Генетика микроорганизмов

Генетика и история ее развития, наследственность и изменчивость. Структурно-функциональная организация клеток эукариотического и прокариотического типов, нуклеиновые кислоты и молекулярные носители наследственности, биотехнология и генная инженерия.

Рубрика Биология и естествознание
Вид дипломная работа
Язык русский
Дата добавления 15.05.2012
Размер файла 101,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Процесс реплдикации осуществляется с помощью ферментов, которые получили название ДНК-полимераз. Участок молекулы ДНК, в котором начали расплетаться комплементные нити, называется вилкой репликации. Она образуется у прокариот в определенной генетически детерминированной точке. В молекуле ДНК у эукариот таких точек инициации репликации («стартовых точек») бывает несколько. У эукариот процесс репликации ДНК идет неодинаково. Объясняется это тем, что полинуклеотидные цепи в молекуле ДНК антипараллельны, т. е. 5'-конец одной цепи соединяется с 3'-концом другой, и наоборот. Материнская цепь, на которой синтез идет от точки старта 5'->3' в виде сплошной линии, называется лидирующей, а вторая цепь, на которой синтез идет от 3'->5' (в противоположном направлении) отдельными фрагментами получила название запаздывающей. Синтез этой цепи сложнее синтеза лидирующей цепи. Он протекает с участием фермента лигазы отдельными фрагментами. Эти фрагменты (участки кодовой нити ДНК) содержат у эукариот 100-200, а у прокариот 1000-2000 нуклеотидов. Они получили название фрагментов Оказаки, по имени открывшего их японского ученого.

Фрагмент ДНК от одной точки начала репликации до другой точки образует единицу репликации - репликон. Репликация начинается с определенной точки (локус ori) и продолжается до тех пор, пока весь репликон не будет дуплеципрован. Молекулы ДНК прокариотических клеток содержат большое число репликонов, поэтому удваение ДНК начинается в нескольких точках. В разных репликонах удвоение может идти в разное время или одновременно.

Репликация молекул ДНК у прокариот протекает несколько иначе, чем у эукариот. У прокариот одна из нитей ДНК разрывается и один конец ее прикрепляется к клеточной мембране, а на противоположном конце происходит синтез дочерних нитей. Такой синтез дочерних нитей ДНК получил название «катящегося обруча». Репликация ДНК протекает быстро. Так, у бактерии скорость репликации составляет 30 мкм в минуту. За минуту к нитке-матрице присоединяется около 500 нуклеотидов, у вирусов за это время - около 900 нуклеотидов. У эукариот процесс репликации протекает медленно. У них дочерняя нить удлиняется на 1,5-2,5 мкм в минуту.

ДНК всех живых существ устроен одинаково. ДНК разных видов различаются коэффициентом видоспецифичности, который представляет собой отношение молекулярной суммы А + Т к молекулярной суме Г + Ц. Видоспецифичность ДНК выражается процентом или долей в ней ГЦ-пар. Коэффициент видовой специфичности разный у разных видов, но в общем наблюдается изменение ГЦ-пар от прокариот к эукариотам, а в пределах последних - от низших к более высокоорганизованным формам.

Углеводно-фосфатный остов по всей длине во всех молекулах ДНК имеет однотипную структуру и не несет генетической информации. Наследственная информация зашифрована различной последовательностью оснований. А если последовательность оснований определяет характер белков собаки, коровы, бактерии, вируса и т. д., то соответственная наследственность может передаваться из поколения в поколение.

Таким образом, в структорной организации молекулы ДНК можно выделить первичную структуру - полинуклеотидную цепь, вторичную структуру - две комплементарные друг другу полинуклеотидные цепи, соединенные водородными связями, и третичную структуру - трехмерную спираль с определенными пространственными характеристиками.

Биологами доказано, что синтез белка происходит не в ядре, где локализована ДНК, а в цитоплазме. Установлено, что непосредственного участия в синтезе белка ДНК не принимает. Роль посредника, функцией которого является перевод наследственной информации, хранящейся в ДНК, в рабочую форму, выполняют рибонуклеиновые кислоты (РНК). Рибонуклеиновая кислота представляет собой полинуклеотидную цепь, состоящую из 4 разновидностей нуклеотидов, содержащих сахар рибозу, фосфат и одно из 4 азотистых оснований - аденин, гуанин, урацил, цитозин. Поэтому нуклеотиды молекулы РНК называются адениловой, гуаниловой, урациловой или цитидиловой кислотами. Молекулы РНК синтезируются на кодогенной цепи ДНК при помощи РНК-полимераз с соблюдением принципа комплементарности и антипараллельности. Особенностью является то, что аденину ДНК в РНК комплементарен урацил. Известно 3 основных вида РНК, действующих в клетке: информационная (и-РНК) или матричная, транспортная (т-РНК) и рибосомная (р-РНК).

Информация о синтезе белка с определенными свойствами заключена в нуклеотидной последовательности матричных или информационных РНК (и-РНК, м-РНК), которые, в свою очередь, синтезируются на определенных участках ДНК. Процесс синтеза м-РНК называют транскрипцией. Синтез м-РНК начинается с обнаружения РНК-полимеразы, участка в молекуле ДНК, называемого промотором. В этом усатке РНК-полимераза раскручивает спираль ДНК и на одной из них фермент синтезирует м-РНК. Цепь, на которой происходит сборка молекул м-РНК, называют кодогенной. Сборка рибонуклеотидов в цепь происходит с соблюдением принципов комплементарности и антипараллельности, РНК-полимераза продвигается по кодогенной цепи ДНК и осуществляет синтез м-РНК до тех пор, пока не встречает на своем пути терминатор транскрипции (переписывания) - специфическую нуклеотидную последовательность. На участке расположения терминатора транскрипции РНК-полимераза отделяется от цепи ДНК и от синтезированной молекулы м-РНК. Промотор (участок молекулы ДНК), транскретируемая последовательность и терминатор образуют единицу транскрипции под названием транскриптон. После прохождения РНК-полимеразы вдоль молекулы ДНК, пройденные участки объединяются снова в двойную спираль. Образовавшаяся матричная РНК содержит точную информацию о белке, записанную в определенном участке ДНК. Три рядом расположенных нуклеотидов м-РНК шифрует последовательность аминокислот в пептидной цепи белков. Каждому триплету (три нуклеотида - кодон) соответствуют определенные аминокислоты. Существует большое разнообразие и-РНК. Объясняется это тем, что в клетке много разнообразных белков, строение каждого из которых кодируется своим геном, с которого и-РНК считывает информацию.

