Ткани и их функции в растительных организмах
Структурная и функциональная целостность высших растений, изучение тканей растений и познание особенностей строения, жизнедеятельности и эволюции растений. Генетический контроль гистогенеза, возможности комбинативной и мутационной изменчивости.
Рубрика | Биология и естествознание |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 08.06.2012 |
Размер файла | 70,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Простые перфорации известны у эволюционно более молодых семейств, таких как Паслёновые, Тыквенные, Астровые, Мятликовые. Они представляют собой одно крупное отверстие в торцевой стенке членика, расположенной перпендикулярно оси сосуда. В ряде семейств, например, у Магнолиевых, Розовых, Ирисовых, Астровых, в сосудах встречаются как простые, так и лестничные перфорации.
Боковые стенки имеют неравномерные целлюлозные утолщения, которые предохраняют сосуды от избыточного давления, создаваемого рядом расположенными живыми клетками других тканей. В боковых стенках могут находиться многочисленные поры, обеспечивающие выход воды за пределы сосуда.
В зависимости от характера утолщений, типов и характера расположения пор сосуды подразделяются на кольчатые, спиральные, биспиральные, сетчатые, лестничные и точечно-поровые. У кольчатых и спиральных сосудов целлюлозные утолщения располагаются в виде колец или спиралей. Через неутолщенные участки осуществляется диффузия транспортируемых растворов в окружающие ткани. Диаметр этих сосудов сравнительно невелик. У сетчатых, лестничных и точечно-поровых сосудов вся боковая стенка, за исключением мест расположения простых пор, утолщена и часто пропитана лигнином. Поэтому радиальный транспорт веществ у них осуществляется через многочисленные удлиненные и точечные поры.
Сосуды имеют ограниченный срок деятельности. Они могут разрушаться в результате закупорки тиллами - выростами соседних паренхимных клеток, а также под действием центростремительных сил давления новых клеток древесины, образуемых камбием. В ходе эволюции сосуды подвергаются изменениям. Членики сосудов становятся короче и толще, косые поперечные перегородки сменяются прямыми, а лестничные перфорации - простыми.
6.3 Проводящие ткани нисходящего тока
К тканям нисходящего тока относятся ситовидные клетки и ситовидные трубки с клетками-спутницами. Ситовидные клетки имеют более древнее происхождение. Они встречаются у высших споровых растений и голосеменных. Это живые, удлиненные клетки с заостренными концами. В зрелом состоянии они содержат ядра в составе протопласта. В их боковых стенках, в местах соприкосновения смежных клеток, имеются мелкие сквозные перфорации, которые собраны группами и образуют ситовидные поля, через которые осуществляется передвижение веществ.
Ситовидные трубки состоят из вертикального ряда удлиненных клеток, разделенных между собой поперечными стенками и называемыми ситовидными пластинками, в которых расположены ситовидные поля. Если ситовидная пластинка обладает одним ситовидным полем, она считается простой, а если несколькими - то сложной. Ситовидные поля образуются многочисленными сквозными отверстиями - ситовидными перфорациями небольшого диаметра. Через эти перфорации из одной клетки в другую проходят плазмодесмы. На стенках перфораций размещается полисахарид каллоза, которая уменьшает просвет перфораций. По мере старения ситовидной трубки каллоза полностью закупоривает перфорации и трубка прекращает работу.
При формировании ситовидной трубки в образующих их клетках синтезируется специальный флоэмный белок (Ф-белок) и развивается крупная вакуоль. Она оттесняет цитоплазму и ядро к стенке клетки. Затем мембрана вакуоли разрушается и внутреннее пространство клетки заполняется смесью цитоплазмы и клеточного сока. Тельца Ф-белка теряют отчетливые очертания, сливаются, образуя тяжи около ситовидных пластинок. Их фибриллы проходят через перфорации из одного членика ситовидной трубки в другой. К членикам ситовидной трубки плотно прилегают одна или две клетки-спутницы, которые имеют удлиненную форму, тонкие стенки и живую цитоплазму с ядром и многочисленными митохондриями. В митохондриях синтезируется АТФ, необходимая для транспорта веществ по ситовидным трубкам. В стенках клеток-спутниц имеется большое количество пор с плазмадесмами, которое почти в 10 раз превышает их количество в других клетках мезофилла листа. Поверхность протопласта этих клеток значительно увеличена за счет многочисленных складок, образуемых плазмалеммой.
Скорость передвижения ассимилятов по ситовидным трубкам значительно превышает скорость свободной диффузии веществ и достигает 50 - 150 см/час, что указывает на активный транспорт веществ с использованием энергии АТФ.
