушённых торфяниках. На каждую тонну проветренного торфа в зависимости от влажности берут 1- 3 т навозной жижи и 1,5-2,0% от массы компоста фосфоритной муки. Торф укладывают в 2 смежных вала с корытообразным углублением между ними, в которое сливают навозную жижу.

После поглощения жижи торфом массу сгребают бульдозером в штабеля, которые покрывают торфом, а при достижении температуры 600С уплотняют. В зависимости от свойств компонентов компоста и времени года массу выдерживают в течение 1-4 месяцев, затем применяют в качестве основного удобрения под различные культуры в таких же дозах, как подстилочный навоз. Торфожижефосфоритные компосты не уступают по эффективности хорошо приготовленному навозу.

Для приготовления компостов с жижей в зимнее время (чтобы предотвратить замерзание их) следует добавлять к торфу свежий навоз. Торф вместе с навозом укладывают слоями 50-60 см и каждый из них поливают навозной жижей. На 1 т проветренного торфа, в зависимости от его влажности, берут от 0,5 до 2 т навозной жижи Через 4-5 дней, когда первый слой компоста разогреется, закладывают второй такой же слой, затем - третий и т.д., до тех пор, пока высота штабеля не достигнет 1,5-2 м; каждый слой поливают навозной жижей. Зимой такие компосты лучше закладывать в навозохранилище.

6.1.3.2 Приготовление торфофекальных компостов

Их получают при компостировании фекальных масс торфом (можно соломой, городским мусором и другими слаборазлагающимися материалами). Это быстродействующее удобрение. В фекальной массе в среднем содержится 0,5-0,8% N, 0,2-0,4% Р2О5 и 0,3-0,4 K2O, азот в них на 70-80 % представлен аммиаком и мочевиной, да и фосфор с калием находятся в легкоусвояемых для растений формах. Высушенные фекальные массы - пудреты содержат около 2% N, 4% Р2О5, 2% K2O. Для уменьшения потерь азота при сушке фекальных масс к ним добавляют сухой торфяной порошок в кол-ве 8-10% их массы. Пудреты можно применять под декоративные и лубяные культуры в дозе 2-3 т/га; по эффективности не уступают эквивалентным дозам минеральных удобрений.

С санитарной, агрономической и экологической точек зрения фекальные массы лучше применять в виде компостов. Для приготовления их к 1 т низинного торфа влажностью около 70% добавляют до 0,5 т фекалий, к 1 т верхового 2 т, а при влажности торфа до 50% - 3,5 т фекалий. Компостирование при температуре 56-600С с последующим уплотнением - лучший способ обеззараживания, снижения потерь питательных элементов и ликвидации неприятного запаха фекальных масс. По эффективности торфофекальные компосты нередко превосходят навоз при эквивалентных по питательным элементам дозах на 30-50%.

Указанные виды компостов применяются как основное удобрение, вносят под плуг или даже под культивацию перед посевом сельскохозяйственных культур, а также для подкормки.

6.1.3.3 Торфоизвестковые компосты.

Торфоизвестковые компосты готовят с кислым торфом (рНсол <5), пересыпая ими каждый 15-20- сантиметровый слой при укладке штабеля. Дозу извести рассчитывают по 0,8 гидролитической кислотности торфа, что при влажности торфа 60-70% составляет в среднем 1-3% его массы. Лучшей формой известковых удобрений для этих целей является доломитовая мука. Такие, обогащённые Са и Mg, но бедные калием и фосфором компосты выдерживают до применения в течение 4-5 мес.

6.1.3.4 Компосты с золой

Компосты с золой приготавливают для обогащения почвы кальцием, калием, фосфором и другими элементами с одновременной нейтрализацией обменной кислотности его. Штабель готовят так же, как с известью, добавляя на каждую тонну проветренного торфа 2,5-5,0% золы (25-50 кг/т). Такие компосты пригодны для удобрения на всех почвенных разностях, под все сельскохозяйственные культуры, в первую очередь под картофель и лён

6.1.3.5 Торфофосфоритные компосты

Торфофосфоритные компосты позволяют при тщательном перемешивании компонентов уже через месяц их хранения перевести в усвояемую для растений форму 30-60% Р2О5 фосфоритной муки и одновременно несколько уменьшить кислотность торфа. Для этих целей применяют кислый торф, не содержащий подвижных форм алюминия, на тонну которого при влажности 65-70% добавляют 10-30 кг фосфоритной муки и выдерживают 2-3 месяца.

Торфоизвестковые и торфофосфоритные компосты применяют в таких же дозах, как навоз, причём эффективность их значительно возрастает при сочетании с азотно-калийными минеральными удобрениями.

6.1.3.6 Торфоаммиачные (ТАУ) и торфоминерально-аммиачные (ТМАУ) удобрения (компосты)

Их готовят насыщением торфа аммиаком (жидкий аммиак, аммиачная вода) и добавлением к нему фосфорных и калийных минеральных удобрений. Для этих целей применяют торф с зольностью до 25%, влажностью 55-65% и степенью разложения для низинного 15-20%, для верхового 20-25. В состав ТМАУ в каждую тонну сухого торфа вводят 30-35 кг фосфоритной муки или смеси её(1:1) с суперфосфатом, 10-12 кг КСl (или др. калийного удобрения) и 30-35 л 25%-го раствора аммиака (или эквивалентного по NH3 дозу жидкого аммиака).

В ТМАУ на основе низинного торфа количество перечисленных минеральных компонентов уменьшают на 30-50%.

Приготовление различных компостов на осушённых торфяниках вблизи удобряемых ими полей значительно снижает себестоимость и повышает их эффективность.

Технология приготовления компостов на торфяниках заключается в сочетании обработок и рыхления их с внесением соответствующих компонентов (навоза, навозной жижи, фекальных масс, извести, фосфоритной муки и т.д.) с последующим сгребанием и уплотнением желаемых смесей в штабеля. При расчётах количеств любых компонентов и всего компоста учитывают, что при массе 1 м3 400 кг и глубине сгребаемого слоя 20 см на каждом га торфяника за сезон получают 800 т торфа.