Транспортные РНК характеризуются небольшими размерами. Они состоят из 75 - 90 нуклеотидов. В силу комплементарности разных участков они замкнуты на себя в нескольких местах, в результате чего вторичная структура представлена в виде клеверного листа с двухцепочным стеблем и тремя одноцепочными петлями. Известно более 60 т-РНК, которые отличаются между собой первичной структурой, т. е. последовательностью оснований. Каждая аминокислота присоединяется к определеной т-РНК. Характерной чертой т-РНК является наличие в головке средней петли трех нуклеотидов получивших название антикодон. Антикодон комплементарен определенному кодону м-РНК. При помощи антикодона т-РНК, кооперируясь с соответствующим кодоном и-РНК, обеспечивает включение определенной аминокислоты в полипептидную цепь синтезируемого белка.

Наследственная информация, хранящаяся в молекулах ДНК, затем «записанная» на м-РНК, расшифровывается благодаря двум процессам. Сначала фермент аминоацил- т-РНК-синтетаза обеспечивает содержание т-РНК с транспортируемой ею аминокислотой, затем аминоацил т-РНК комплементарно соединяе6тся с м-РНК благодаря взаимодействию антикодона с кодоном. Таким образом, с помощью т-РНК язык нуклеотидной цепи м-РНК переводится в язык аминокислотной последовательности пептида.

Предполагают, что боковые петли осуществляют связывание т-РНК с рибосомой и со специфической аминоацил- т-РНК-синтетазой.

Перевод генетической информации с языка нуклеотидов на язык аминокислот осуществляется на рибосомах. Рибосомы представляют собой сложные комплексы рибосомной рибонуклеиновой кислоты (р-РНК) и разнообразных белков. Рибосомная РНК является структурным компонентом рибосом и обеспечивает связывание и-РНК с рибосомой в процессе биосинтеза белка и взаимодействие ее с т-РНК. Рибосомная РНК накапливается в ядрышках, где происходит образование субчастиц рибосом путем объединения белков с р-РНК. Затем субчастицы рибосом транспортируются через поры ядерной мембраны в цитоплазму.

Рибосомная РНК имеет молекулярный вес 1,5-2 млн. и состоит из 4000-6000 нуклеотидов. Эта нуклеиновая кислота, входящая в состав рибосом, наряду с многочисленными белками выполняет не только структурную, но ферментативную роль. Схема строения ДНК и участок двойной цепи этой кислоты представлены на рисунках 4 и 5.

9. Строение и функционирование генома бактерий

Носителем генетической информации бактериальных клеток является ДНК. Она представляет собой двойную спираль, состоящую из двух полинуклеотидных цепочек. ДНК сравнивают с винтовой лестницей и с двойным электрическим кабелем. Остов ДНК состоит из фосфатных групп и дезоксирибозы. Полипептидные цепи соединены между собой водородными связями, которые удерживают друг с другом комплементарные азотистые основания. Строение ДНК бактерий аналогично таковому клеток эукариотического типа (растений, животных, грибов). В отличие от бактерий у вирусов геном представлен одной нуклеиновой кислотой - ДНК или РНК. Бактериальные клетки, кроме ДНК, могут иметь генетически полноценные образования функционирующие автономно. Необходимо подчеркнуть, что носителями наследственности бактерий кроме ДНК являются плазмиды и эписомы. В этой связи, любая структура бактериальной клетки, способна к саморепликации, называется репликон, т. е. репликонами бактерий являются нуклеотид, плазмиды, эписомы. Плазмиды не связаны с нуклеотидом, они пребывают в цитоплазме клетки автономно, эписомы могут находиться в свободном состоянии, но чаще всего они реплицируются вместе с ДНК.

Бактериальная хромосома представлена одной двунитевой молекулой ДНК кольцевидной формы и называется нуклеотидом. Длина нуклеотида в растянутом виде составляет примерно 1 мм. Нуклеотид - эквивалент ядра. Расположен он в центре бактерии. В отличие от эукариот ядро бактерий не имеет ядерной оболочки, ядрышка и основных белков (гистонов). Нуклеотид можно выявить в световом микроскопе. Для этого надо окрасить клетку специальными методами: по Фельгену или по Романовскому-Гимзе. Электронно-микроскопическое исследование показало, что один конец ДНК прикреплен к клеточной мембране. Видимо, это необходимо для процесса репликации ДНК.

В отличие от клеток эукариот у прокариот отсутствуют митохондрии, аппарат Гольджи и эндоплазмотическая сеть.

Каждая нить ДНК состоит из звеньев - нуклеотидов. В состав нуклеотида входит одно из азотистых оснований (аденин, гуанин, тимин или цитозин) дезоксирибоза и фосфорная кислота. Приблизительно 1500 нуклеотидов составляют ген средней величины. Таким образом, ген представляет собой определенный участок ДНК, ответственный за проявление и развитие конкретного признака. Гены в ДНК расположены линейно, они дискретны, способны к саморепликации. Последовательность аминокислот в синтезируемом белке, определяется последовательностью нуклеотидов в гене.

С точки зрения функциональной гены подразделяют на структурные, регуляторы, промоторы и гены-операторы.

Структурные гены, представляют собой гены, обуславливающие синтез ферментов, участвующих в биологических реакциях и в формировании клеточных структур.

Гены-регуляторы ответственны за синтез белков, регулирующих обмен веществ. Эти гены могут влиять на деятельность структурных генов.

Гены-промоторы детерминируют начало транскрипции. Они представляют собой участок ДНК, который распознает ДНК-зависимый РНК-полимеразой.

Гены-операторы являются посредниками между структурными генами, промоторной областью и генами-регуляторами.

Совокупность генов-регуляторов, промоторов, операторов и структурных генов называют опероном. Следовательно оперон является функциональной генетической единицей, несущей ответственность за проявление определенного признака микроорганизмов.

Различают индуцибельные и репрессибельные опероны. Например, индуцибельным опероном является Lac-оперон, гены которого контролируют синтез ферментов, утилизирующих лактозу в микробной клетке. Если клетка не нуждается в лактозе, оперон поддерживается в неактивном состоянии и, наоборот.

Примером репрессибельного оперона может служить триптофановый оперон, обеспечивающий продукцию триптофана. Этот оперон обычно постоянно функционирует, а его белок-репрессор находится в пассивном состоянии. В случае повышения содержания триптофана в клетке аминокислота вступает в связь с репрессором и активизирует его. Репрессор ингибирует работающий оперон и прерывает синтез триптофана.

Важнейшее свойство ДНК - способность к репликации. Репликация может протекать по тета-типу и сигма-типу. Репликация ДНК по тета-типу начинается в определенной точке в виде «вздутия» и распространяется вдоль молекулы в двух направлениях, проходя через промежуточную структуру, напоминающую греческую букву тета. При этом типе репликации сохраняется одна из цепей исходной молекулы ДНК, а вторая синтезируется из нуклеотидов.