Продолжительность работы ситовидных трубок у многолетних двудольных составляет 1 - 2 года. На смену им камбий постоянно образует новые проводящие элементы. У однодольных, лишенных камбия, ситовидные трубки существуют гораздо дольше.
6.4 Проводящие пучки
Проводящие ткани располагаются в органах растений в виде продольных тяжей, образуя проводящие пучки. Различают четыре типа проводящих пучков: простые, общие, сложные и сосудисто-волокнистые.
Простые пучки состоят из одного типа проводящих тканей. Например, в краевых частях листовых пластинок многих растений встречаются небольшие по диаметру пучки из сосудов и трахеид, а в цветоносных побегах у лилейных - из одних лишь ситовидных трубок.
Общие пучки образуются трахеидами, сосудами и ситовидными трубками. Иногда этот термин используется для обозначения пучков метамера, которые проходят в междоузлии и являются листовыми следами. В состав сложных пучков входят проводящие и паренхимные ткани. Наиболее совершенными, многообразными по строению и местоположению являются сосудисто-волокнистые пучки.
Сосудисто-волокнистые пучки характерны для многих высших споровых растений и голосеменных. Однако они наиболее типичны для покрытосеменных. В таких пучках выделяются функционально разные части - флоэма и ксилема. Флоэма обеспечивает отток ассимилятов из листа и передвижение их в места использования или запасания. По ксилеме вода и растворенные в ней вещества передвигаются из корневой системы в лист и другие органы. Объем ксилемной части в несколько раз превосходит объем флоэмной, поскольку объем поступающей в растение воды превышает объем образуемых ассимилятов, так как значительная часть воды испаряется растением.
Разнообразие сосудисто-волокнистых пучков определяется их происхождением, гистологическим составом и местонахождением в растении. Если пучки образуются из прокамбия и завершают своё развитие по мере использования запаса клеток образовательной ткани, как у однодольных, они называются закрытыми для роста. В отличие от них, у двудольных открытые пучки не ограничены в росте, поскольку они формируются камбием и увеличиваются в диаметре на протяжении всей жизни растения. В состав сосудисто-волокнистых пучков кроме проводящих могут входить основные и механические ткани. Например, у двудольных флоэма образуется ситовидными трубками (проводящая ткань восходящего тока), лубяной паренхимой (основная ткань) и лубяными волокнами (механическая ткань). В состав ксилемы входят сосуды и трахеиды (проводящая ткань нисходящего тока), древесинная паренхима (основная ткань) и древесинные волокна (механическая ткань). Гистологический состав ксилемы и флоэмы генетически детерминирован и может быть использован в систематике растений для диагностики разных таксонов. Кроме того, степень развития составных частей пучков может изменяться под влиянием условий произрастания растений.
Известно несколько видов сосудисто-волокнистых пучков.
Закрытые коллатеральные проводящие пучки характерны для листьев и стеблей однодольных покрытосеменных. В них отсутствует камбий. Флоэма и ксилема располагаются бок-о-бок. Для них характерны некоторые конструктивные особенности. Так, у пшеницы, отличающейся С3-путём фотосинтеза, пучки образуются из прокамбия и имеют первичную флоэму и первичную ксилему. Во флоэме выделяют более раннюю протофлоэму и более позднюю по времени образования, но более крупноклеточную метафлоэму. Во флоэмной части отсутствуют лубяная паренхима и лубяные волокна. В ксилеме первоначально образуются более мелкие сосуды протоксилемы, расположенные в одну линию перпендикулярно к внутренней границе флоэмы. Метаксилема представлена двумя крупными сосудами, расположенными рядом с метафлоэмой перпендикулярно цепочке сосудов протоксилемы. В этом случае сосуды располагаются Т-образно. Известно также V-, Y- и -образное расположение сосудов. Между сосудами метаксилемы в 1 - 2 ряда расположена мелкоклеточная склеренхима с утолщенными стенками, которые по мере развития стебля пропитываются лигнином. Эта склеренхима отделяет зону ксилемы от флоэмы. По обе стороны от сосудов протоксилемы располагаются клетки древесинной паренхимы, которые, вероятно, выполняют трансфузионную роль, поскольку при переходе пучка из междоузлия в листовую подушку стеблевого узла они участвуют в образовании передаточных клеток. Вокруг проводящего пучка стебля пшеницы располагается склеренхимная обкладка, лучше развитая со стороны протоксилемы и протофлоэмы, около боковых сторон пучка клетки обкладки располагаются в один ряд.