6.1.3.7 Торфорастительные компосты

Получают при выращивании на торфяниках бобовых и других (или смесей разных) культур (сидератов) с последующей запашкой их и приготовлением штабелей из полученных смесей торфа и растений.

Растительную массу сидератов в фазе цветения прикапывают, измельчают и запахивают на глубину 15 см. Через 2-3 недели после запашки торфяник дискуют, торфосидеральную массу сгребают в штабеля высотой 1,5-2 м и выдерживают 1-2 месяца.

Торфорастительные компосты применяют под различные культуры в таких же дозах, что и подстилочный навоз. По эффективности в эквивалентных по питательным элементам дозах они не уступают полуперепревшему навозу плотного хранения.

6.1.3.8 Навозноземляные и дерновонавозные копосты

Установлено, что покрытие штабелей навоза слоем земли 8-10 см значительно сокращает потери органического вещества и азота в 2 раза.

Земля поглощает аммиак и тем самым предохраняет его от улетучивания. В штабеле накапливается и углекислый газ, который значительно уменьшает скорость расщепления углекислого аммония на свободный аммиак и углекислоту.

Если же земля используется не только для покрытия штабелей, но и перемешивается со всей массой навоза, то положительная роль её в составе компоста резко возрастает. Навоз при компостировании без земли теряет около 32% азота, а компостированный с 25-30% земли от веса навоза - 10,4%.

Одним из наиболее важных свойств навозноземляного компоста является то, что содержащийся в нём аммиачный азот находится в прочно поглощённом состоянии, не улетучивается из компоста при внесении его в почву даже в том случае, если компост в течение длительного времени после внесения не запахивается. Однако прибавка урожайности при внесении навозноземляного компоста примерно такая же, как и от простого навозного компоста.

Естественная дернина для приготовления компостов имеет ряд преимуществ по сравнению с обычной полевой землёй. По нашим данным, на 1 га в 10-12-сантиметровом слое хорошей многолетней дернины содержится столько же неразложившегося органического вещества, сколько имеется его в 50-70 т навоза, правда, по содержанию питательных веществ органическое вещество дернины несколько уступает навозу.

Однако использование многолетней дернины для приготовления компостов имеет и некоторые недостатки. Компост, приготовленный на дернине, созревает медленнее, чем компост из навоза и полевой земли.

Для механизированного приготовления дерновонавозных компостов на участок с хорошо изрезанной дисками естественной дерниной вносят органические и минеральные удобрения и запахивают их на глубину 12-14 см. Навоз вносят до 300 т, фосфоритной муки - до 30 и извести - 40-50 т на 1 га компостной площадки. Запаханные удобрения дисковыми боронами хорошо перемешивают с дерниной и после этого сгребают в штабеля.

Техника приготовления навозноземляных компостов проста и сводится к следующему: на выбранный под компостирование участок равномерно вносят известь, после чего участок культивируют или пашут на глубину 10-12 см. Затем на компостную площадку вносят навоз и фосфоритную муку, участок снова пашут на глубину 10-14 см и дискуют. В результате удобрения хорошо перемешиваются с почвой.

6.1.4 Компосты из бытовых отходов

В связи с возрастающими требованиями к охране окружающей среды и ростом количества бытовых отходов в городах всё более широкое распространение получают промышленные методы биотермического обеззараживания отходов и приготовления из них компостов. В пригородных хозяйствах городской мусор используют как биотопливо в парниках.

Из промышленных отходов наибольшее значение для приготовления компостов имеют следующие: отходы боен и кожевенных заводов, отходы табачной, шерстяной, рыбной, маслобойной, сахарной, костяной промышленности и различные шлаки металлургических заводов. Немаловажную роль как сырьё для компостов имеют фекалии муниципальных канализаций.

Барьером для использования мусора городских свалок и предприятий является наличие в нём стекла, железа, костей и др. предметов, требующих удаления из компостируемого материала путём просеивания и прочих видов сортировки. Большой проблемой являются токсичные отходы, опасные для здоровья человека и почв, поскольку способны привносить с собой тяжёлые металлы, химикаты, токсины, которые очень сложно удалять из почвы. Эти компоненты делают её непригодной для сельскохозяйственного использования.

По действию на урожай заводской компост из бытовых отходов не уступает в эквивалентных дозах навозу и при наличии соответствующего сертификата качества может применяться с агрохимическим контролем под различные культуры.

6.1.5 Компостирование отходов сельскохозяйственного производства

Во многих районах нашей страны, особенно в лесостепной и степной зонах, часто большие количества соломы, мякины, половы и других отходов полеводства остаются неиспользованными. Из этих отходов можно приготовлять высококачественные удобрения.

Особенно ценно использование соломы для подстилки в пастбищный период на временных полевых загонах скота. Для этого полевую стоянку скота покрывают слоем соломы 20-30 см. Солома смачивается мочой, перемешивается с калом животных и хорошо уплотняется. Благодаря атмосферным осадкам и влаге, которая подтягивается к слою навоза из почвы, солома начинает быстро разлагаться, и в течение 1,5-2 месяцев на загоне образуется хороший, полноценный навоз. Перед сменой стоянки скота навоз укладывают в хорошо уплотнённый штабель, где навоз дозревает быстро и без больших потерь азота.

Сельскохозяйственной наукой разработаны приёмы приготовления из соломы так называемого искусственного навоза. На специально приготовленной площадке закладывают слой соломы (лучше в виде резки) шириной 3-4 м, толщиной 80-100 см, длина зависит от количества соломы.

При укладке солому равномерно посыпают азотными минеральными удобрениями, после этого равномерно смачивают водой в 3-4 приёма (через каждые 10-12 часов), чтобы вода не вытекала из-под соломы, а целиком ею впитывалась (на каждую тонну заложенной соломы - 0,5 т воды). Только после того, как начинается брожение первого слоя соломенной резки и температура в нём поднимается до 50-600С, следует закладывать второй слой соломы, потом третий и т.д., пока высота штабеля не поднимется. Вместо минерального азота и воды можно использовать навоз и навозную жижу.

Приготовлять искусственный навоз из соломы злаковых и бобовых культур, не пригодной на корм половы, мякины и других отходов можно непосредственно в поле, на месте использования его на удобрение.