Репликация ДНК по сигма-типу осуществляется через промежуточную структуру, напоминающую греческую букву сигма, откуда и название этого типа. Этот тип репликации наблюдается в процессе коньюгации бактерий и некоторых фагов. При этом типе репликации происходит достраивание обоих нитей ДНК до двухцепочной ДНК.

Геном бактерий выполняет следующие функции:

обеспечивает передачу биологических свойств по наследству;

программирует синтез бактериального белка с определенными свойствами;

участвует в процессах изменчивости бактерий;

обеспечивает сохранение индивидуальности вида;

детерминирует множественную устойчивость к ряду лекарственных веществ.

Внехромосомные факторы наследственности

К внехромомсомным факторам наследственности относят плазмиды и эписомы, которые располагаются в цитоплазме клетки. Плазмиды не способны встраиваться в нуклеотид бактерии, они имеют собственную ДНК, которая может самостоятельно реплицироваться. В противоположность плазмидам, эписомы встраиваются в нуклеотид бактерии и функционируют вместе с ним.

Плазмиды, не зависимо от нуклеоида, обеспечивают способность к коньюгации, устойчивость к антибиотикам и другим веществам. Установлено, что наличие плазмид в клетке не обязательно, но в тоже время их может быть несколько. Плазмиды подразделяют на коньюгативные (трансмисивные) и неконьюгативные (на трансмиссивные). Первые - придают клетке свойства генетического донора, детерминируют перенос генетического материала от клетки донора к клетке реципиенту, вторые - не придают клетке свойств генетического донора, не могут передаваться к клетке реципиенту без наличия факторов переноса.

Различают следующие виды плазмид: Соl-фактор - колициногенный фактор, F-фактор - фактор фертильности, R-фактор - фактор устойчивости к лекарственным веществам, плазмиды биодеградации, плазмиды, кодирующие факторы вирулентности у микроорганизмов (Ent, Hly, Sal, K и т. д.)

Col-факторы - это плазмиды, контролирующие синтез бактериоцинов, обладающих способностью подавлять развитие филогенетических родственных бактерий. Название бактериоциногенов присваивают с учетом вида микроорганизмов их продуцирующих. В настоящее время известно, что практически почти все патогенные бактерии продуцируют бактериоцины.

Бактериоцины кишечной палочки называют колицины, стаффилококка - стаффилоцины, пневмококка - пневмоцины, вибриона - вибриоцины и т. д.. Лучше других бактериоцинов изучены колицины. Культуры кишечной палочки, продуцирующие колицины, называют колициногенами, а чувствительные к ним - колициночуствительными . Колицины - вещества белковой природы. Они обладают способностью ингибировать синтез ДНК, РНК, белка, вызывать гибель клетки не нарушая ее целостности. Колицины обладают летальным признаком, т. е. после их продукции бактериальная клетка может погибнуть. Колицины функционируют аналогично антибиотикам с узким спектром действия, обладают свойствами эндодезоксирибонуклеаз.

Бактериальные клетки, выделяющие бактерицины, устойчивы к действию гомологичных бактерицинов окружающей среды.

F-фактор может функционировать автономно и может быть в интегрированном, как эписома, состоянии. Этот фактор представляет собой кольцевую ДНК длиной 30-32 нм, молекула которой детерминирует перенос генетического материала из клетки донора в клетку реципиента, синтез половых ворсинок, синтез ферментов, способность к автономной репликации и т. д.

R-фактор генетическая структура, обеспечивающая устойчивость к лекарственным препаратам. Эта структура несет гены лекарственной устойчивости (ч-гены). Устойчивость к одному или нескольким лекарственным препаратам (антибиотикам) осуществляется за счет оперонов и может быть передана путем коньюгации и трансдукции.

Плазмиды биодеградации ответственны за использование органических соединений бактериями в качестве источников углерода и энергии, за утилизацию ряда сахаров, образование протеолитических ферментов.

Ent-плазмиды кодируют образование энтеротоксинов у энтеробактерий, Hly-плазмида - синтез гемолизинов у энтеропатогенных микроорганизмов и стрептококков. Sal-плазмида контролирует у псевдомонад использование бактериями салицилатов благодаря выработке предназначенного для этой цели фермента.

Последовательности и транспозоны.

Кроме упомянутых выше генетических элементов (плазмиды, эписомы) у микроорганизмов наличествуют подвижные генетические элементы - последовательности и транспозоны, которые могут кодировать свою собственную транспозицию (перенос) от одного нуклеоида к другому или же между нуклеоидом и плазмидами. Такой перенос обусловлен способностью подвижных генетических элементов определять синтез ферментов транспозиции и рекомбинации - транспозаз.

Инсертиционные (вставочные) последовательности (is-элементы, от английского insertion - вставка, sequence - последовательность) обладают следующими свойствами. Они способны перемещаться по геному, реплицируя при этом is-элемент. В процессе репликации первичный экземпляр остается на месте, а копия встраивается в мишень, почти не обладающей специфичностью. Функции, обеспечивающие способность к перемещению (транспозиции) закодированы в самом is-элементе. Транспозиция весьма редкое событие, которое происходит реже, чем спонтанные мутации. В местах смежных по отношению к инсерции возникают делеции и инверсии бактериальных геномов. Встроенная инсерция может либо активировать транскрипцию соседних генов, либо ингибировать их активность. Is-элементы обеспечивают взаимодействие между нуклеоидом, плазмидами и эписомами. В свободном состоянии is-последовательности не обнаружены.

Транспозоны состоят из 2500-20000 и более пар нуклеотидов и могут быть в свободном состоянии в виде кольцевой молекулы, которая обладает способностью перемещаться из хромосомы в плазмиды и наоборот, мигрируя с репликона на репликон. Некоторые умеренные фаги, например Ми-бактериофаг E. Coli, устроены аналогично и представляют собой гигантские транспозоны. Транспозоны могут быть носителями информации отвечающей за продуцирование токсинов и ферментов, ингибирующих антибиотики.

10. Биологический синтез белка

Биологический синтез белка является очень сложным многоступенчатым процессом. В настоящее время доказано, что биосинтез белка происходит не в ядре, а в цитоплазме. Непосредственного участия в синтезе белка ДНК не принимает. Роль посредника, функцией которого является перевод наследственной информации о химическом составе и структуре белков, хранящийся в ДНК, в полипептидную цепь определенного белка выполняют рибонуклеиновые кислоты (и-РНК, т-РНК). Большое значение в биосинтезе белка имеет информационная РНК. Она выполняет роль матрицы. Количество образующихся на ДНК молекул и-РНК определяется числом генов, контролирующих у определенного организма синтез специфических белков. Каждый белок требует для синтеза свой и-РНК, одна молекула которой «списывает» последовательность нуклеотидов с участка ДНК, равному одному гену, а затем, и-РНК переносит эту информацию на последовательность расположения аминокислот в полипептидной цепи белка. Информационная РНК из ядра проникает в цитоплазму и действует на рибосомах по отношению к белкам, как матрица.

