Совершенствование полуэмпирических методов рационального использования биологических ресурсов водоемов

Совершенствование биологических и промыслово-биологических основ управления запасами промысловых рыб путем регулирования и контроля селективности и интенсивности рыболовства. Основные понятия и показатели интенсивности промышленного рыболовства.

Рубрика Биология и естествознание
Вид магистерская работа
Язык русский
Дата добавления 27.02.2009
Размер файла 2,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Предположим, плотность распределения размерного состава облавливаемых скоплений g(l), а кривая селективности для размера ячеи А - S (l). По этим данным можно построить кривую распределения размерного состава улова y (l).

Если принять сначала меру на рыбу равной lнп,, а затем lнп,,, причем lнп, < lнп,,, то при том же размере ячеи А это приведет к увеличению прилова маломерных рыб при неизменном общем улове и потере улова рыб промысловых размеров. Если размер ячеи задан, а промысловая мера на рыбу не задана, то можно определить промысловую меру на рыбу, которая соответствует заданным А и lнп.

При постоянном размере ячеи и заданной мере на рыбу изменять допустимый прилов маломерных рыб, очевидно, нет необходимости, т.к. фактический прилов маломерных рыб, при прочих равных условиях, однозначно зависит от lнп и А.

Предположим далее, что с изменением lнп необходимо регулировать размер ячеи, чтобы обеспечить заданное значение [nнп]. В этом случае фактические значения nнп, очевидно, будут неизменными, а улов рыб промысловых размеров изменяется. При этом, если lнп,, > lнп,, то улов уменьшается, а прилов рыб непромысловых размеров состоит из более крупных рыб. Hапротив, если lнп, < lнп", то улов увеличится, а прилов маломерных рыб будет включать более мелких рыб.

Увеличение меры на рыбу приводит к рыбоохранному эффекту, т.к. часть маломерных рыб остается в водоеме.

Hаконец, рассмотрим случай, когда при постоянном значении lнп допустимый прилов маломерных рыб изменяется с [nнп] до [nнп]нп (причем [nнп],, < [nнп], ), и, соответственно, увеличится размер ячеи с А, до А,,. При снижении общего улова в этом случае снижается и улов рыб непромысловых размеров.

Таким образом, при увеличении меры на рыбу и при уменьшении допустимого прилова маломерных рыб в водоеме остается часть маломерных рыб и снизится улов рыб промысловых размеров. Следовательно, влияние промысловой меры на рыбу и допустимого прилова маломерных рыб как мер регулирование рыболовства и как факторов, влияющих на эффективность лова, качественно одинаково, и регулирование одного показателя в некоторых пределах можно заменить регулированием другого показателя.

Количественно оценить взаимосвязь lнп и nнп можно, рассматривая приближенные выражения для относительных величин общего улова yо, улова рыб промысловых размеров yп, прилова маломерных рыб yнп и формулу для оценки внутреннего размера ячеи А (Мельников, 1983 ; 1986).

Анализ этих и полученных из них выражений подтверждает вывод об эквивалентности влияния промысловой меры на рыбу и допустимого прилова рыб непромысловых размеров на состояние запасов промысловых рыб. Эквивалентом при оценки взаимосвязи lнп и nнп можно считать равенство числа рыб непромысловых размеров, которые дополнительно изымаются из водоема или дополнительно остаются в водоеме при изменении lнп и [nнп].

Из указанных выше выражений несложно получить уравнения для количественной оценки регулирования рыболовства изменением промысловой меры на рыбу и допустимого прилова рыб непромысловых размеров, а также для оценки целесообразности регулирования рыболовства величиной lнп или величиной [nнп] с учетом эффективности лова.

Hесмотря на отмеченную эквивалентность, возможности регулирования рыболовства изменением [nнп] значительно меньше, чем с помощью lнп (и притом лишь в определенном диапазоне значений lнп). Однако и в последнем случае они ограничены из-за большего влияния lнп на эффективность лова. Диапазон регулирования селективности лова иногда можно существенно расширить путем одновременного регулирования lнп и [nнп].

Hаглядное представление о влиянии lнп и [nнп] на эффективность лова дают графики nнп = f(А ) и nп = f(А ) для нескольких значений lнп. Характерный вид таких графиков для лова разноглубинными тралами черноморского шпрота приведен на рис. 7.3.

Рассматривая графики, можно оценить относительную степень влияния lнп и [nнп] на эффективность лова, установить, как влияет размер ячеи на прилов рыб непромысловых размеров и уход через ячею рыб промысловых размеров, определить близкие к оптимальным (с учетом производительности лова) значения lнп и [nнп].

Допустимый прилов рыб непромысловых размеров редко превышает 0,08-0,1, уход через ячею сетных мешков более 0,2-0,3 рыб промысловых размеров нежелателен, а отношение среднеквадратичного отклонения длины рыб в облавливаемых скоплениях от среднего к диапазону селективности сетного мешка обычно меньше 0,4-0,5. С учетом установленных ограничений lнп < lср - 1,25-1,5 (lср - средняя длина рыб в облавливаемых скоплениях). В соответствии с последним неравенством доля рыб непромысловых размеров в облавливаемых скоплениях Nнп не должна превышать 0,15-0,20. Лишь когда [nнп ] > 0,3-0,35, величина lнп приближается к lср, а допустимая величина Nнп - к 0,5. Завышение lнп и Nнп против указанных значений приводит к резкому увеличению ухода через ячею рыб промысловых размеров и снижению улова.

Для допустимых значений [nп ] величина [nнп], как правило, должна превышать 0,5Nнп. Лишь при лове скоплений с широким диапазоном размерного состава величина [nнп] может снижаться до 0,3-0,35 Nнп. Занижение [nнп ], как и завышение lнп, приводит к существенному увеличению ухода через ячею рыб промысловых размеров. При этом характерно, что соотношение между допустимым приловом рыб непромысловых размеров и долей рыб непромысловых размеров в облавливаемых скоплениях зависит практически в основом от ширины диапазона размерного состава облавливаемых скоплений, а не от допустимого ухода из сетного мешка рыб промысловых размеров. Об этом наглядно свидетельствуют данные рис. 7.4.