6.1.6 Компосты с использованием дождевых червей

Вермикультивирование - искусственное разведение червей, одно из перспективных направлений в сельскохозяйственной практике всего мира. В качестве источников корма для червей используют различные органические материалы: навоз, бытовые отходы, растительные остатки, осадок сточных вод и др.

Питаясь, черви быстро размножаются и способствуют превращению отходов в компост. При этом в сравнении с компостом, получаемым традиционными методами вермикомпост характеризуется гомогенностью и высокой водоудерживающей способностью. Также здесь отмечается сбалансированное соотношение основных макроэлементов, что позволяет сократить применение минеральных удобрений, а также в конечном итоге решить проблему утилизации бытовых и прочих органических отходов.

Первоначально вермикультивирование было разработано в США и распространилось впоследствии по многим регионам мира. Из европейских стран широкое распространение это направление получило в Италии, есть масштабные коммерческие хозяйства во Франции, Германии, Голландии, Великобритании, Польше, Венгрии, во многих азиатских странах, а также в Южной Америке и Австралии.

В странах СНГ работы по разведению червей ведутся в России (Владимир), Киргизии (Бишкек), Беларуси (Гомель, Минск, Добруш), на Украине (Ивано-Франковск). Из большого количества видов дождевых червей для вермикультуры пригодны только те, которые приспособились к жизни в компостах. Одним из таких видов является Eisenia foetida.

Промышленное разведение целесообразно проводить при крупных животноводческих фермах и причина тому - навоз. Под хозяйство необходимо определить закрытое помещение, в котором размещаются контейнеры или гряды для выращивания червей, участок для буртования органических отходов и их хранения, помещение для просушивания и просеивания гумуса. Крайне желательно иметь отапливаемое помещение для содержания маточных культур.

Гряды располагают с небольшим уклоном для стока воды. Расстояние между грядами не менее 1,5 метра с учетом прохождения тележки или малогабаритного трактора, ширина гряды - 1 метр, длина может быть любой.

7. Силосование

Силос -- законсервированная в процессе силосования зелёная масса кукурузы, подсолнечника и других силосных культур. Сочный корм для сельскохозяйственных животных всех видов, по питательности близок к зелёным кормам.

Силосование зеленых кормов сопровождается меньшими потерями питательных веществ, в частности протеина (белка), чем при сушке на сено. Если при обычных условиях уборки на сено из зеленой травы теряется до 30% и более питательных веществ, то при правильно проведенном силосовании в хороших силосных сооружениях потери в общей питательности редко достигают 10%, а в белке близки к нулю. Белки в процессе силосования распадаются частично на пептиды и аминокислоты, но это не существенно снижает их питательность.

Силосование дает возможность заготавливать сравнительно дешевый сочный корм на зимний период, а в засушливых районах -- и на летние месяцы при недостатке пастбищного корма; позволяет возделывать такие кормовые культуры, которые дают наивысший урожай, и убирать их независимо от погоды в наиболее удобное для хозяйства время; дает возможность широко пользоваться пожнивными и промежуточными культурами, а также хорошо использовать осенью отаву, которую не удается высушить на сено; позволяет использовать на корм сорняки и грубое разнотравье, из которых при сушке получается плохое сено, а при силосовании -- вполне удовлетворительный сочный корм.

В настоящее время трудно представить зимние рационы животных без силоса. Силос повышает аппетит животных, улучшает пищеварение, обеспечивает потребность животных в витаминах и минеральных веществах. В значительной мере этим качествам способствует специфический вкус и запах силоса, образующийся в процессе сложных биохимических превращений белка и углеводов силосуемой массы и напоминающий запах квашеной капусты и других овощей, хлебного кваса и свежевыпеченного хлеба.

Основное преимущество силосования состоит в том, что доброкачественный силос по своей питательности и биологической ценности почти не отличается от зеленой травы. В силосованном корме количество протеина, жира, клетчатки, минеральных веществ и каротина почти не изменяется. Уменьшается лишь содержание сахара на 60-90%, который расходуется на образование органических кислот, главным образом, молочной кислоты.

Органические кислоты по своим энергетическим свойствам незначительно уступают простым сахарам и легко усваиваются организмом животного. Например, уксусная кислота, накапливающаяся в процессе силосования, необходима для образования молочного жира. В целом силос высокого качества оказывает положительное влияние на молочную продуктивность коров. Переваримость основных питательных веществ силоса по сравнению со свежескошенной травой изменяется незначительно.

7.1 Микробиологические процессы, протекающие в силосуемой массе

7.1.1 Аэробные процессы. Термогенез

Микрофлора силоса. При соблюдении технологических правил заготовки и хранения в силосе создаются условия (анаэробиоз, повышенная кислотность, температура), при которых количество первоначальной микрофлоры, в том числе «полевой», значительно сокращается. Однако ряд грибов приспосабливается к этим условиям и составляет так называемую силосную микрофлору.

К ней, помимо дрожжей, представляющих доминантную грибную флору силоса хорошего качества, относят Geotrichum candidum, некоторые Muco-raceae (Mucor griseo-cyanus, M. hiemalis, Absidia corymbifera, Rhizo-pus arrhizusn др.), Manascus pursureus, Penicillium rogueforti, а также Byssochlamys (B. nivea, B. fulva) и их конидиальные стадии, относящиеся к роду Palcilomyces. Наибольшую опасность представляют грибы двух последних родов, способные продуцировать микотоксин--патулин.

Кроме того, в периферийных участках силосуемой массы (верхние и боковые слои, поверхность среза -- в траншеях; пристеночные части -- в башнях) локализуются Fusarium (F. роае, F. graminea-тит), Aspergillus (A. fumigatus, A. flavus, A. glaucus), виды группы Botrytis, Trichoderma и др. При значительных нарушениях технологии заготовки силоса эти грибы могут интенсивно развиваться в глубинных слоях, поражая либо отдельные участки, либо всю его массу, вызывая заплесневение.

В случаях длительной закладки корма, плохой трамбовки массы и недостаточной герметизации увеличивается ее аэрация и постепенно наступает самосогревание. В этом процессе большую роль играют грибы, образующие плесени. Температура массы силоса может повышаться до 60--70 °С.