Биосинтез белка начинается с процесса под названием транскрипция (от английского transcription - переписывание, копия). На участке определенного гена молекулы ДНК синтезируется м-РНК. Синтез м-РНК осуществляется с помощью многих ферментов, но главная роль принадлежит РНК-полимеразе, которая прикрепляется к начальной точке молекулы ДНК инициации транскрипции под названием промотор, расплетает двойную спираль и синтезирует м-РНК. Промотор расположен перед геном и у эукариотов включает около 80, а у вирусов и бактерий около 10 нуклеотидов.

РНК-полимераза движется вдоль гена и ведет синтез и-РНК. Синтезированная молекула м-РНК отделяется от ДНК, а участки гена на которых образовалась эта кислота, вновь соединяются. Окончание синтеза м-РНК определяет участок, который получил название - терминатор. Нуклеотиды промотора и терминатора узнают специфические белки, которые регулируют активность РНК-полимеразы.

В настоящее время доказано, что сначала синтезируется предшественни м-РНК так называемая про-м-РНК. Эта кислота имеет большие размеры, чем м-РНК и содержит фрагменты не кодирующие синтез пептидной цепи определенного белка. Связано это с тем, что в ДНК наряду с участками кодирующими р-РНК, т-РНК и полипептиды имеются фрагменты не несущие генетической информации. Эти фрагменты получили название интронов, а кодирующие фрагменты названы экзонами. После образования про-и-РНК, происходит процесс созревания м-РНК, который получил название процессинга. В процессе созревания м-РНК интроны удаляются специальными ферментами, а информативные участки (экзоны) соединяются между собой в строгом порядке с помощью ферментов лигаз. Этот процесс называется сплайсингом (от английского splice - сращивать). Биологическое значение и роль интронов остаются не ясными. Однако, установлено, что при считывании в ДНК только экзонов, зрелая м-РНК не образуется.

Следующим этапом биосинтеза является трансляция, которая происходит в цитоплазме на рибосомах. Суть ее в том, что последовательность расположения нуклеопептидов в м-РНК переводится в строго упорядоченную последовательность расположения аминокислот в молекуле синтезируемого белка. Этот процесс протекает при активном участии т-РНК и состоит из активирования аминокислот и непосредственного синтеза белковой молекулы. Свободные аминокислоты активируются и присоединяются к т-РНК при помощи фермента аминоацил-т-РНК-синтеталы. Активированные аминокислоты т-РНК доставляются на рибосомы. Эти органоиды цитоплазмы состоят из двух субчастиц, одна из которых имеет константу седиментации 30 S, вторая 50 S. Молекула м-РНК выходит из ядра в цитоплазму и прикрепляется к малой субчастице рибосомы. Сигналом к трансляции служит стартовый кодон АУГ. Когда т-РНК доставляет к рибосоме активированную аминокислоту, ее антикодон соединяется с комплементарным кодоном м-РНК. Акцепторный конец т-РНК с соответствующей аминокислотой присоединяется к поверхности большой субъединицы рибосомы. Затем следующая т-РНК доставляет следующую аминокислоту и т. д. Молекула м-РНК работает на нескольких рибосомах, соединенных в полисомы. Начало синтеза полипептидной цепи называется элонгацией. Окончание синтеза полипептидной цепи называется терминацией. Терминация наступает когда на м-РНК появляется один из кодонов-терминаторов УАА, УАТ или УГА.

Установлено, что в клетках животных полипептидная цепь удлиняется за 1 секунду на 7 аминокислот м-РНК продвигается на рибосоме на 21 нуклеотид. У микроорганизмов процесс сборки полипептидной цепи протекает в 2-3 раза быстрее. Полипептидная цепь отделяется от рибосомы, высвобождаются т-РНК и м-РНК. Рибосома диссоциирует на субъединицы и вновь способна к синтезу следующей полипептидной цепи. Образующиеся в процессе синтеза белки начинают выполнять специфические функции, и в конечном счете, определяют признаки организма.

11. Изменчивость бактерий

Наследственность консервативна, она обуславливает стабильность вида микроорганизмов, напротив, изменчивость является выражением способности вида приспосабливаться к постоянно меняющимся условиям его обитания. Наследственность и изменчивость неразрывно связаны между собой и размножением микроорганизмов. В популяции бактерий всегда появляются клетки, которые могут менять свои свойства. Если изменение признаков под влиянием факторов различного порядка, связаны с генотипом бактерий, то эти изменения передаются по наследству и могут быть положительно расценены естественным отбором. Новые признаки, обеспечивающие селективное преимущество, закрепляются естественным отбором, меняется генотип вида, осуществляется процесс эволюции.

У микроорганизмов различают фенотипическую (модификационную, ненаследственную) и генотипическую (наследственную) изменчивость.

11.1. Фенотипическая изменчивость

Фенотипическая изменчивость является не наследуемым типом изменчивости, т. е. это различия между микроорганизмами, одинаковыми по генотипу. Эта изменчивость возникает в результате постоянного воздействия на клетку изменяющихся факторов среды обитания. Сходные по генотипу, микроорганизмы могут существенно различаться по фенотипу, т. е. по способу проявления наследственных признаков.

На формирование фенотипа существенное влияние оказывают факторы внешней среды. Известно, что генотипически идентичные организмы в различных условиях существования в определенной степени различаются по своим признакам. Например, изменение содержания жира в молоке животных или массы тела в зависимости от их кормления, изменение количества эритроцитов в крови в зависимости от порциального давления кислорода.

В отличает от особей высший организмов, у которых исследуются признаки каждой особи, у микроорганизмов изучают не признаки одной клетки, а всей культуры, которая включает миллиарды бактерий. Культуры микробов, выращенные на питательной среде, отличаются характером роста, физиологическими и биохимическими признаками. К морфологическим признакам относят окраску, размер, форму, наличие жгутиков, капсул, спор и т. д. К физиологическим признакам культур относятся способность расти при определенной температуре, устойчивость к химическим веществам, облучению, антибиотикам, фагам, различным ядам.

Примером модификационной изменчивости у микроорганизмов может быть образование различных типов адгезинов у гонококка, необходимых для колонизации им кишечника. В качестве примера, можно привести увеличение сальмонелл при добавлении к питательной среде стрептомицина. При переносе таких сальмонелл в питательную среду без стрептомицина бактериальные клетки приобретают типичную для вида величину.