Полученные закономерности свидетельствуют о необходимости ограничения [nнп ] не только сверху с учетом его влияния на состояние запасов, но и снизу в связи с его влиянием на эффективности лова. Минимально допустимое значение [nнп] можно в первом приближении получить из основных уравнений селективности, если задаться допустимым уходом через ячею рыб промысловых размеров [nп]. Результат расчетов во многом зависит не только от [nп], но и от размерного состава облавливаемых скоплений и особенно промысловой меры на рыбу.

2.6. Особенности объединения показателей селективности для различных районов,сезонов и объектов лова

Если все или некоторые одноименнные показатели, регламентирующие селективность рыболовства, близки между собой, то возникает вопрос о возможности использования одного значения показателя для нескольких районов лова, сезонов лова или нескольких видов рыб. Такое объединение значительно облегчает регулирование селективности, разработку регламентирующих лов документов. Для решения задачи можно воспользоваться методами дисперсионного анализа, которые широко используются для решения некоторых задач теории рыболовства.

Будем считать, что распределение размеров ячеи и других показателей, регламентирующих селективность рыболовства,под влиянием случайных колебаний размерного состава, селективных свойств орудий лова и других факторов, подчиняется нормальному закону. Если рассматривать, например,возможность использования одинакового размера ячеи при лове рыб различных видов, то порядок решения задачи следующий.

Предположим, математические ожидания размера ячеи для рыб различных видов равны

_ _ _ _

Аф1, Аф2, Аф3, Афк, а дисперсии S12, S22, S32, Sк2. Тогда среднее математическое ожидание размера ячеи для рыб всех видов

(2.14)

Средняя дисперсия в результате случайного разброса размера ячеи с учетом дисперсий по размеру ячеи для рыб различных видов равна

(2.15)

Дисперсия,связанная с неслучайным фактором как результатом неодинакового размера ячеи для рыб разных видов,

(2.16)

Показатель влияния неслучайного разброса математических ожиданий размера ячеи рассмотрен здесь аналогично показателю влияния случайного фактора. Следовательно, эти два влияния можносравнивать между собой по критерию Фишера.

Влияние неслучайного разброса признается незначимым для доверительной вероятности b, если

s12 /S2 < Fb (2.17)

где Fb - критерий Фишера.

Критерий Фишера определяют по степеням свободы

f1 = k-1 ; f2= k (n - 1) (7.18)

где n- число наблюдений (вариантов расчета), по которым получен каждый из к вариантов расчета.

В нашем случае число одновременно рассматриваемых размеров ячеи (объектов лова) обычно не превышает 3-4, а, следовательно, f1 не бывает больше 2-3, а f2 может колебаться в широких пределах, превышая, как правило, 10-15. Доверительную вероятность в таких расчетах обычно принимают равной 0,9-0,95.

Если в результате расчетов оказалось,что лов двух или нескольких объектов можно производить сетными мешками с одним и тем же размером ячеи, то в регламентирующих лов документах отражают такую возможность и целесообразность.

Аналогичным способом можно оценить возможность объединения промысловой меры на рыбу и допустимого прилова рыб непромысловых размеров для различных объектов лова в пределах некоторых периодов промыслового времени и размеров промыслового участка.

Существенно помогает процедуре объединения показателей, регламентирующих селективность, предварительное деление промыслового времени на периоды осреднения и района лова на осредненные промысловые участки.

2.7. Основные результаты и выводы по главе 7

1. Сложность регулирования селективностью рыболовства обусловлена, прежде всего, многообразием требований, которым должны удовлетворять эти меры, трудностью выбора основных требований и выработки на их основе решений.

2. По ряду объективных и субъективных причин не всегда возможно на практике реализовать меры регулирования селективности рыболовства, например, из-за невозможности во многих случаях получить заданный прилов рыб непромысловых размеров для заданных одновременно промысловой мере на рыбу и размере ячеи.

3. Установлены недостатки существующих методов оценки и регулирования показателей, регламентирующих рыболовство; показано, что при их определении не всегда учтена взаимосвязь показателей и что такие показатели практически не связаны с эффективностью рыболовства.

4. В основу промыслово-биологического обоснования показателей, определяющих селективность лова отцеживающими орудиями, положены основные уравнения селективности сетных мешков, которые увязывают все регламентирующие лов показатели с размерным составом облавливаемых скоплений и селективными свойствами сетных мешков.

5. Предложена методика обоснования показателей, регламентирующих селективность лова, основанная на предварительной оценке показателей для различных условий лова (для различных вариантов расчета) с последующей унификацией полученных данных с учетом полученных законов распределения и численных характеристик искомых показателей и данных биологического обоснования этих показателей.

6. Установлен характер и степень взаимосвязи между размером ячеи, промысловой мерой на рыбу и допустимым приловом рыб непромысловых размеров, и найдены ограничения на каждый из них с учетом их взаимного влияния.

7. Рассмотрена процедура оценки целеосообразности объединения показателей, регламентирующих лов, для различных объектов, сезонов и районов, основанная на применении методов дисперсионного анализа.

8. Показано, что регулирование селективности и обоснование показателей, регламентирующих селективность рыболовства, с использованием основных уравнений селективности наиболее эффективно одновременно с применением других методов их обоснования и, прежде всего, биологического. При общем уменьшении размеров рыб в облавливаемых скоплениях применение других методов становится обязательным.

ГЛАВА 3. СОВЕРШЕНСТВОВАНИЕ ОЦЕНКИ ИНТЕНСИВНОСТИ ПРОМЫСЛА И РЫБОЛОВСТВА

3.1. Новая система основных понятий и показателей интенсивности промышленного рыболовства

Лов, промысел и рыболовство как три основных области промышленного рыболовства можно описать системой понятий и показателей. Существующий перечень понятий и показателей не всегда учитывает деление промышленного рыболовства на три области. Рассмотрим с учетом этого основные понятия и показатели лова, промысла и рыболовства для оценки интенсивности добычи рыбы, при этом сначала дадим их определение, а затем рассмотрим подробнее.

Для оценки интенсивности добычи рыбы применяют такие понятия и показатели, как интенсивность лова, интенсивность промысла, интенсивность рыболовства, интенсивность вылова, коэффициент мгновенной промысловой смертности, коэффициент промысловой убыли, различные понятия промыслового усилия и т.д. В одно и то же понятие часто вкладывают различный смысл (Засосов, 1970; Трещев, 1974).