У растений с С4-типом фотосинтеза (кукуруза, просо и др.) в листьях вокруг закрытых проводящих пучков располагается обкладка из крупных клеток хлоренхимы.
Открытые коллатеральные пучки характерны для стеблей двудольных. Наличие слоя камбия между флоэмой и ксилемой, а также отсутствие склеренхимной обкладки вокруг пучков обеспечивает их длительный рост в толщину. В ксилемной и флоэмной частях таких пучков имеются клетки основной и механической тканей.
Открытые коллатеральные пучки могут быть образованы двумя путями. Во-первых, это пучки, первично образуемые прокамбием. Затем в них из клеток основной паренхимы развивается камбий, производящий вторичные элементы флоэмы и ксилемы. В результате пучки будут сочетать гистологические элементы первичного и вторичного происхождения. Такие пучки характерны для многих травянистых цветковых растений класса Двудольные, имеющих пучковый тип строения стебля (бобовые, розоцветные и др.).
Во-вторых, открытые коллатеральные пучки могут быть образованы только камбием и состоять из ксилемы и флоэмы вторичного происхождения. Они типичны для травянистых двудольных с переходным типом анатомического строения стебля (астровые и др.), а также для корнеплодов типа свёклы.
В стеблях растений ряда семейств (Тыквенные, Пасленовые, Колокольчиковые и др.) встречаются открытые биколлатеральные пучки, где ксилема с двух сторон окружена флоэмой. При этом наружный участок флоэмы, обращенный к поверхности стебля, развит лучше внутреннего, а полоска камбия, как правило, располагается между ксилемой и наружным участком флоэмы.
Концентрические пучки бывают двух типов. В амфикрибральных пучках, характерных для корневищ папоротников, флоэма окружает ксилему, в амфивазальных - ксилема кольцом расположена вокруг флоэмы (корневища ириса, ландыша и др.). Реже концентрические пучки встречаются у двудольных (клещевина).
Закрытые радиальные проводящие пучки образуются в участках корней, имеющих первичное анатомическое строение. Радиальный пучок входит в состав центрального цилиндра и проходит через середину корня. Его ксилема имеет вид многолучевой звезды. Между лучами ксилемы располагаются клетки флоэмы. Число лучей ксилемы в значительной мере зависит от генетической природы растений. Например, у моркови, свеклы, капусты и других двудольных ксилема радиального пучка имеет только два луча. У яблони и груши их может быть 3 - 5, у тыквы и бобов - ксилема четырехлучевая, а у однодольных - многолучевая. Радиальное расположение лучей ксилемы имеет приспособительное значение. Оно сокращает путь воды от всасывающей поверхности корня к сосудам центрального цилиндра.
У многолетних древесных растений и некоторых травянистых однолетников, например у льна, проводящие ткани располагаются в стебле, не образуя четко выраженных проводящих пучков. Тогда говорят о непучковом типе строения стебля.
6.5 Ткани, регулирующие радиальный транспорт веществ
К специфическим тканям, регулирующим радиальный транспорт веществ относятся экзодерма и эндодерма.
Экзодерма является наружным слоем первичной коры корня. Она образуется непосредственно под первичной покровной тканью эпиблемой в зоне корневых волосков и состоит из одного или нескольких слоёв плотно сомкнутых клеток с утолщенными целлюлозными оболочками. В экзодерме вода, поступившая в корень по корневым волоскам, испытывает сопротивление вязкой цитоплазмы и перемещается в целлюлозные оболочки клеток экзодермы, а затем выходит из них в межклетники среднего слоя первичной коры, или мезодермы. Это обеспечивает эффективное поступление воды в более глубокие слои корня.
В зоне проведения в корне однодольных, где клетки эпиблемы отмирают и слущиваются, экзодерма оказывается на поверхности корня. Её клеточные стенки пропитываются суберином и препятствуют поступлению воды из почвы в корень. У двудольных экзодерма в составе первичной коры слущивается при линьке корня и замещается перидермой.
Эндодерма, или внутренний слой первичной коры корня, располагается вокруг центрального цилиндра. Она образуется одним слоем плотно сомкнутых клеток неодинакового строения. Одни из них, именуемые пропускными, имеют тонкие оболочки и легко проницаемы для воды. По ним вода из первичной коры поступает в радиальный проводящий пучок корня. Другие клетки имеют специфические целлюлозные утолщения радиальных и внутренних тангентальных стенок. Эти утолщения, пропитанные суберином, называются поясками Каспари. Они непроницаемы для воды. Поэтому вода поступает в центральный цилиндр только через пропускные клетки. А поскольку поглощающая поверхность корня значительно превосходит суммарную площадь сечения пропускных клеток эндодермы, то при этом возникает корневое давление, которое является одним из механизмов поступления воды в стебель, лист и репродуктивные органы.