Модификации представляют собой изменения, которые поддерживаются пока действует неблагоприятный фактор. Так, образование L-форм бактерий, лишенных клеточной стенки, происходит под влиянием химиотерапевтических веществ (пенициллина, стрептомицина и т. д.). при снятии действия антибиотиков на культуру бактерий происходит реверсия микроорганизмов в исходные формы. Фенотипическое проявление признака под влиянием условий внешней среды возможно в определенных пределах, называемых нормой реакции, которая допустима генотипом организмов. Некоторые признаки характеризуются широкой нормой реакции. В основном, это количественные признаки (масса микробной клетки, ее величина, пигментация колоний).

Фенотипическое проявление информации, заключенной в генотипе, характеризуется показателями пенентрантности и экспрессивности. Пенетрантность отражает частоту фенотипического проявления имеющейся в генотипе информации, а экспрессивность характеризует степень выраженности признака.

Различают длительную модификацию, которая проявляется в течение нескольких поколений и кратковременную, при которой изменения исчезают при исчезновении действующего фактора внешней среды.

11.2 Генотипическая изменчивость

Генотипическая изменчивость связана с изменением генотипа бактерий. В основе генотипической изменчивости лежат мутации и рекомбинации.

Мутации (от латинского mutatio - изменение) - это изменения структуры ДНК (качественные или количественные), которые возникают под влиянием эндогенных или экзогенных факторов и проявляются наследственно закрепленным изменением одного или многих признаков. В природе мутации возникают без участия экспериментатора и называются спонтанными, а мутации, контролируемые экспериментатором, называются индуцированными. Бактерии с измененными признаками называют мутантами. Спонтанные мутации возникают под влиянием неизвестных причин и лежат в основе эволюции микроорганизмов. Факторы, вызывающие мутации, называются мутагенами. Различают физические, химические и биологические мутагены.

К физическим мутагенам относятся такие факторы, как температура, радиация, ультрафиолетовые лучи, ионизирующие излучения и др.

К химическим мутагенам принадлежат многочисленные химические соединения и вещества, которые могут изменять структуру генов, взаимодействуя с ДНК бактериальной клетки.

Биологическими мутагенами являются бактериофаги и продукты жизнедеятельности клеток, которые накапливаются в питательной среде в результате размножения и роста бактерий.

По широте изменений генома бактерий мутации делят на генные - изменения регистрируют в пределах одного гена, хромосомные - в группе генов, точковые - в одном триплете.

В зависимости от взаимодействия мутагенов на нуклеотид бактериальной клетки или ее плазмиды, мутации делят на нуклеоидные и плазмидные.

По направлению выделяют прямые и обратные мутации. Прямые - это изменения генов бактерий, выделенных из естественной среды обитания. Обратные мутации - это возврат от измененного типа бактерий к естественному типу.

По фенотипическому проявлению различают нейтральные, условно-летальные и летальные мутации.

Нейтральные мутации фенотипически не проявляются. Условно-летальные мутации ведут к изменению, но не к исчезновению функциональной активности фермента. Летальные - это мутации, ведущие к полной потери способности клетки синтезировать жизненно необходимые ферменты, что приводит к ее гибели.

Мутации фенотипически проявляются изменением морфологических, биохимических, вирулентных и других свойств.

Диссоциация - это особый, присущий только бактериям вариант изменчивости, при котором происходит культуральная изменчивость, т. е. расщепление вида и возникновение при росте на плотной питательной среде двух основных типов колоний: S-форма - гладкие (от английского smooth - гладкий) и R-форма (от английского rough - шероховатый) - шероховатые. Между этими формами имеются и переходные М-, О-, Д-формы.

Микроорганизмы из колоний в S-форме обладают хорошо выраженными антигенными и вирулентными свойствами и, напротив, у бактерий из колоний в R-форме эти свойства выражены слабо. Однако, не всегда S-форма микробов является свидетельством их вирулентности. Например, возбудитель сибирской язвы, туберкулеза, чумы вирулентны в R-форме.

В основе диссоциации лежат мутации, спонтанно возникающие в естественной среде обитания микробов или же при культивировании их на искусственных питательных средах.

Диссоциация имеет большое значение для микроорганизмов, так как они, благодаря этому явлению, получают селективное преимущество, обеспечивающее их существование в организме животных и человека, а также во внешней среде. Известно, что S-формы более устойчивы к фагоцитозу, R-формы - к факторам естественной среды обитания.

Геном бактерий способен к репарации. Репарация - это процесс восстановления структуры поврежденной ДНК, который обеспечивается многочисленными ферментами, определяющими состояние этой кислоты. Например, фоторепарация зависит от фотолиаз. Эти ферменты активизируются при образовании тиминовых димеров в ДНК под воздействием ультрофиолетового облучения и деполизируют эти димеры до исходных мономеров.

Наибольшее значение в жизнедеятельности микроорганизмов имеет SOS-репарация или SOS-ответ. SOS-ответ - это реакция микробных клеток на прекращение синтеза нуклеиновых кислот в связи с повреждением ДНК, голоданием клетки, воздействием продуктов метаболизма и т. д. SOS-ответ возникает при критическом состоянии клетки, на грани ее гибели, как реакция направленная на восстановление жизнедеятельности клетки. Например, результатом SOS-ответа у E. Coli является синтез около 25 белков, имеющих непосредственное отношение к репарации, рекомбинации и синтезу ДНК. SOS-ответ у микроорганизмов контролируется SOS-областью. Обычно гены этой области находятся в неактивном состоянии и активизируются лишь в критические для жизни клетки моменты. SOS-репарация обеспечивает развитие микробной популяции в целом и ее адаптацию к изменившимся внешним условиям.

Кроме мутаций у бактерий известны рекомбинационная изменчивость. Рекомбинация - это передача генетического материала от клетки-донора с одним генотипом к клетке-реципиенту с другим генотипом. В результате такой передачи образуются рекомбинанты - т. е. бактерии, обладающие свойствами обоих родителей. Рекомбинация является важнейшим фактором эволюции, т. к. между разными особями происходит обмен генетической информацией, что повышает уровень их приспосабливаемости к различным внешним факторам окружающей среды. Рекомбинации могут наблюдаться на уровне любых живых организмов - от прокариот до высших эукариот.

Различают следующие способы рекомбинационной (комбинативной) изменчивости: трансформация, трансдукция, конъюгация.

Трансформация (от латинского transformo - превращать, преобразовывать) - изменение генома бактерий - реципиента, в результате поглощения из среды свободного фрагмента ДНК клетки-донора.