Для унификации понятий интенсивности полезно различать две формы влияния интенсивности добычи рыбы на запасы - интенсивность воздействия на запасы и интенсивность использования (эксплуатации) запасов.

Интенсивность воздействия на запасы не увязывают с выловом промысловых объектов и оценивают показателями промыслового усилия. Интенсивность использования (эксплуатации) запасов, напротив, увязывают с выловом и оценивают показателями использования запасов (Мельников, В.Н., Мельников А.В., 1998).

С учетом деления промышленного рыболовства на области будем различать интенсивность промышленного рыболовства, интенсивность рыболовства, интенсивность промысла и интенсивность лова.

Интенсивность промышленного рыболовства - качественное понятие,характеризующее интенсивность воздействия на запасы и использования запасов промысловых объектов.

Интенсивность рыболовства - мера использования запасов, равная улову за некоторый промежуток промыслового времени в пределах рассматриваемого промыслового участка или района,где располагается тот или иной запас.

Интенсивность промысла - мера воздействия на запас, равная промысловому усилию при работе группы судов.

Интенсивность лова - мера воздействия на запас, равная промысловому усилию при работе одного судна.

Промысловое усилие оценивают обловленным объемом (площадью) водоема или обловленным объемом (площадью) скопления, количеством судов, орудий лова, временем лова или промысла, судо-сутками лова, некоторыми характеристиками судов и орудий лова и т.д. Кроме того, применяют условное промысловое усилие с учетом улова стандартной промысловой единицы. Наилучшими в каждой области применения обычно считают понятия промыслового усилия, которые наиболее определенно и тесно связаны с показателем (например, уловом), мерой которого они служат.

Улов и промысловое усилие будем считать абсолютными показателями интенсивности промышленного рыболовства.

Кроме количественных показателей, характеризующих абсолютную интенсивность рыболовства, промысла или лова, не меньшее значение имеют относительные показатели обычно в виде отношения абсолютного показателя соответствующей интенсивности к другому показателю с таким же или иным физическим смыслом.

Относительная интенсивность рыболовства - отношение улова, принятого при оценке абсолютной интенсивности рыболовства, к величине запаса в начале рассматриваемого периода времени с учетом убыли от естественных причин (это понятие соответствует существующим терминам "коэффициент промысловой убыли" и "коэффициент эксплуатации промыслового стада").

Относительная условная интенсивность рыболовства- отношение улова,принятого при оценке абсолютной интенсивности рыболовства, к величине запаса в начале рассматриваемого периода времени без учета убыли от естественных причин (это понятие эквивалентно существующим понятиям "интенсивность вылова" и "условный коэффициент промысловой смертности ").

К относительным показателям интенсивности рыболовства принадлежит также мгновенный коэффициент промысловой смертности как показатель относительной скорости промысловой смертности.

Количественные понятия интенсивности рыболовства рассматривают, исходя из общей величины улова или с учетом отдельно рыб промысловых и непромысловых размеров. На раздельное определение показателей интенсивности рыболовства для рыб промысловых и непромысловых размеров необходимо обратить особое внимание в связи с различными требованиями к вылову рыб промысловых и непромысловых размеров.

Относительная интенсивность промысла - отношение обловленного группой судов объема (площади) водоема к объему (площади) промысловой части водоема.

Относительная интенсивность лова - отношение обловленного одним судном объема (площади) водоема к объему (площади) промысловой части водоема.

Понятия относительная интенсивность промысла и относительная интенсивность лова соответствуют известному понятию "интенсивность лова".

3.2. Общая характеристика основных понятий и показателей интенсивности промышленного рыболовства

Рассмотрим основные для промышленного рыболовства понятия и показатели интенсивности рыболовства, которые в п. 3.1 только упомянуты или не рассмотрены совершенно. Многие понятия и показатели интенсивности и эффективности промышленного рыболовства являются общими, поэтому они описаны совместно.

Зоной облова обычно называют часть водоема (объем или площадь), из которой рыбу улавливают с вероятностью, отличной от нуля. Использование такой, в принципе правильной оценки зоны облова затруднено из-за сложности ее практического определения, очень неодинакового вклада различных участков зоны в улов, трудностей определения средней плотности концентрации рыбы в зоне. Часто при такой оценке получают очень большие размеры зоны облова, и полезно рассматривать зоны облова, соответствующие вероятности улавливания 0,1, 0,2 и т.д. Особенно важна оценка зоны облова, которой отвечает улавливание рыбы с вероятностью 0,5.

Понятие зоны облова в рассматриваемой интерпретации не имеет смысла, когда охваченный орудием лова объем во много раз превышает размеры облавливаемого скопления, например, при кошельковом лове.

Из-за недостатков и сложности определения зоны облова водоема вместо этого понятия предложено использовать обловленный объем (обловленную площадь) как некоторый расчетный объем (расчетную площадь) водоема, из которого рыба преимущественно попадает в орудие лова.

По особенностям определения обловленного объема все способы лова делят на 5 групп, в зависимости от того, учитывают ли при этом размеры орудия лова, физических полей средств интенсификации лова, перемещение орудия лова и рыбы (Трещев, 1974; Мельников, 1991). Рассмотрим особенности определения обловленного объема с учетом необходимой точности определения обловленного объема.

Обловленный объем используют как меру интенсивности лова, меру затрат труда на добычу рыбы, а также при определении расчетной величины улова, производительности и эффективности лова. При оценке интенсивности лова точность определения обловленного объема сравнима с очень небольшой точностью выбора расчетного объема (площади) части или всего промыслового водоема. Требования к точности оценки обловленного объема как меры затраченного труда также невелики из-за специфики этого показателя. Наиболее высоки требования к точности оценки обловленного объема в последних случаях, причем эти требования зависят от корреляции между уловом и обловленным объемом. Несмотря на достаточно высокую в некоторых случаях корреляцию между уловом и обловленным объемом в узком диапазоне показателей лова, эта зависимость в более широком диапазоне не cтоль определенна и обычно нелинейна. Необходимо, кроме того, учитывать значительные колебания рабочих размеров орудий лова, зоны действия физических полей и скорости перемещения рыбы, а также ошибки их усреднения. Таким образом, и в этих случаях требования к оценке точности обловленного объема не слишком высоки, что облегчает определение показателей, через которые его вычисляют.