Термогенез сопровождается снижением содержания углеводов, переваримого протеина, каротина и других веществ. Самосогревшийся корм становится малоценным, а в ряде случаев при интенсивном гнилостном распаде белковой части растительной массы и вредным для здоровья животных. Токсигенные штаммы грибов в таких благоприятных условиях для их развития могут продуцировать различные микотоксины.

При нарушении правил выемки усиливаются аэрация и подсыхание корма, в обнажившемся слое начинает развиваться микофлора.

В результате нарушений технологии силосования в силосе в больших количествах образуются масляная, капроновая, валериановая кислоты, кетоновые тела. Такой корм вреден для организма жвачных. Повышенное содержание масляной кислоты в рационе или усиленное маслянокислое брожение в рубце обусловливают развитие субклинической формы кетоза, которая в дальнейшем переходит в клинически выраженный кетоз.

7.1.2 Анаэробные процессы

7.1.2.1 Недостаточное уплотнение и плохое укрывание силосных буртов

Приведенная причина может также привести к плохой консервации и большим потерям при силосовании из-за доступа воздуха (кислорода). В таких условиях значение рН 4.0 не достигается. Следовательно, могут быстро размножаться микроорганизмы, которые обычно ингибированы анаэробиозом.

Энтеробактерии и Clostridium, которые ингибируются низкими значениями рН, будут способны расти и утилизировать молочную кислоту,белок последующей утратой пищевой ценности силоса. Рост видов Clostridium, имеющий оптимум при рН 7.2, не ингибируется до тех пор, пока рН не упадет ниже 5.5. Следовательно, в плохо законсервированном влажном силосе они могут доминировать среди микрофлоры. Виды Clostridium предпочитают также более высокую влажность и силос с низким содержанием СВ.

Сахаролитические виды, такие как Clostridium tyrobutyricum, используют ВРУ и молочную кислоту в процессе своего роста, и в силосе, который может изначально иметь низкую концентрацию молочной кислоты, неизбежно будет расти рН из-за наработки масляной кислоты, которая слабее, чем молочная.

Протеолитические виды бактерий, такие как С.sporogenes, используют многие из аминокислот силоса, продуцируя преимущественно масляную кислоту и аммиак.

Скармливание коровам, молоко которых идет на сыр, недоброкачественного силоса, подвергавшегося масляно-кислому брожению, вызывает в сыре подобное брожение.

Также нежелательны в силосе и дрожжи. Обычно после начального быстрого размножения аэробные виды, такие как Candidas spp. и Pichia spp., «остаются в спячке» в анаэробных условиях, пока силос не откроют для кормления животных. Аэробная порча силоса на поверхности бурта может быть очень быстрой и приводить к полной потере питательности, сопровождаясь образованием диоксида углерода, воды и выделением теплоты, как видно из приведенных ниже типичных реакций дрожжей.

8. Этапы превращения питательных веществ в силосуемой массе

Рассмотрим динамику созревания силоса. Процесс квашения можно условно разбить на три фазы.

Первая фаза созревания заквашиваемого корма характеризуется развитием смешанной микрофлоры. На растительной массе начинается бурное размножение разнообразных групп микроорганизмов, внесенных с кормов в силосное помещение. Силосование связано с накоплением в корме кислот, образующихся в результате сбраживания микробами-кислото-образователями содержащихся в растениях сахаристых веществ.

Основную роль в процессе силосования играют молочнокислые бактерии, продуцирующие из углеводов (в основном из моно- и дисахаридов) молочную и частично уксусную кислоты. Данные кислоты имеют приятные вкусовые свойства, хорошо усваиваются организмом животного и возбуждают у него аппетит. Молочнокислые бактерии снижают реакцию среды корма до pH 4.2...4.0 и ниже.

Накопление молочной и уксусной кислот в силосе обусловливает его сохранность, так как гнилостные и прочие нежелательные для силосования бактерии не способны размножаться в среде с кислой реакцией (ниже рН 4.5...4.7). Сами же молочнокислые бактерии относительно устойчивы к кислотам.

Обычно первая фаза брожения бывает кратковременной. Вначале захваченный атмосферный кислород в сырье используется растительными ферментами в еще дышащих растениях, но кислород вскоре кончается, и далее брожение происходит в анаэробных условиях. В это время молочнокислые бактерии, присутствующие вначале в небольшом количестве, начинают быстро размножаться до концентрации 109 -1010 клеток/г, используя сахара, освобожденные из разрушенных растительных клеток, как основной источник энергии.

Во второй фазе - главного брожения - основную роль играют молочнокислые бактерии, продолжающие подкислять корм. Большинство неспороносных бактерий погибает, но бациллярные формы в виде спор могут длительное время сохраняться в заквашенном корме.

В начале второй фазы брожения в силосе обычно преобладают кокки, которые позднее сменяются палочковидными молочнокислыми бактериями, отличающимися большой кислотоустойчивостью. При идеальных условиях рН стабилизируется на уровне 3.8 - 4.2, в зависимости от содержания сухого вещества, и силос эффективно консервируется за несколько недель.

Однако, когда содержание СВ скошенной травы менее 25%, условия не идеальные, процесс консервации может пройти плохо, особенно если уровень ВРУ также низок (как часто бывает у трав, выросших в умеренном климате). Для нормального силосования нормальных кормов требуется неодинаковое подкисление, в зависимости от различного проявления буферных свойств некоторых составных частей растительного сока.

9 Буферные свойства

Механизм действия буферов заключается в том, что в их присутствии значительная часть ионов водорода нейтрализуется. Поэтому, несмотря на накопление кислоты, реакция среды почти не снижается до тех пор, пока не израсходован весь буфер. В силосе образуется запас так называемых связанных буферами кислот. Роль буферов могут играть различные соли и некоторые органические вещества (например, протеины), входящие в состав растительного сока.

Для повышения в силосе содержания сырого протеина, а также улучшения ферментации корма в период закладки к массе добавляют мелассу, мочевину, соевый шрот. Мелкое измельчение стержней и оберток початков повышает на 30% поедаемость силоса.