Впервые явление трансформации начал изучать Ф. Гриффитс (1928), используя в опытах культуры пневмококков. Эти микроорганизмы способны к диссоциации и образуют на плотной питательной среде колонии в S-форме и R-форме. Микроорганизмы образующие S-формы колоний капсульные, они патогенны для белых мышей. Бактерии, формирующие на агаре R-формы колоний бескапсульные, не патогенные для мышей. Фактором патогенности у пневмококков является капсула, что было учтено Ф. Гриффитсом при проведении опытов. Он ввел мышам вместе две культуры пневмококков: одну - непатогенную бескапсульную (R-штамм), а вторую - патогенную с капсулой (S-штамм), но обезвреженную нагреванием. Мыши, получившие смесь упомянутых культур пали. Из крови павших мышей была получена культура, микроорганизмы которой имели капсулу и обладали патогенностью. Контрольные эксперименты продемонстрировали, что введение мышам по отдельности живых пневмококков бескапсульных и убитых нагреванием не приводит к гибели животных. Ученый сделал вывод, что непатогенные клетки R-штамма могут рансформироваться в патогенные пневмококки, обладающие капсулой.

Грачевой (1946) был получен вариант кишечной палочки с некоторыми свойствами характерными для сальмонелл. Она культивировала E. Coli на среде, к которой добавлялась убитая культура сальмонелл.

В результате многочисленных экспериментов было установлено, что путем трансформации могут быть перенесены различные признаки: синтез капсульного полисахарида, синтез различных ферментов, устойчивость к антибиотикам и т. д.

Было обнаружено, что трансформация имеет место чаще в пределах одного вида, но может наблюдаться и между разными видами. В процессе трансформации участвуют две бактериальные клетки: донор и реципиент.

О. Эвери, К. Мак-Леод, М. Мак-Карти (1944) установили, что трансформирующим фактором является ДНК. По их мнению, трансформация представляет собой поглощение изолированной ДНК бактерии донора клетками бактерии реципиента.

Трансформация - сложный биологический процесс, который протекает поэтапно. Первая стадия этого процесса заключается в адсорбции трансформирующей ДНК на поверхности микробной клетки. Вторая - проникновение ДНК через определенные рецепторные участки стенки бактерии-реципиента при помощи специальных белков внутрь клетки. Третья стадия представляет собой спаривание части ДНК донора с ДНК реципиента, четвертая - включение в ДНК реципиента одной из цепей трансформирующего элемента. И пятая - изменение нуклеотида клетки-реципиента в ходе ее последовательных делений. Способность бактерий реципиентов к трансформации была названа компентентностью. Компентентность определяется физиологическим состоянием клетки-реципиента к периодам клеточного цикла.

Трансдукция (от латинского transductio - перенос) - перенос генов из одной бактериальной клетки в другую при помощи бактериофага. Явление трансдукции впервые установили Н. Циндлер и ДЖ. Ледербер (1952). Для исследований они использовали патогенные для белых мышей два штамма S. typhimurium (22 A и 2A). Штамм 22 А - ауксотрофный, не способный синтезировать триптофан (Т-), штамм 2А - способный к синтезу триптофана (Т+). В опытах исследователи использовали U-образную трубку, разделенные на изгибе бактериальным фильтром. В одно колено этой трубки с питательной средой засевали бактерии штамма 22 А, в другое - штамма 2А. Опыты показали, что штамм 22 А был лизогенен по фагу Р-22. Этот фаг из лизогенной культуры проходил через бактериальный фильтр, лизировал бактерии штамма 2А, присоединял при этом его генетический материал. Затем фаг возвращался обратно и передавал генетический материал штамма 2А штамму 22А, который приобретал способность синтезировать триптофан.

Явление трансдукции установлено не только у сальмонелл, но и у кишечной палочки и актиномицетов. У бактерий наблюдается трансдукция одного, реже двух и весьма редко трех сцепленных генов.

Различают следующие виды трансдукции: общую (неспецифическую), специфическую и абортивную.

Общая трансдукция характеризуется тем, что фаг играет роль переносчика генетического материала бактерий, т. е. передает в клетку-реципиент любой ген донорской клетки. Сам фаг в нуклеоид реципиента не встраивается и лизогении бактериальной культуры не происходит. Один и тот же фаг может служить трансдуктором различных признаков: ферментативной активности, устойчивости к лекарственным веществам, подвижности, вирулентности и др.

Специфическая трансдукция заключается в том, что бактериофаг переносит от клетки-донора в клетку-реципиента строго определенные гены и встраивает их в определенные участки реципиента. Бактериофаг может встраиваться в нуклеоид клетки-реципиента. Клетки бактерий, имеющие в своей хромосоме профаг, называют мезогенными, а явление совместного существования ДНК бактерий и профага называется мезогенным.

Абортивная трансдукция характеризуется тем, что фрагмент ДНК донора, перенесенный в клетку реципиента не включается в ее нуклеоид, а может сохраняться в цитоплазме клетки. Клетка при этом не подвергается лизису, но при делении ее перенесенный новый признак постепенно исчезает у ее потомства.

Конъюгация (от латинского conjugatio - контактирование) - перенос генетического материала от одной бактериальной клетки (донора) к другой (реципиенту) при непосредственном контакте этих клеток. Явление конъюгации открыли Дж. Ледерберг и Э. Татуш (1946).

Ученые взяли два ауксотрофных мутантных штамма E. Coli к-12: один не способный синтезировать треонин и лейцин (Thr-Leu-), другой - метионин и биотин (Met-Bio-) и выращивали их вместе в течение 12 часов на полноценной питательной среде. Затем выросшую культуру отцентрифугировали и отмыли от полноценной питательной среды и засеяли на минимальную питательную среду.

На этой среде без метионина, биотина, треонина и лейцина появились прототрофные колонии Met+, Bio+, Thr+, Leu+. Опытным путем ученые установили, что ни трансформации, ни трансдукции в данном случае не наблюдалось. Был сделан вывод о происхождении рекомбинантных геномов в результате непосредственного контакта родительских клеток. Микрофотографии конъюгирующих клеток явились доказательством того, что между ними образуется цитоплазматический мостик.

В 1952 году Хейтс выяснил, что при конъюгации одна клетка является мужским донором, а другая - женским реципиентом. Клетки-доноры обладают половым фактором F ( от fertility - плодовитость), который представляет собой замкнутую в кольцо молекулу ДНК. Перенос генетического материала происходит в одном направлении - от донорской (мужской F+) клетки к реципиентной (женской F-).

Необходимым условием конъюгации является наличие в клетке-доноре трансмиссивной плазмиды, продуцирующей половые пили, образующие трубочку, по которой плазмидная ДНК передается из клетки-донора в клетку-реципиент, в результате чего последняя приобретает донорские свойства. В случае, когда F-фактор встраивается в хромосому донора и функционирует в виде единого с ней репликона, то нуклеоид донора приобретает способность передаваться в клетку-реципиент. Донорские клетки, содержащие встроенный в нуклеоид F-фактор, называются Hfr-клетками ( от английского high frequency of recombination - высокая частота рекомбинаций).