Оценка размеров зоны облова обловленным объемом водоема не всегда целесообразна, например, когда вертикальные или горизонтальные размеры облавливаемого скопления и зоны облова существенно отличаются друг от друга. Чтобы оптимизировать в этом случае основные размеры орудий лова, размеры зоны облова следует оценивать обловленным объемом скопления или обловленной площадью скопления (Мельников, 1981).

При определении обловленного объема скопления или обловленной площади скопления учитывают, что наведение орудия лова часто сопровождается ошибкой наведения по горизонтали и вертикали и что часть площади устья тралов, сетей и других орудий лова у подбор может не работать. Тогда, например, горизонтальные и вертикальные размеры зоны облова трала меньше соответственно его горизонтального и вертикального раскрытия.

С учетом этих замечаний, в частности, обловленный разноглубинным тралом в единицу времени объем скопления в виде слоя рыбы, когда трал наводят только по вертикали,

Vск = Mиу Lу (lтх - Lр ) vтр, (3.1)

где Lу - высота скопления; lтх - горизонтальное раскрытие трала; Lр - дальность реакции рыбы на оснастку устья трала; vтр - скорость траления; Mиу - коэффициент, учитывающий, какую часть скопления по высоте облавливает трал.

Различные варианты определения коэффициентов Mиу и обловленного объема скопления в виде слоя рыбы и косяков с учетом ошибок наведения рассмотрены в работах В.Н. Мельникова (1979, 1982).

Улавливающую способность орудия лова как меру интенсивности лова характеризуют абсолютным и относительным коэффициентами уловистости, частными и общими статистическими моделями уловистости (Мельников, 1991).

При оценке абсолютного коэффициента уловистости из-за сложности определения количество рыбы в зоне облова целесообразно заменить количеством рыбы в обловленном объеме (на обловленной площади). Чтобы еще более облегчить задачу, абсолютный коэффициент уловистости во многих случаях находят как отношение улова к количеству рыбы, подошедшей к орудию лова, например, к плоскости сети, предустьевому пространству трала, зоне всасывания рыбонасоса и т.д. При этом в понятие " количество рыб, подошедших к орудию лова" иногда вкладывают различный смысл.

В ряде случаев абсолютный коэффициент уловистости целесообразно определять с учетом не всего количества рыбы, а отдельно для рыб промысловых и непромысловых размеров в улове и в облавливаемом скоплении из- за различных требований к улавливающей способности орудия лова для рыб промысловых и непромысловых размеров.

Трудности оценки абсолютного коэффициента уловистости из -за необходимости определения количества рыбы в зоне облова, даже с учетом некоторых допущений, привели к тому, что его часто определяют различными косвенными методами (по величине улова, обловленному объему и плотности облавливаемых скоплений, путем запуска в обловленный объем меченых рыб и т.д.).

Абсолютный коэффициент уловистости как одна из мер эффективности лова позволяет оценить, насколько отличается улавливающая способность рассматриваемого орудия лова при работе в определенных условиях и по определенной технологии от максимально возможной.

Абсолютный коэффициент уловистости зависит не только, а иногда не столько от особенностей способа лова, сколько от биологии объекта лова и условий внешней среды. Так, на величину улова влияют степень подвижности рыбы, скорость плавания в различных режимах, зрительная способность рыбы и условия зрительной ориентации, распределение рыбы в зоне облова и т.д.

Колебания поведения и распределения объекта лова, условий лова приводят к значительному изменению абсолютного коэффициента уловистости орудий лова. Например, коэффициент уловистости донных тралов колеблется от 0,2 до 0,9, разноглубинных тралов - от 0,1 до 0,8, закидных неводов- от 0,1 до 0,7 и т.д.

Относительный коэффициент уловистости - это отношение абсолютных коэффициентов уловистости рассматриваемого и эталонного орудия лова, работающих в примерно одинаковых условиях.

При оценке улавливающей способности орудий лова относительным коэффициентом уловистости необходимо не только равенство условий лова рассматриваемого и эталонного орудия лова, но и равенство обловленных ими объемов (если относительный коэффициент уловистости принимают равным отношению средних уловов сравниваемых орудий лова). При лове тралами и некоторыми другими орудиями лова важно не только примерное равенство объемов, но и примерное равенство скорости их перемещения.

Важно также, что равенство условий лова включает не только равенство средней плотности скоплений рыб в облавливаемых объемах, но и размеров этих скоплений. Следовательно, требование равенства облавливаемых объемов водоема при определении относительного коэффициента уловистости в ряде случаев заменяют требованием равенства обловленных объемов скоплений.

Оценка улавливающей способности орудий лова только абсолютным и относительным коэффициентом уловистости недостаточна для решения многих задач анализа и совершенствования орудий лова, т.к. такие коэффициенты не дают представления о путях ухода рыбы из орудий лова и из его зоны облова. Поэтому улавливающую способность полезно характеризовать рядом показателей, каждый из которых учитывает вероятность ухода рыбы из зоны облова тем или иным путем, на том или ином этапе лова (Мельников,1975; 1991, 1996 и др.). Используя эти показатели, можно разработать частные и общие статистические модели поведения объекта лова (статистические модели уловистости орудия лова).

Частная статистическая модель уловистости дает представление о вероятности того или иного поведения объекта лова (в т.ч. вероятности ухода рыбы из зоны облова различными путями) на некотором этапе лова.

Общая статистическая модель уловистости учитывает вероятность ухода рыбы из зоны облова различными путями одновременно на всех этапах лова.

В общем случае, если лов состоит из n этапов, и на каждом из них рыба уходит из зоны облова несколькими путями, то

(3.2)

где i,j,...k - количество возможных путей ухода рыбы соответственно на 1,2 и последующих этапах.

Как следует из выражения (3.2), не зная вероятности ухода рыбы из зоны облова каждым из основных путей, практически невозможно рассчитать коэффициент уловистости, хотя известны многочисленные попытки оценки коэффициента уловистости по простейшим формулам.

Примеры определения абсолютного коэффициента уловистости через вероятности ухода рыбы из зоны облова для разноглубинного тралового лова и лова закидными неводами приведены в работах В.Н. Мельникова (1981; 1982).