Более буферный корм для получения хорошего силоса должен иметь больше сахаров, чем менее буферный. Следовательно, силосуемость растений определяется не только богатством их сахарами, но и специфическими буферными свойствами. Основываясь на буферности сока растений, можно теоретически вычислить нормы сахара, необходимые для успешного силосования различного растительного сырья.

Буферность сока растений находится в прямой зависимости от количества в них белков. Поэтому большинство бобовых растений трудно силосуется, т.к. в них относительно мало сахара (3...6%) и много белка (20...40%). Прекрасная силосная культура - кукуруза, в стеблях и початках ее содержится 8...10% белка и около 12% сахара. Хорошо силосуется подсолнечник, в котором много белка (около 20%), но и достаточно углеводов (более 20%). Приведенные показатели рассчитаны на СВ.

В основном силосуемость связывают с запасом моно- и дисахаридов, дающих необходимое подкисление. Минимальное их содержание для доведения реакции среды корма до рН 4.2 может быть названа сахарным минимумом. Технически определить сахарный минимум несложно.

Титрованием устанавливают необходимое количество кислот для подкисления пробы исследуемого корма до рН 4.2. затем определяют количество простых сахаров в корме. Допуская, что около 60% сахаров превращаются в молочную кислоту, можно рассчитать, хватает ли имеющегося сахара для должного подкисления корма.

Качество силоса во многих случаях не отвечает зоотехническим требованиям. Это обусловлено нарушением технологии силосования (длительное нахождение зеленой массы в поле, силосование перезревшей массы силосных культур, слабая утрамбовка при заполнении траншеи). Третья фаза брожения корма - конечная - связана с постепенным отмиранием в созревающем силосе возбудителей молочнокислого процесса. К этому времени силосование подходит к естественному завершению.

10. Ферментация силосуемой массы. Виды ферментации.

10.1 Аэробная ферментация (дыхание)

10.1.1 Гидролиз белков, углеводов и липидов силосуемой массы

Аэробная ферментация (дыхание клеток растений) - происходит со времени скашивания зеленых растений и до полного исчезновения воздуха после герметизации силосного сооружения. Она происходит и в период от вскрытия и до его вскармливания.

Под влиянием гидролитических ферментов (гидролиз) кормов и микроорганизмов разлагаются на более простые вещества.

Гидролизом сложных органических веществ кормов называется разложение их водой под влиянием ферментов.

При гидролизе белков в силосуемой массе (в готовом силосе) падает количество белкового азота, но он не теряется, по аминному азоту в силосе определяют степень распада белков и интенсивность гидролиза.

К углеводам силосуемой массы, способным гидролизоваться относятся - полисахариды (крахмал, клетчатка, инулин, гемицеллюлоза). Крахмал под влиянием ферментов растений и микроорганизмов расщепляется до декстринов, декстрины распадаются до мальтозы, до глюкозы. Гидролиз липидов происходит под влиянием липаз.

10.1.2 Катаболизм белков, углеводов, липидов силосуемой массы

Катаболизм - это фаза, в которой происходит расщепление сложных органических молекул до более простых конечных продуктов. В аэробном катаболизме (с участием кислорода):

На первой стадии полисахариды (углеводы) распадаются до гексоз и пентоз, жиры до жирных кислот, глицерина, белки - до аминокислот.

На второй стадии распада веществ, все эти продукты превращаются в еще более простые соединения. Так, гексозы, пентозы и глицерин расщепляются до одного и того же промежуточного продукта ацетил коэнзима. Аналогичные превращения претерпевают жирные кислоты и аминокислоты. Их расщепление также завершается образованием ацетилкоэнзима. Таким образом, ацетилкоэнзим представляет собой общий конечный продукт второй стадии катаболизма.

На третьей стадии ацетильная группа ацетил вступает в цикл Кребса (цикл лимонной кислоты) - общий конечный путь, на котором почти все виды клеточного топлива окисляются до углекислого газа, воды и аммиака.

Катаболический и соответствующий ему, но противоположный по направлению, анаболический путь различаются по промежуточным продуктам реакций. Однако их связывает общая стадия, которая включает в себя цикл лимонной кислоты.

На этой стадии завершается не только распад молекул (катаболизм), но происходит и процесс анаболизма, заключающийся в поставке молекул предшественников для биосинтеза молекул аминокислот, жирных кислот и углеводов.

10.1.3 Аэробная ферментация (брожение). Виды брожения и фазы силосования

На основе микробиологических процессов и брожений различаются 3 фазы:

1. Смешанное брожение, которое начинается одновременно с началом заполнения силосохранилища и заканчивается при создании однородных условий. Она характеризуется активным развитием смешанной микрофлоры, которая поступает в силосуемую массу. Необходимо сокращать продолжительность закладки силоса и быстрейшее укрытие.

2. Характеризуется созданием анаэробных условий.

3. Связана с окончанием основных процессов брожения в силосе.

10.1.3.1 Виды молочнокислого брожения Основным свойством молочнокислых бактерий, по которым их объединяют в отдельную обширную группу микроорганизмов, является способность образовывать в качестве продукта брожения молочную кислоту: С6Н12О6 = 2С3Н6О3

Она создает в среде активную кислотность (рН 4,2 и ниже), неблагоприятно действующую на нежелательные микроорганизмы. Помимо этого, значение молочнокислых бактерий заключается в бактерицидном действии недиссоциированной молекулы молочной кислоты и способности их образовывать специфические антибиотические и др. биологически активные вещества.

В процессе брожения, протекающем в обычных благоприятных условиях, гомоферментативные молочнокислые бактерии (Streptococcus sp., Pediococcus sp., Lactobacterium plantarum и др.) образуют из глюкозы (гексозы) преимущественно молочную кислоту по гликолитическому пути Эмбдена-Мейергофа-Парнаса. Выход молочной кислоты составляет 95-97%. Одновременно образуются следовые количества летучих кислот, этилового спирта, фумаровой кислоты и углекислоты. Из субстрата извлекается значительно меньше энергии, чем при других (аэробных) процессах энергетического обмена. Тем не менее, этот путь энергетических превращений при достаточном уровне углеводов обеспечивает быстрое развитие.