Эндодерма входит также в состав коры молодого стебля. У некоторых травянистых покрытосеменных она как и в корне может иметь пояски Каспари. Кроме того, в молодых стеблях эндодерма может быть представлена крахмалоносным влагалищем. Таким образом, эндодерма может регулировать транспорт воды в растении и запасать питательные вещества.
6.6 Понятие о стеле и её эволюции
Возникновению, развитию в онтогенезе и эволюционным структурным преобразованиям проводящей системы уделяется большое внимание, поскольку она обеспечивает взаимосвязь органов растений и с ней связана эволюция крупных таксонов.
По предложению французских ботаников Ф. Ван Тигема и А. Дулио (1886) совокупность первичных проводящих тканей вместе с расположенными между ними другими тканями и перициклом, прилегающим к коре, была названа стелой. В состав стелы может также входить сердцевина и образуемая на её месте полость, как, например, у мятликовых. Понятие «стела» соответствует понятию «центральный цилиндр». Стела корня и стебля функционально едина. Изучение стелы у представителей разных отделов высших растений привело к формированию стелярной теории.
Различают два основных типа стелы: протостелу и эустелу. Наиболее древней является протостела. Её проводящие ткани располагаются в середине осевых органов, причём в центре находится ксилема, окруженная сплошным слоем флоэмы. Сердцевина или полость в стебле отсутствуют.
Существует несколько эволюционно связанных между собой видов протостелы: гаплостела, актиностела и плектостела.
Исходным, примитивным видом является гаплостела. У неё ксилема имеет округлую форму поперечного сечения и окружена ровным непрерывным слоем флоэмы. Вокруг проводящих тканей одним - двумя слоями располагается перицикл [К. Эсау, 1969]. Гаплостела была известна у ископаемых риниофитов и сохранилась у некоторых псилотофитов (тмезиптер).
Более развитым видом протостелы является актиностела, в которой ксилема на поперечном сечении приобретает форму многолучевой звезды. Она обнаружена у ископаемого астероксилона и некоторых примитивных плауновидных.
Дальнейшее разобщение ксилемы на отдельные участки, расположенные радиально или параллельно друг к другу, привело к образованию плектостелы, характерной для стеблей плауновидных. У актиностелы и плектостелы флоэма по-прежнему окружает ксилему со всех сторон.
В ходе эволюции из протостелы возникла сифоностела, отличительной особенностью которой является трубчатое строение. В центре такой стелы располагается сердцевина или полость. В проводящей части сифоностелы появляются листовые щели, благодаря которым возникает непрерывная связь сердцевины с корой. В зависимости от способа взаимного расположения ксилемы и флоэмы сифоностела бывает эктофлойной и амфифлойной. В первом случае флоэма с одной, наружной, стороны окружает ксилему. Во втором - флоэма окружает ксилему с двух сторон, с наружной и внутренней.
При разделении амфифлойной сифоностелы на сеть или ряды продольных тяжей возникает рассеченная стела, или диктиостела, характерная для многих папоротниковидных. Её проводящая часть представлена многочисленными концентрическими проводящими пучками.
У хвощей из эктофлойной сифоностелы возникла артростела, которая имеет членистое строение. Она отличается наличием одной крупной центральной полости и обособленных проводящих пучков с протоксилемными полостями (каринальными каналами).
У цветковых растений на основе эктофлойной сифоностелы образовалась эустела, характерная для двудольных, и атактостела, типичная для однодольных. В эустеле проводящая часть состоит из обособленных коллатеральных пучков, имеющих круговое расположение. В центре стелы в стебле располагается сердцевина, которая с помощью сердцевинных лучей соединяется с корой. В атактостеле проводящие пучки имеют рассеянное расположение, между ними находятся паренхимные клетки центрального цилиндра. Такое расположение пучков скрывает трубчатую конструкцию сифоностелы.
Возникновение различных вариантов сифоностелы является важным приспособлением высших растений к увеличению диаметра осевых органов - корня и стебля.
7. Механические ткани
7.1 Значение и свойства механических тканей
Механические ткани возникли в связи с выходом растений на сушу в условиях более сильного воздействия сил гравитации. В сочетании с другими тканями они обеспечивают поддержание размеров и формы тела растений при отсутствии внутреннего скелета. В.Ф. Раздорский сравнивал роль механических тканей с ролью стальной арматуры в железобетонных конструкциях.