Коэффициент уловистости в рассмотренном представлении увязывают только с уходом рыбы из зоны облова и из самого орудия лова. Но для лова некоторыми орудиями характерны ошибки наведения, которые приводят к снижению эффективности лова за счет уменьшения обловленного объема или обловленной площади скопления. Однако в теории лова и при проектировании орудий лова ошибки наведения орудия лова можно рассматривать как один из факторов, снижающих коэффициент уловистости. Мерой уловистости в этом случае могут быть коэффициенты Mих и Mиу, которые учитывают, какую долю скопления (косяка) по длине или по высоте облавливает орудие лова. В такой интерпретации коэффициенты Mих, Mиу и Mи= Mих Mиу можно вводить в общие и частные статистические модели уловистости, считая их условно некоторыми вероятностями p ухода рыбы из зоны облова на этапах захода рыбы в зону облова орудия лова.

Производительность лова или промысла - отношение улова одной промысловой единицы или нескольких промысловых единиц в единицу времени.

Выбранному расчетному периоду времени (производительная часть цикла лова, время цикла лова, час, сутки, промысловый рейс, сезон лова, год и т. д.) соответствуют различные понятия производительности лова или промысла (Мельников, 1991).

Если при оценке производительности лова учитывают время производительной части цикла лова, то получают фактическую производительность лова, которая в наибольшей степени характеризует улавливающие качества орудий лова.

Когда принимают за основу полное время цикла лова, то находят производительность способа лова, которая учитывает промыслово-эксплуатационные качества способа лова.

Если при определении производительности лова принимают во внимание все промысловое или все календарное время в течение суток, рейса, сезона лова, года и т.д., то найденная производительность оценивает эффективность лова и ее называют производительностью лова за соответствующий период времени.

При выборе системы показателей теории лова за основу целесообразно принимать суточную производительность, при необходимости переходя к годовой производительности одной или нескольких промысловых единиц.

В общем случае суточная производительность лова через обловленный объем водоема V в единицу времени улавливающего действия орудия лова

(3.3)

где tс - время лова за 1 сутки; tл, tп - соответственно время улавливающего действия орудия лова за цикл лова продолжительностью tц и за сутки; r - плотность концентрации рыбы в обловленном объеме водоема; f - коэффициент уловистости орудия лова.

Суточная производительность лова, выраженная через обловленный объем скопления Vск в единицу времени улавливающего действия орудия лова,

(3.4)

где rс- плотность концентрации рыбы в облавливаемом скоплении.

Иногда суточную производительность лова полезно определять

по формуле

(3.5)

где kv = Vck /V - коэффициент заполнения обловленного объема скоплением рыб.

При оценке производительности лова, как правило, не учитывают показатели надежности орудия лова (рыболовной системы). Степень такого влияния можно учесть, если ввести в выражение для производительности лова коэффициент готовности kг или показатель работоспособности aр (Мельников, 1982).

Если отказ орудия лова обнаруживают быстро, а его ремонт не совпадает по времени с другими процессами лова, то коэффициент готовности определяют как среднее относительное время пребывания орудия лова в работоспособном состоянии.

Показатель работоспособности учитывает не только снижение производительности лова из-за потери времени на восстановление орудия лова после отказов, но и потерю улова в "дефектных" циклах лова:

где tн - продолжительность безотказной работы орудия лова (наработка на отказ); tц - время цикла лова при безотказной работе; dt - среднее время удлинения цикла лова из-за восстановления орудия лова после отказа; gд - коэффициент, учитывающий долю "дефектных" циклов с потерей улова; bд - коэффициент, учитывающий долю "дефектных" циклов, в которых восстановление орудия лова повлекло удлинение цикла лова.

С учетом надежности орудия лова суточная производительность лова

или

Показатели надежности зависят, в частности, от прочностных характеристик рыболовной системы, поэтому выражения вида (3.7) и (3.8) позволяют установить зависимость производительности лова от этих прочностных характеристик (Мельников,1982).

Необходимо обратить особое внимание на выражение (3.7), которое позволяет определять производительность лова через обловленный объем водоема и четыре показателя, характеризующие надежность орудия лова как механической системы, степень использования промыслового времени, концентрацию рыб в водоеме и улавливающую способность орудия лова.

Рассмотренные выше понятия производительности и выражения (3.3)- (3.8) можно использовать для оценки не только производительности лова, но оценки производительности промысла, учитывая одновременно работу нескольких промысловых единиц.

Относительная эффективность использования промыслового усилия равна улову на величину промыслового усилия, затраченного на получение этого улова.

При определении относительной эффективности использования промыслового усилия за единицу промыслового усилия часто принимают обловленный объем водоема, и тогда эту величину можно назвать относительной эффективностью использования обловленного объема водоема (промысловой эффективностью).

Т.к. улов равен произведению абсолютного коэффициента уловистости, концентрации рыбы в обловленной части водоема и обловленного объема, то, по определению, относительная эффективность использования обловленного объема в рассматриваемой интерпретации является произведением абсолютного коэффициента уловистости f и концентрации рыбы в обловленной части водоема r.

Если в качестве меры промыслового усилия принимать не обловленный объем водоема, а обловленный объем скопления, то можно определить относительную эффективность использования обловленного объема скопления, равного произведению коэффициента уловистости и концентрации рыбы в облавливаемом скоплении.

Промысловое усилие является одним из важнейших понятий промышленного рыболовства. Достаточно четкого определения этого понятия нет, хотя известно много показателей для его оценки. Это обусловлено, прежде всего, очень широкой и разнообразной областью применения промыслового усилия как меры воздействия на запасы промыслового водоема.

Может вызывать сомнение использование улова в качестве меры промыслового усилия. Однако в принципе этот показатель наиболее точно отражает воздействие на запас и в этом качестве его предлагается использовать как меру промыслового усилия.

Другие показатели при одном и том же назначении промыслового усилия можно использовать в зависимости от степени их корреляции с наиболее приемлемым показателем. При этом учитывают, что коэффициент корреляции как меру взаимосвязи двух показателей применяют при линейной зависимости между этими показателями. В то же время связь между многими из рассмотренных показателей нелинейна, или ее можно считать линейной лишь в сравнительно узком диапазоне значений показателей. Нелинейность существует, в частности, между уловом и обловленным объемом водоема, мощностью главного двигателя судна и его длиной и т.д. Необходимо обратить внимание на обловленный объем водоема, когда он выступит не как мера интенсивности лова.