Процессы генетической рекомбинации у бактерий (трансформация, трансдукция, конъюгация) различны по форме, но аналогичны по содержанию, т. к. в результате каждого процесса происходит перенос фрагмента ДНК от одной клетки к другой. При трансформации бактерии-реципиенту передается свободная ДНК, при трансдукции перенос участка ДНК осуществляется при помощи бактериофага, а при конъюгации транспортировка участка ДНК происходит через цитоплазматический мостик между бактериями.

12. Особенности генетики вирусов

Геном вирусов содержит один тип нуклеиновой кислоты - ДНК или РНК. Эти нуклеиновые кислоты, как носители генетической информации вирусов, могут быть однонитчатыми или двунитчатыми. Репликация генома вирусов зависит от строения нуклеиновой кислоты, процесс транскрипции осуществляется многочисленными путями.

ДНК-содержащие вирусы размножаются в ядрах эукариотических клеток, используя для транскрипции клеточную полимеразу. В качестве примера являются вирусы герпеса, аденовирусы. В случае репликации вируса в цитоплазме клеток, он использует в процессе трансдукции индивидуальные ферменты.

РНК-овые вирусы могут быть плюс-нитевыми (РНК+) и имнус-нитевыми (РНК-).

Трансляция у плюс-нитевых вирусов (пикорновирусы, флавивирусы и др.) начинается непосредственно с исходной РНК. Процесс трансляции у минус-нитевых вирусов не может осуществляться на прямую. Этим вирусам необходим предварительный синтез комплементарной копии РНК, который осуществляется особым специфическим ферментом (РНК-зависимой РНК-полимеразой).

У РНК-овых двунитчатых вирусов плюс-нить не используется. Эти вирусы в своем жизненном цикле используют минус-цепь РНК, как все минус-нитевые вирусы.

Представители семейства Retroviridae обладают плюс-нитевым вирусным геномом, но не смотря на это генетическая информация у них снаяала переписывается на ДНК, т. е. по РНК вируса образуется комплементарная цепь ДНК. Течение этого процесса реализуется благодаря РНК-зависимой ДНК полимеразы (ревертазы). Образующаяся ДНК интегрирует с геномом клетки. У вирусов семейства Retroviridae транскрипцию встроенной ДНК обеспечивают РНК-полимеразы клеток эукариот.

Подобно бактериям, вирусы подвержены генотипической и фенотипической изменчивости.

При заражении эукариотических клеток ассоциацией вирусов наблюдаются различные типы взаимодействия между ними.

Пересортировка генов связана с перестройкой у вирусов, имеющих сегментированный геном. Так, рекомбинанты вируса гриппа получают при совместном культивировании вирусов с разными генами гемагглютинина и нейтролинидазы. В результате происходит быстрое изменение свойств вирусов и возникает новый тип вируса.

Множественная реактивация возникает при заражении клетки несколькими вирусами с дефективными геномами. Если повреждения генома различны у разных вирусов, то вирус может репродуцироваться, т. е. вирусы с поражением разных генов дополняют друг друга за счет рекомбинации геномов.

Перекрестная реактивация возникает в случае заражения клетки двумя вирусами, у одного из которых геном поврежден, а у другого - полноценный. При такой смешанной инфекции возникает рекомбинация, в результате которой появляются вирионы со свойствами обоих родителей.

Гетерозиготность - это формирование вирусов, содержащих в своем составе два разных генома или один полный геном одного вируса и часть генома другого вируса. Гетерозиготность имеет место при совместном культивировании двух штаммов вируса.

Комплементация - это такое взаимодействие вирусов, когда один их них, или оба, предоставляют друг другу недостающие белки для размножения и развития. Комплементация может активизировать изначально не жизнеспособные вирусы. Примером может служить покрытие дельта-вируса белком вируса генотипа В-Hbs- антигеном.

Фенотипическое смешивание - это процесс при котором геном одного из вирусов оказывается заключенным в капсид другого. Фенотипическое смешивание наблюдают при совместном культивировании вирусов.

13. Методы молекулярно-генетического анализа

Изучение генома микроорганизмов осуществляют с помощью методов молекулярно-генетического анализа. Известные в наше время методы этого анализа характеризуются сложностью, высокой чувствительностью и точностью.

Основным способом генетического анализа считают метод молекулярной гибридизации. Сущность способа заключается во взаимодействии комплементарных цепей ДНК или РНК, в результате которого образуются двунитчатые структуры. Гибридизация может осуществляться между комплементарными молекулами ДНК и ДНК, ДНК и РНК, РНК и РНК. Гибридизация осуществляют поэтапно. Сначала деспирализуют генетический материал с целью получения одноцепочных структур, затем адсорбируют его на нитроцеллюлозной мембране. Следующим этапом является обработка материала зондом, который представляет собой короткую последовательность нуклеиновой кислоты, комплементарной исследуемой кислоте и меченную радиоактивным фосфором. После обработки материала зондом, исследуемые пробы помещают в специальный счетчик. Искомую последовательность нуклеиновой кислоты в материале определяют по степени радиоактивности пробы. Метод высокочувствителен, т. к. позволяет выявить до 10-10 г. нуклеиновой кислоты в 1 г. материала.

В начале 80-х годов К. Мюллисом был разработан способ под названием полимеразная цепная реакция (ПЦР). Суть этого метода сводится к следующему. Исследуемый материал нагревают до 90-100 єС, что приводит к раскручиванию 2-х цепочной ДНК на отдельные цепи. После расхождения цепей ДНК, к ним добавляют набор всех пуриновых и пиримидиновых оснований, праймеры и термостабильную ДНК, комплементарные той нуклеиновой кислоте, которую амплифицируют (накапливают). Затем смесь ДНК и праймеров охлаждают. При этом праймеры при наличии в смеси ДНК искомого гена связываются с его комплементарными участками. В результате синтезируются две копии гена. После этого цикл повторяют снова и снова. При каждом повторе цикла количество ДНК гена будет увеличиваться в 2 раза. Для проведения реакции необходимы специальные приборы - амплификаторы.

Этот метод позволяет обнаружить 100 молекул ДНК или РНК в 1 г. исследуемого материала, т. е. является самым высокочувствительным методом из всех известных в настоящее время.

ПЦР применяют для диагностики вирусных и бактериальных инфекций, анализ рекомбинаций фагов

Естественно, что гибридизация фагов, происходящая в период их внутриклеточного размножения, не может быть обнаружена, если клетка заражается фаговыми частицами одного генотипа. Не обнаруживается она и при смешанном заражении мутантом и нормальным фагом, так как гибридизация может быть выявлена лишь по рекомбинации признаков фагов двух генотипов. Накопление различных мутантных линий фагов оказалось необходимой предпосылкой проведения гибридизационной работы с фагами.