Уксуснокислые бактерии являются ацидофилами, то есть переносят кислую среду. Но так как они являются аэробами, поэтому в хорошо уплотненной массе они не способны развиваться.

Гетероферментативные формы (Leuconostoc sp., Lactobacillus sp.) сбраживают углеводы пентозофосфатным путем. Они менее желательны в силосе, так как кроме молочной кислоты образуют значительное количество побочных продуктов распада углеводов (этиловый спирт, уксусная кислота, углекислый газ, глицерин и др.), используя на это до 50% сбраживаемых углеводов (гексозы, пентозы). Судя по интенсивности роста гетероферментативных бактерий, выход энергии на 1 моль глюкозы оказывается на одну треть ниже, чем у гомоферментативных молочнокислых бактерий.

Температурный фактор влияет как на рост молочнокислых бактерий, так и на характер конечных продуктов брожения. Педиококки, преобладающая форма молочнокислых бактерий в первые дни созревания силоса, хорошо растут при 450С. Оптимальной температурой роста палочковидных форм молочнокислых бактерий (L. plantarum, L. brevis), которые приходят на смену коккам, является 30-35 0С. При температуре выше 400С их количество резко падает, угнетается кислотообразование в 1,3-3 раза. Установлено, что наибольший выход молочной кислоты и наименьший - уксусной наблюдается при температуре ниже 300С.

Для получения качественного силоса не меньшее значение имеет создание анаэробных условий плотная трамбовка и хорошая герметизация.

В силосе, полученном в негерметичных условиях (аэробных), количество молочнокислых бактерий после начального увеличения быстро падает, в герметичных (анаэробных) - оно остается высоким. На седьмые сутки брожения при анаэробных условиях наблюдается высокий процент гомоферментативных бактерий, в аэробных - педиококков. Хотя позднее в этом силосе и появляется достаточное количество молочнокислых палочек, но они уже не могут предотвратить размножение нежелательных микроорганизмов.

Таким образом, молочнокислые бактерии отличаются следующими особенностями, важными для силосования:

Нуждаются для обмена веществ, главным образом, в углеводах (сахар, реже крахмал);

Белок не разлагают (некоторые виды в ничтожном количестве);

Они факультативные анаэробы, т.е. развиваются без кислорода и при наличии кислорода;

Температурный оптимум чаще всего составляет 30 0С (мезофильные молочнокислые бактерии), но у некоторых форм он достигает 60 0С (термофильные молочнокислые бактерии);

Выдерживают кислотность до рН 3,0;

Могут размножаться в силосе с очень высоким содержанием сухого вещества;

Легко переносят высокие концентрации NаCl и обладают устойчивостью к некоторым другим химическим препаратам;

Помимо молочной кислоты, которая играет решающую роль в подавлении нежелательных типов брожения, молочнокислые бактерии выделяют биологически активные вещества (витамины группы В и др.). Они обладают профилактическими (или лечебными) свойствами, стимулируют рост и развитие животных.

При благоприятных условиях (достаточное содержание в исходном растительном материале водорастворимых углеводов, анаробиоз) молочнокислое брожение заканчивается всего за несколько дней и рН достигает оптимального значения - 4,0-4,2.

10.1.3.2 Спиртовое брожение

Спиртовое брожение осуществляется тем же ферментативным путем, что и гликолиз, с той разницей, что последняя, завершающая реакция заменена здесь двумя другими, в результате которых, трехуглеродные фрагменты разрушаются до этанола и двуокиси углерода:

С6Н1206 +2Фн -I- 2АДФ. 2СН3СН2ОН + 2С02 + 2АТФ + 2Н20

этиловый спирт с образованием 2 молекул АТФ. Большинство других типов сбраживания глюкозы (муравьинокислое, маслянокислое, пропионовокислое, ацетоно-бутиловое брожение и др.).

Процесс брожения сопровождается образованием АТФ из АДФ и фосфата. При спиртовом брожении наблюдаются большие потери энергии. Если при молочнокислом брожении теряется 3% энергии сахара, то при спиртовом - более половины. В аэробных условиях окисление углеводов дрожжами приводит к получению воды и СО2. Некоторые дрожжи используют пентозы (Д-ксилозу, Д-рибозу), полисахариды (крахмал).

Негативное действие дрожжей в процессах вторичного брожения состоит в том, что они развиваются за счет окисления органических кислот, наступающего после законченного брожения при доступе воздуха. В результате окисления молочной и др. органических кислот кислая реакция среды сменяется на щелочную - до рН-10,0.

В результате этого снижается качество силоса из кукурузы, а также из «глубоко» провяленных трав, т.е. кормов с наилучшими показателями по продуктам брожения.

10.1.3.3 Пропионовокислое брожение

Тип брожения, осуществляемый пропионовокислыми бактериями, использующими в анаэробных условиях широкий круг соединений - глюкозу, сахарозу, лактозу, а также лактат, малат, глицерол и других с образованием пропионовой кислоты.

Расщепление гексоз происходит по гликолитическому пути. Восстановление пирувата идет по метилмалонил - пути, названному так по характерному промежуточному продукту. При этом пируват сначала карбоксилируется до оксалацетата, который последовательно восстанавливается до сукцината через малат и фумарат.

На уровне метилмалонил, образующегося из активизированного сукцината, происходит декарбоксилирование и образование пропионил, а затем пропионата как продукта брожения. Пропионовокислое брожение в силосуемом корме может идти только при внесении специальных культур бактерий.

10.1.3.4 Маслянокислое брожение

Маслянокислые бактерии (Clostridium sp.) - спорообразующие, подвижные, палочковидные анаэробные маслянокислые бактерии (клостридии) широко распространены в почве. Присутствие клостридий в силосе является результатом загрязнения почвой, поскольку их численность на зеленой массе кормовых культур, как правило, очень низка. Почти сразу же после заполнения хранилища зеленой массой маслянокислые бактерии начинают интенсивно размножаться вместе с молочнокислыми в первые несколько дней.