У подвижных орудий лова, например тралов, работающих при ограниченной располагаемой тяге судна, обловленный объем зависит от размеров орудия лова и скорости его перемещения. Так как сопротивление орудия лова движению в воде пропорционально площади сопротивления орудия лова в первой степени и скорости перемещения орудия лова ориентировочно во второй степени, то, во-первых, при одной и той же располагаемой тяге судна, в зависимости от соотношения размеров орудия лова и скорости его перемещения, можно получить различный максимальный обловленный объем, во-вторых, единице обловленного объема может соответствовать существенно различный улов. Более того, при очень больших размерах и очень небольшой скорости перемещения орудия лова и, наоборот, улов на единицу объема приближается к нулю.

Таким образом, в рассматриваемых случаях при использовании обловленного объема как меры промыслового усилия целесообразно обловленный объем "стандартизировать" по размерам орудия лова или по скорости его перемещения, если диапазон изменения этих показателей достаточно широк.

Относительная условная эффективность использования промыслового усилия (улавливаемость) q связывает относительную скорость промысловой смертности (мгновенный коэффициент промысловой смертности) F с промысловым усилием f (F= qf). Выразим F через относительную условную эффективность рыболовства (интенсивность вылова) Iв, которая равна отношению улова Y за рассматриваемый промежуток времени T к среднему запасу N:

Откуда

Подставляем в (10) выражение (9) для оценки величины улова:

В последнем выражении Vm = T Kг tп V - обловленный объем водоема за T суток.

Из формулы (3.11) следует, в частности, что существующий термин "улавливаемость" недостаточно точен, т.к. ассоциируется с понятием "уловистость". Однако этот показатель учитывает, не только уловистость, но и другие факторы, влияющие на величину улова, поэтому он и назван относительной условной эффективностью использования промыслового усилия.

Из структуры формулы можно сделать также вывод, что в принципе мерой промыслового усилия может быть любой показатель, практически удобный для определения результирующего промыслового усилия. Из теоретических предпосылок некоторое преимущество как меры промыслового усилия имеет обловленный объем, через который удобно оценивать улов и производительность лова.

В частности, в этом случае f= Vт,и формула (3.11) примет вид:

где rо - концентрация рыбы в промысловой части водоема.

Еще более наглядное выражение получим, если считать, что (r f Vт / N ) < 0,1- 0,15, когда приближенно

С учетом последнего выражения

Другое выражение для q получим, учитывая, что rо = (N/V ) - плотность концентрации рыбы в промысловой части водоема. Тогда

Характерно, что в последнем выражении rкf- относительная эффективность использования обловленного объема водоема (промысловая эффективность).

Из этого же выражения следует, что q, с одной стороны, зависит от уловистости орудия лова, с другой, от величины запаса или размеров промысловой части водоема, а также распределения концентрации рыбы в нем.

Рис 3.1 Зависимость улавливаемости от величины интенсивности лова

Показатели интенсивности промышленного рыболовства и соотношения между ними относятся к важнейшим в рыболовстве, в том числе при управлении запасами промысловых рыб

Одной из основных в теории рыболовства считают зависимость между относительной условной интенсивностью рыболовства (интенсивностью вылова) Iв и относительной интенсивностью промысла или лова (интенсивностью лова) Iл (Баранов,1960):

Запишем зависимость между Iв и Iл, принимая за основу выражение (3.11). Если считать мерой промыслового усилия обловленный объем водоема Vт, то F= q Vт.

Тогда

Подставляем в последнее выражение значения q из (8.11), вводим в полученное выражение рассматриваемый объем промыслового водоема Vт и имеем в виду, что Iл = Vт / Vо :

Отношение N / Vо - средняя концентрация рыбы в промысловом водоеме. Если ее считать равной средней концентрации облавливаемых скоплений, то

Из полученного выражения следует, что соотношение между Iв и Iл линейно и зависит лишь от коэффициента уловистости орудия лова и что Iв = 1.0, когда Iл = 1/ f.

Рис 3.2 Зависимость относительную условную эффективность рыболовства от величины интенсивности лова

Фактические зависимости Iв = f(Iл ) отличаются от теоретической, в частности, из-за неодинаковой концентрации рыбы в обловленном объеме и во всем водоеме, особенно при малой интенсивности рыболовства, а также их изменении в течение рассматриваемого периода времени, в том числе в связи с колебанием величины запаса.

Так, если принять, что концентрация рыбы в промысловой части водоема po и отличается от средней концентрации рыбы в его обловленной части p, то

Соответственно относительная скорость промысловой смертности (мгновенный коэффициент промысловой смертности) с учетом выражения (3.11)

Рис 3.3 Зависимость относительной скорости промысловой смертности от интенсивности лова

Относительная эффективность использования запасов (коэффициент использования запасов) равна отношению массы улова поколения при заданном размере ячеи к массе поколения в возрасте кульминации ихтиомассы. Этот показатель подробно рассмотрен в гл. 4 в связи с управлением интенсивностью рыболовства с учетом этого показателя.

Наконец, одним из показателей для оценки относительной интенсивности рыболовства является величина уравновешенного улова на единицу пополнения промыслового стада. Эта велична как один из критериев оптимальности при управлении запасами промысловых также подробно рассмотрена в гл. 4

3.3. Основные результаты и выводы по главе 3

1. Показано, что для оценки интенсивности добычи рыбы применяется несовершенная система таких понятий и показателей, как интенсивность лова, интенсивность промысла, интенсивность рыболовства, интенсивность вылова, коэффициент мгновенной промысловой смертности, коэффициент промысловой убыли, различные понятия промыслового усилия и т.д. В одно и то же понятие часто вкладывают различный смысл. Несовершенство системы препятствует дальнейшему развитию теории управления запасами и управления рыболовством.

2. Разработана новая система понятий и показателей для оценки интенсивности промышленного рыболовства, которая учитывает деление промышленного рыболовства на три области - лов, промысел и рыболовство. Система учитывает также две формы влияния интенсивности добычи рыбы на запасы - интенсивность воздействия на запасы и интенсивность использования (эксплуатации) запасов.

3. Дано определение таким понятиям как интенсивность промышленного рыболовства, интенсивность рыболовства, интенсивность промысла, интенсивность лова, промысловое усилие.

Улов и промысловое усилие предложено считать абсолютными показателями интенсивности промышленного рыболовства.