Очевидно, что для изоляции рекомбинантов необходимо различие между исходными формами минимум по двум признакам. Такой опыт был впервые проведен с фагом Т2 при смешанном заражении клеток Echerichia coli мутантами hR и Hr. В потомстве фагов, освобожденном при лизисе клеток, были обнаружены частицы дикого типа (Т2 НR)I и двойного мутанта. Появление таких рекомбинантных генотипов говорило о том, что при размножении фаговых частиц двух генотипов в одной бактерии происходит в той или иной форме гибридизации.

Для генетика возможно при обнаружении рекомбинантов количественно оценить частоту, с которой они появляются.

Рассмотрим скрещивание у фага Т4 между тройным мутантом (m r tu) и фагом дикого типа (M R Tu). В потомстве от смешанного заражения такими фагами наблюдались частицы восьми генотипов - следовательно, все рассматриваемые гены рекомбинируют. Если бы они рекомбинировали свободно, то все восемь классов в потомстве появились бы с равной численностью. В действительности же резко преобладают родительские типы (m r tu и M R Tu). Так, в одном опыте среди 10342 колоний было найдено родительских генотипов: m r tu - 3467, M R Tu - 3729; рекомбинантных: m R Tu - 520, M r tu - 474, m r Tu - 853, M R tu - 965, m R tu - 162, M r Tu - 172. Помимо преобладания родительских генотипов в потомстве, обращает на себя внимание и приблизительное равенство численностей взаимодополняющих рекомбинантных классов (например, m R Tu и M r tu), т.е. картина расщепления выглядит также, как картина расщепления в мейозе тригетерозиготы по специальным генам у любого высшего организма. Если это так, то можно по законам расщепления вычислить частоту встречаемости рекомбинантов.

Определим частоту рекомбинации для пары генов m и r, т.е. отношение числа рекомбинантов по этим генам к общему числу потомков:

(520+474+162+172) / 10342 =0,129

для пары r и tu частота рекомбинации будет равна 0,208, а для пары m и tu - 0,271. из этих результатов следует, что все три гена сцеплены и могут быть линейно расположены в порядке m-r-tu. Понятно, что найденная частота рекомбинации пары m и tu занижена, так как при ее определении не были учтены двойные обмены (генотипы m R tu и M r Tu).

Итак, генетический анализ рекомбинации у фагов может проводиться также, как и в генетике высших организмов. Анализ разнообразных скрещиваний у фага T4 показал, что все изученные гены фага могут быть расположены в линейном порядке в одной группе сцепления, причем расстояние между генами измеряются частотой рекомбинации их в потомстве. Такие же результаты были получены и для других фагов.

Гибридологический анализ при трансдукции.

Анализ аллельности с использованием абортивной трансдукции был выполнен в отношении различных мутаций у (Salmonella thyphimurium). Обнаружилось, что мутации потребности в триптофане распадаются на 4 группы: tru A, tru B, tru C, tru D, соответствующие 4 генам. При трансдукции между мутантами одной группы не наблюдается появления крошечных колоний. При трансдукции между мутантами разных групп крошечных колоний появляется столько же, как и тогда, когда донором служат бактерии дикого типа. Поскольку фаг переносит небольшие фрагменты бактериальной хромосомы. То путем трандукции невозможно обнаружить сцепление и провести картирование удаленных друг от друга генов в бактериальной хромосоме. Если же два гена близко располагаются друг к другу, то они могут попадать в один хромосомный фрагмент, переносимый фагом, обнаруживая явление сцепленной трансдукции. Оно оказывается во многом сходным с разбиравшимся ранее явлением сцепленной трансформации. Обозначить его можно так:


Подобные документы

  • Явление наследственности. Современная медицинская генетика. Генетика человека на этапе становления и ее проблемы. Ген цветовой слепоты (дальтонизм). Методы генетической инженерии и биотехнологии по конструированию микроорганизмов с заданными свойствами.

    реферат [32,7 K], добавлен 31.10.2008

  • Предпосылки возникновения генетики. Основание мутационной теории. Генетика как наука о наследственности: ее исходные законы и развитие. Генная инженерия: научно-исследовательские аспекты и практические результаты. Клонирование органов и тканей.

    реферат [28,9 K], добавлен 02.01.2008

  • Генетика как наука, изучающая явления наследственности и изменчивости в человеческих популяциях, особенности наследования нормальных и патологических признаков, зависимость заболеваний от наследственной предрасположенности и факторов внешней среды.

    презентация [4,0 M], добавлен 21.02.2014

  • История развития генетики как науки. Ее основные положения. В основе генетики лежат закономерности наследственности, обнаруженные австрийским биологом Г. Менделем при проведении им серии опытов по скрещиванию различных сортов гороха. Генная инженерия.

    контрольная работа [32,1 K], добавлен 16.06.2010

  • Биологическая характеристика вида, сорта, характерные для данного вида. Наследственность и изменчивость сливы домашней. Способность организмов приобретать новые признаки. Методы изменения наследственности. Мутагенез, полиплоидия, генная инженерия.

    курсовая работа [280,9 K], добавлен 24.02.2015

  • Генная инженерия как раздел молекулярной генетики, связанный с целенаправленным созданием новых комбинаций генетического материала. История ее возникновения и развития, этапы генного синтеза. Безопасна ли генная модификация? Примеры ее применения.

    реферат [24,4 K], добавлен 23.11.2009

  • Генетика пола. Генетические механизмы формирования пола. Наследование признаков, сцепленных с полом. Наследование признаков, контролируемых полом. Хромосомная теория наследственности. Механизм сцепления. Биотехнологии и генная инженерия.

    реферат [72,9 K], добавлен 06.10.2006

  • Возникновение молекулярной биотехнологии. История проблемы биологического кода. Политика в области генной терапии соматических клеток. Накопление дефектных генов в будущих поколениях. Генная терапия клеток зародышевой линии. Генетика и проблема человека.

    реферат [41,9 K], добавлен 25.09.2014

  • История развития Биотехнологии. Генетическая инженерия как важная составная часть биотехнологии. Осуществление манипуляций с генами и введение их в другие организмы. Основные задачи генной инженерии. Генная инженерия человека. Искусственная экспрессия.

    презентация [604,9 K], добавлен 19.04.2011

  • Наследственность - способность организмов передавать свои признаки и особенности развития потомству. Методы изучения наследственности человека, виды и способы скрещивания. Закономерности изменчивости, факторы приводящие к мутациям. Генные болезни.

    курсовая работа [120,6 K], добавлен 05.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.