Высокая влажность растений, обуславливающаяся наличием в измельченной силосной массе клеточного сока растений и анаэробные условия в силосохранилище - идеальные условия для роста клостридий. Поэтому уже к концу первых суток их численность возрастает и в дальнейшем зависит от интенсивности молочнокислого брожения.

Трудно указать точное критическое значение рН силоса, при котором начинается ингибирование клостридий, так как оно зависит не только от количества образованной молочной кислоты, но также от воды в корме и температуры среды.

Клостридии чувствительны к недостатку воды. Доказано, что с увеличением свободной воды чувствительность этих бактерий к кислотности среды снижается.

Температура корма оказывает заметное влияние на рост клостридий. Оптимальная температура для роста большинства этих бактерий около 370С. Высокой термоустойчивостью характеризуются споры клостридий.

Маслянокислое брожение приводит к высоким потерям питательных веществ в результате катаболизма белков, углеводов и энергии. Энергии теряется в 7-8 раз больше, чем при молочнокислом. Кроме того, происходит смещение реакции силоса в нейтральную сторону из-за образования щелочных соединений при расщеплении белка и молочной кис

11. Ингибирование ферментов в силосуемой массе химическими консервантами

В настоящее время известно большое количество консервантов, которые классифицируются:

1. Неорганические консерванты (соляная кислота, серная и др.)

2. Органические консерванты (пропионовая кислота, муравьиная, бензойная и др.)

3. Твердые консерванты (сорбиновая и др.)

4. Жидкие консерванты(серная, муравьиная)

5. Газообразные (двуокись углерода и др.)

6. Растворимые в воде и соков кормов (пропионовая, перосульфит натрия)

7. Нерастворимые в воде (сорбиновая)

8. Электролиты (все кислоты,щелочи и соли)

9. Неэлектролиты (формальдегид)

Консерванты - электролиты, которые диссоциируют в силосе на 30 % и более, называются сильными консервантами, от 30 до 3 % - средние, менее 3% - слабые.

По влиянию на животный организм химические консерванты делят на 2 группы:

1. Ксенобиотики на: химические консерванты, которые безразличны для животного организма. способных изменять физиологическое состояние и обмен веществ.

2. Нексенобиотики - не чуждые вещества для животного организма.

Само ингибирование ферментов можно разделить на 2 вида:

1. Ингибирование биосинтеза ферментов

2. ингибирование происходит на генетическом уровне, в результате чего клетка погибает.

Заключение

Вклад биотехнологии в сельское хозяйство заключается в облегчении традиционных методов селекции растений и животных и разработке новых технологий, позволяющих повысить эффективность сельского хозяйства.

В растениеводстве биотехнология помогает добиться устойчивости к неблагоприятным условиям среды или повысить их урожайность. С помощью селекции создаются новые сорта сельскохозяйственных растений, обладающих полезными, с точки зрения человека, свойствами. Методами генетической и клеточной инженерии созданы высокопродуктивные и устойчивые к вредителям, болезням, гербицидам сорта сельскохозяйственных растений. Разрабатываются новые регуляторы роста растений, микробиологические средства защиты растений от болезней, бактериальные удобрения.

Таким образом, спектр применений биотехнологии в сельском хозяйстве достаточно широк, и с каждым годом в агропромышленное производство внедряется все больше достижений ученых-биотехнологов.

Список использованной литературы

1. Авраменко П.С., Постовалова Л.М. Производство силосованных кормов. Минск: Урожай, 1984. - 110 c.

2. Боярский Л.Г. Технология приготовления силоса. - М.: Агропромиздат, 1988. - с.13-20.

3. Клаар Я. И. Технология производства препарата силосных бактерий (L.plantarum) и их применение для силосования. - Таллин, 1961.- 32 с.

4. Мак-Доналд П. Биохимия силоса: пер. с англ. М.: Агропромиздат, 1985.

5. Ильина К.А., Беседина С.Ф. Влияние Propionibacterium shermanii на состав органических кислот в силосе // Тр. Ин-та микр. и вирусол. АН Каз.ССР. 1966 Т.9 с.29-35

6. Рекомендации по силосованию зеленых кормов с использованием закваски молочнокислых бактерий / Отделение ВАСХНИЛ по нечерноземной зоне РСФСР. Ярославский НИИ животноводства и кормопроизводства. Произв. управл. с.-х. Ярославского облисполкома; Сост.: Н.В. Колесников, Т.Ф. Ерофеева.- Ярославль, 1982.- 10 с.

7. Барсукова, Е.Н. Основные направления и результаты использования методов сельскохозяйственной биотехнологии / Е.Н. Барсукова, П.П. Фисенко, Н.И. Хохлова // Достижения науки и техники АПК. - 2008. - № 6. - С. 5-6. - Библиогр.: с. 6 (9 назв.).

8. Баутин, В.М. Современное состояние сельскохозяйственной биотехнологии: взгляд экономиста / В.М. Баутин // Известия Тимирязевской сельскохозяйственной академии. - 2007. - № 1. - С. 4-8.

9. Биология с основами экологии : учеб. для студентов вузов, обучающихся по направлению «Химия» / [А.С. Лукаткин и др.]; под ред. А.С. Лукаткина. - Москва: Академия, 2008. - 396, [1] с.: ил. - Библиогр.: с. 390-395.

10.Боровский, Е.Э. Зеленая революция: [о попытке решить продовольственную проблему путем интенсивного развития сельского хозяйства] / Е.Э. Боровский // Химия в школе. - 2009. - № 1. - С. 5-11. - Библиогр.: с. 11.

11.Жиганова, Л.П. Современные тенденции развития биотехнологии в сельском хозяйстве США: [применение биотехнологических методов в мировом сельском хозяйстве в трансгенезе растений и животных] / Л.П. Жиганова // США. Канада. Экономика - политика - культура. - 2008. - № 4. - С. 99-114.

12. Международная научно-практическая конференция «Нанобиотехнологии в сельском хозяйстве» (Москва, 16-17 дек. 2008 г.) // Сельскохозяйственная биология. - 2009. - № 2. - С. 61.