4. Кроме количественных показателей, характеризующих абсолютную интенсивность рыболовства, промысла или лова, не меньшее значение имеют относительные показатели обычно в виде отношения абсолютного показателя соответствующей интенсивности к другому показателю с таким же или иным физическим смыслом.

Рассмотрены относительные и относительно условные показатели интенсивности рыболовства, промысла и лова.

5. Дана характеристика таким показателям для оценки интенсивности рыболовства, промысла и лова, как обловленный объем, абсолютный и относительный коэффициенты уловистости, статистические модели уловистости, производительность лова и промысла, промысловое усилие, улов на промысловое усилие, улавливаемость, коэффициент использования запасов, улов на единицу пополнения промыслового стада.

ГЛАВА 4. УПРАВЛЕНИЕ ИНТЕНСИВНОСТЬЮ РЫБОЛОВСТВА

4.1. Общая характеристика управления интенсивностью лова и вылова

Для регулирования интенсивности рыболовства используют различные методы и математические модели.

Так для этой цели применяют различные модификации уравнения Баранова-Бивертона-Холта, продукционные модели Шефера, Галланда-Фокса, Рикера, Пелла и Топлинсона, варианты метода анализа виртуальных популяций и когортного анализа и т.д. (Засосов, 1970; Рикер, 1979; Бабаян, 1988; Бородин, 1998 и др.)

При использовании этих методов для регулирования промысла необходимо принимать те или иные критерии оптимальности (критерии регулирования).

Одним из распространенных критериев регулирования является максимальный устойчивый улов MSY и соответствующий ему мгновенный коэффициент промысловой смертности Fм.

В 1972 г. был введен критерий F0,1. Этот критерий определяют, как величину, несколько меньшую, чем Fм, чтобы уменьшить вероятность перелова интенсивным промыслом.

В 1975 г. была предложена система регулирования промысла из двух элементов - фиксированной величины промысла на уровне Fм или F0,1 и определенный целевой размер нерестовой части запаса.

Подобная система позволяет сохранить величину нерестовой части запаса, которая в любых условиях гарантирует достаточно большое пополнение.

В 1980 г. Ю.Н. Ефимов рассмотрел новый критерий регулирования промысла - максимальная экономическая прибыль MEY, в соответствии с которым целью регулирования является получение от промысла устойчивой максимальной прибыли.

Несмотря на некоторые отличия, все перечисленные критерии являются модификациями критерия MSY, соответствующего устойчивому запасу и промыслу, которые отличаются от него лишь некоторым занижением рекомендуемой величины улова по сравнению с расчетным значением Fм.

В 1973 году впервые введено понятие общий допустимый улов (ОДУ) с ежегодным квотированием улова для каждого вида запасов и района промысла. Было рекомендовано также несколько уменьшать общий вылов по сравнению с суммой ОДУ для запасов отдельных видов рыб. ОДУ, по существу, опирается на рассмотренные выше критерии регулирования, но с учетом состояния запасов отдельных видов рыб величину допустимого улова регулируют ежегодно, чтобы избежать риска перелова или недолова. Однако большие погрешности в оценке величины запасов, динамики их численности, недостатки в оценки допустимой интенсивности вылова существенно снижают практическое значение концепции общего допустимого улова.

Несмотря на существование большого количества перечисленных и других методов оценки необходимой интенсивности рыболовства и критериев регулирования, все они, как правило, не дают хороших результатов в течение длительного времени (Бабаян, 1988; Бородин, 1998). Об этом свидетельствует, в частности, плохое состояние запасов многих промысловых объектов.

Кроме того, в начальной стадии находятся исследования, в которых промысловые популяции являются частью водной экологической системы. При таком подходе к проблеме основное внимание уделяется взаимодействию популяций рыб различных видов, смешанному рыболовству, когда ловят одновременно несколько видов рыб различными орудиями лова.

Не до конца разработана концепция регулирования промыслового усилия по сравнению с регулированием вылова. Недостаточно увязаны проблемы и математические модели интенсивности и селективности рыболовства.

Ниже рассмотрено несколько новых аналитических и полуэмпирических методов определения допустимой интенсивности вылова, а также методов регулирования запасов и интенсивности вылова на основе непрерывного контроля рыболовства. Некоторые из этих методов служат для одновременного контроля и регулирования не только интенсивности, но и селективности рыболовства.

Из аналитических рассмотрены методы оптимизации интенсивности вылова и селективности лова на основе применения описанных в гл. 5 непрерывных и дискретных модификаций уравнения Баранова - Бивертона-Холта, а также выражений для коэффициента использования биомассы поколения.

Полуэмпирические методы основаны на применении некоторых новых полуэмпирических моделей, в которых интенсивность вылова определяют с учетом состояния запасов, величины пополнения и убыли, предельного состояния рыбы и т.д. Полуэмпирические модели составлены с учетом того, что при оценке взаимосвязи многих биологических показателей теории рыболовства преобладают экспоненциальные зависимости.

Наконец, большое внимание в этой главе уделено новым методам одновременного контроля и регулирования запасов, а также величин, связанных с управлением запасами, методами контрольных карт и последовательного анализа (контроля).

Разнообразие способов оценки допустимой интенсивности вылова и критериев регулирования требует в каждом конкретном случае, как правило, применения одновременно нескольких способов обоснования и регулирования этого показателя.

4.2. Определение оптимальной интенсивности вылова и селектиности лова с применением модификаций уравнений Баранова-Би-ертона-Холта и их конечно-разностных аналогов

Один из важных способов определения оптимальной интенсивности вылова и селективности лова связан с применением для этой цели модификаций уравнения Баранова-Бивертона-Холта. Критерием оптимальности при обосновании этих показателей служит величина улова на единицу пополнения промыслового стада. Для оценки оптимальных значений показателей интенсивности и селективности рыболовства целесообразно использовать модификацию этого уравнения, предложенную А.В. Мельниковым (1987), которое описано в гл. 5 в связи с использованием этого уравнения для оценки запасов.

В главе 5 рассмотрены также особенности определения оптимального значения интенсивности вылова и селективности лова с применением конечно- разностных уравнений при переменном пополнении, росте и естественной смертности рыб.

4.3. Определение оптимальной интенсивности вылова и селективности лова с учетом эффективности использования биомассы поколения

Из рассматриваемого условия рыбу следует вылавливать в возрасте, соответствующем кульминации ихтиомассы поколения. Выловить всю рыбу в этом возрасте практически невозможно. Чтобы повысить эффективность использования ихтиомассы, лов рыбы начинают в возрасте, меньшем возраста tм кульминации ихтиомассы, а заканчивают позже этого возраста. Чем меньше интенсивность вылова, тем раньше необходимо начинать лов рыбы данного поколения из рассматриваемого условия. Hо возраст, в котором начинают облавливать рыбу, зависит в основном от размера ячеи. Также от размера ячеи зависит и степень использования ихтиомассы поколений рыб. Вот почему одним из показателей при обосновании мер регулирования рыболовства служит коэффициент использования биомассы поколения

кб = Q / Qм, (4.1)

где Q - масса улова поколения при лове заданной интенсивности и заданном размере ячеи; Qм - масса поколения в возрасте кульминации ихтиомассы.

Регулируя интенсивность вылова, размер ячеи, а иногда также промысловую меру на рыбу и допустимый прилов рыб непромысловых размеров, можно добиться повышения коэффициента кб.

Для установления зависимости коэффициента использования биомассы поколения кб от различных факторов определим сначала Qм и Q, входящие в (4.1).

Масса улова Qм равна биомассе поколения в возрасте tм, соответствующем кульминации ихтиомассы с учетом естественной смертности рыб:

где Nо - численность поколения в возрасте tа, когда рыба становится объектом лова; M(t) - функция, характеризующая изменение коэффициента естественной смертности с возрастом; а и b - коэффициенты в уравнении масса-длина; lм, кр и tо - параметры уравнения Берталанфи.

Возраст tм находят различными способами. Если в выражении (4.2) tм считать текущим временем t, то можно построить график изменения относительной биомассы с возрастом, полагая Nо= 1. Вершине этого графика соответствует tм.

Если мгновенный коэффициент естественной смертности М считать постоянным, а рост рыбы принимать в соответствии с уравнением Берталанфи, то возраст tм можно определить по формуле Катти (Рикер, 1979)

Для определения возраста tм удобно воспользоваться методикойП.В. Тюрина (1962), суммируя массы отдельных возрастных групп с учетом годовой убыли от естественной смертности и строя график изменения массы поколения, по которому определяют tм.

Биомасса улова

где tп - предельный возраст рыб в уловах; Fнс - коэффициент промысловой смертности при условно неселективном лове,т.е. когда функция кривой селективности Fс (t) = S(t) =1.

Подставляем Qм и Q в формулу (9.1):

,(4.5)

По формуле (4.5) кб определяют для различной интенсивности вылова, размера ячеи и других влияющих факторов. В частности,одному из размеров ячеи соответствует максимальное значение коэффициента, и при таком размере ячеи ихтиомасса поколения используется наиболее полно. Этот размер ячеи сравнивают с размерами ячеи, полученными из других соображений, и выбирают компромиссный вариант.

В общем случае исследуют зависимость коэффициента использования биомассы поколения одновременно от размера ячеи (селективности лова) и от коэффициента промысловой смертности при условно неселективном лове Fнс (интенсивности лова) и определяют, при каких практически возможных значениях селективности лова и интенсивности промысла биомасса поколения используется наиболее рационально.

В соответствии с рассмотренной методикой при оценке кб учитывают всех рыб в улове и биомассу всех облавливаемых рыб. Кроме того, представляет интерес случай, когда в улове учитывают только рыб промысловых размеров, а при оценке максимальной биомассы- всех рыб или только рыб промысловых размеров.


Подобные документы

  • Структура биологических мембран и строение их основы - билипидного слоя. Молекулярная масса мембранных белков, их различие по прочности связывания с мембраной. Динамические свойства биологических мембран и значение организации для биологических систем.

    реферат [19,1 K], добавлен 20.12.2009

  • История возникновения и основные понятия биологической статистики. Задачи биостатистики: количественное описание биологических явлений; доказательство неоднородности биологических явлений; сжатие информации. Этапы исследований. Расчет объема выборки.

    лекция [452,2 K], добавлен 12.09.2019

  • Полимеризация и тканевая субституция биологических структур. Исследования генетических основ редукции органов. Ослабление функций, редукция и исчезновение органов в филогенезе. Генетические механизмы сохранения рудиментарных образований в организме.

    реферат [325,7 K], добавлен 31.01.2015

  • Открытые и замкнутые системы, их активность и обмен, строение и классификация. Иерархическое соподчинение систем, подсистем и элементов. Симптомы и признаки современного экологического кризиса. Характеристика уровней иерархии биологических систем.

    реферат [24,6 K], добавлен 14.08.2009

  • Биологические ритмы - периодические повторяющиеся изменения характера и интенсивности биологических процессов и явлений. Рациональная регламентация жизненного распорядка человека, ее значение для сохранения работоспособности и хорошего самочувствия.

    доклад [19,7 K], добавлен 26.04.2011

  • Биоритмология – наука о ритмических процессах, происходящих в живых организмах и природе. Биологические ритмы – изменения характера и интенсивности биологических процессов, их классификация, характеристика, фазы, продолжительность, этапы построения.

    презентация [857,1 K], добавлен 01.03.2012

  • Формирование рациональных знаний о природе. Исторический очерк становления биологи как науки. Система биологических наук. Биография Ламарка - ученого, внесшего существенный вклад в биологии. Эволюционная теория. Значение биологических исследований.

    контрольная работа [23,8 K], добавлен 16.10.2008

  • Периодически повторяющиеся изменения в ходе биологических процессов в организме или явлений природы. Эндогенные, экологические, физиологические, циркадианные, приливные, лунные и низкочастотные ритмы. Значение биологических часов в жизни живых существ.

    презентация [4,4 M], добавлен 14.03.2011

  • Рассмотрение наиболее эффективных способов повышения сопротивляемости организма в период весеннего десинхроза. Вся история человечества как мучительные поиски исцеления и возвращения утраченного здоровья. Особенности рассогласования биологических ритмов.

    дипломная работа [534,8 K], добавлен 10.08.2015

  • Антропология как наука, изучающая эволюцию физического типа человека во времени и в пространстве; место в кругу биологических дисциплин. Процесс перехода от биологических закономерностей к социальным. Разделы: морфология, антропогенез и расоведение.

    контрольная работа [24,6 K], добавлен 15.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.