13. Сельскохозяйственная биотехнология : учеб. для студентов вузов / [В.С. Шевелуха и др.]; под ред. В.С. Шевелухи. - Изд. 3-е, перераб. и доп. - Москва: Высшая школа, 2008. - 708, [1] с.: ил. - Библиогр. в конце гл.

14. Флегонов, К. Биоэкономика, основанная на знаниях: [о необходимости разработки новых видов лекарств, сельскохозяйственной продукции, альтернативных источников энергии в целях улучшения экономического положения страны] / Кирилл Флегонов // Международная экономика. - 2009. - № 2. - С. 52-57.

15.Шестибратов, К.А. Лесная биотехнология: методы, технологии, перспективы: [обзор посвящен методам биотехнологии, которые являются перспективной альтернативой традиционной селекции в лесном хозяйстве] / К.А. Шестибратов, В.Г. Лебедев, А.И. Мирошников // Биотехнология. - 2008. - № 5. - С. 3-22. - Библиогр.: с. 18-22 (198 назв.).

16. Алтухов, И. Экологические и экономические риски генно-модифицированных семян: [ученые высказывают свои опасения по поводу использования ГМО в качестве продуктов питания] / И. Алтухов // Агробизнес - Россия. - 2009. - № 4. - С. 5-9.

17. Бондарев, Н. И. Особенности роста и накопления стевиол-гликозидов у растений Stevia rebaudiana Bertoni различных клонов in vivo и in vitro / Н.И. Бондарев, О.В. Решетняк, А.М. Носов // Биотехнология. - 2007. - № 1. - С. 22-28. - Библиогр. в конце ст.

18. Будущее за биотехнологиями: [о трансгенных сельхозкультурах] // Экономика сельского хозяйства России. - 2007. - № 3. - С. 44.

19. Елдышев, Ю.Н. Новые рубежи нового земледелия: [об экономических результатах коммерческого возделывания новых сортов сельскохозяйственных культур] / Ю.Н. Елдышев // Экология и жизнь. - 2007. - № 3. - С. 16-19.

20. Зленко, В.А. Определение потребности в содержании минеральных элементов в почве у генотипов винограда по способности растений образовывать корневые волоски in vitro: [преимущества по сравнению с оценкой по признакам развития растений] / В.А. Зленко, И.В. Котиков, Л.П. Трошин // Сельскохозяйственная биология. - 2008. - № 3. - С. 88-95.

21. Картель, Н. ДНК-технологии - новый этап в селекции и семеноводстве растений: [о частной генетике различных культур, популяционно-генетической изменчивости и ее возможных механизмах в ходе селекции] / Николай Картель // Наука и инновации. - 2008. - № 6. - С. 36-41. - Библиогр.: с. 41 (17 назв.).

22. Попов, А. Козлятник восточный по биотехнологии - основа создания собственной прочной и дешевой кормовой базы для высокопродуктивного молочного скота / А. Попов // Агробизнес-Россия. - 2009. - № 1/2. - С. 71-72.

23. Рейни, Т. Семена генной инженерии: [распространение новых генетически модифицированных культур поможет в борьбе с голодом и нищетой] / Терри Рейни, Прабху Пингали; пер. Н.Н. Шафрановская // В мире науки. - 2007. - № 12. - С. 64-71.


Подобные документы

  • Применение биотехнологий в сельскохозяйственной отрасли для производства различных бактериальных удобрений. Выпуск нитрагина и ризоторфина, азотобактерина и фосфобактерина в отечественной промышленности. Аппаратное оснащение изготовления биопрепаратов.

    курсовая работа [33,9 K], добавлен 19.12.2010

  • Общая характеристика РРР. Действие фитогормонов на рост тканей и органов, формирование семян и плодов. Механизм действия фитогормонов на стрессовое состояние растений, их рост и морфогенез. Использование фитогормонов и физиологически активных веществ.

    контрольная работа [20,0 K], добавлен 11.11.2010

  • Изучение бактериальных удобрений промышленного производства: преимущества, виды. Примеры производства удобрений, применение микробной массы микроорганизмов. Особенности производства бактериального удобрения "РосПочва". Структура биогазовой установки.

    курсовая работа [537,1 K], добавлен 04.05.2014

  • Классификация минеральных удобрений (простые и смешанные). Истощение сельскохозяйственной почвы. Органические и минеральные удобрения. Полноценное развитие растений при использовании комплексных удобрений. Влияние воды на жизнедеятельность растений.

    презентация [4,2 M], добавлен 14.05.2014

  • Агрохимическая характеристика почвы. Накопление и использование органических удобрений. Определение норм удобрений под сельскохозяйственные культуры. Планы использования удобрений в севообороте. Оценка разработанной системы применения удобрений.

    курсовая работа [95,3 K], добавлен 27.04.2019

  • Общие сведения о хозяйстве. Накопление местных удобрений и поступление минеральных удобрений в хозяйство. Определение норм удобрений, вносимых под сельскохозяйственные культуры. Распределение удобрений в севообороте, их экономическая эффективность.

    курсовая работа [73,1 K], добавлен 15.06.2010

  • Яровая пшеница, ее распространение, биологические особенности. Условия минерального питания и влияние удобрений на урожай и качество зерна яровой пшеницы. Использование азотных удобрений, повышение их эффективности. Техника внесения минеральных удобрений.

    дипломная работа [850,7 K], добавлен 10.06.2013

  • Агроклиматическая характеристика почв. Расчет накопления органических удобрений. Биологические особенности питания культур в севооборотах. Технология применения органических и минеральных добавок. Экономическая эффективность применения удобрений.

    курсовая работа [72,4 K], добавлен 07.12.2008

  • Классификация удобрений по составу: минеральные; органические и органоминеральные; бактериальные. Рассмотрение основных способов внесения удобрений в сельском хозяйстве: основной, припосевной и подкормка. Применение центробежных разбрасывателей удобрений.

    контрольная работа [3,1 M], добавлен 17.03.2013

  • Геологическое строение территории хозяйства, растительность, севообороты. Агрохимическая характеристика почвы. Урожайность сельскохозяйственных культур. Накопление и использование органических удобрений. Сроки, способы, дозы и формы применения удобрений.

    курсовая работа [66,9 K], добавлен 11.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.