Механические ткани обеспечивают устойчивость растений к статическим и динамическим нагрузкам благодаря упругости и жесткости.
Упругость - это способность структуры возвращаться в исходное положение после снятия деформирующей нагрузки. В механике упругость выражается в значениях модуля Юнга, физический смысл которого состоит в том, что он показывает, какую силу следует приложить к стержню единичного сечения, чтобы его длина увеличилась в два раза. Величина модуля прямо пропорциональна деформирующей силе и длине деформируемого участка и обратно пропорциональна площади поперечного сечения испытуемого материала. Упругость может быть также оценена ультразвуковым методом и методом голографической интерферометрии. Упругость механических тканей достаточно высока. У подсолнечника предел упругости достигает 27,4 кг/мм2, у девясила - 37,4 кг/мм2, у строительной стали - 20 кг/мм2. Упругость растительного материала зависит от генотипа и условий выращивания растений, возраста и места отбора проб. Например, у пшеницы в период цветения и налива зерна упругость средней части подколосового междоузлия в 2 - 4 раза выше, чем непосредственно под колосом, что приводит у некоторых сортов к пониканию колоса.
Жесткость - это способность противостоять деформирующим нагрузкам. Она обратно пропорциональна упругости. Жесткость механических тканей увеличивается с возрастом растений по мере утолщения клеточных оболочек. Изучению показателей прочности органов растений уделяется большое внимание как в селекции устойчивых к полеганию сортов, так и в практическом растениеводстве. Применение синтетических регуляторов роста широко используется в агрономии для повышения прочности стебля и снижения полегаемости посевов.
Механические ткани образуются во всех органах растений: в корнях, стеблях, листьях, плодах и семенах. Они располагаются как правило ближе к поверхности органов, где возникают более высокие деформационные нагрузки на сжатие и растяжение. По происхождению механические ткани бывают первичными и вторичными. Первичные образуются первичными меристемами - прокамбием и перициклом, а вторичные - вторичной меристемой, т.е. камбием.
Среди механических тканей выделяют колленхиму, склеренхиму и склереиды.
7.2 Колленхима
Колленхима - это первичная механическая ткань, которая может располагаться под эпидермисом в составе первичной коры стебля (подсолнечник), в черешках листьев (тыква), в листовых подушках (злаки), реже в корнях (капуста). Субэпидермальное развитие колленхимы способствует формированию ребристости стебля, как у тыквенных, яснотковых, мареновых. Упругие свойства колленхимы проявляются при тургорном состоянии клеток.
Колленхима образуется живыми, многогранными прозенхимными клетками длиной до 2 мм, с тупыми или скошенными концами, с неравномерно утолщенными клеточными оболочками, которые содержат много целлюлозы, гемицеллюлозы, пектина и воды. Эта неравномерность обеспечивает хорошую упругость клетки и не препятствует её росту. В зависимости от характера утолщения колленхима бывает уголковой, пластинчатой и рыхлой.
В клетках уголковой колленхимы вторичные утолщения, как в черешках листа свеклы, располагаются в уголках клетки и проходят вдоль неё в виде продольных тяжей. У пластинчатой колленхимы, характерной для стеблей и черешков листьев астровых, целлюлоза равномерно откладывается на всей поверхности противоположных клеточных оболочек, расположенных тангентально к поверхности органа. Другие оболочки остаются относительно тонкими. Рыхлая колленхима отличается хорошим развитием межклетников, к которым обращены утолщенные оболочки клеток. Эта ткань встречается в стебле ваточника, черешке листа лопуха.
7.3 Склеренхима
Склеренхима является наиболее распространенной механической тканью и встречается во всех органах растений. Её прочность выше, чем у колленхимы, и близка к прочности инструментальной стали. По происхождению склеренхима бывает первичной, если образуется из перицикла или прокамбия, и вторичной, если образуется из камбия. Клетки сформировавшейся склеренхимы мертвые, длинные, узкие, имеют толстую вторичную оболочку и плотное сложение и называются волокнами.
В зависимости от клеточного строения и местонахождения склеренхима подразделяется на лубяные и древесинные волокна.
Лубяные волокна могут иметь перициклическое или камбиальное происхождение. Лубяные волокна перициклического происхождения располагаются в стебле либо сплошным кольцом непосредственно под эпидермисом (кукуруза и другие злаки), либо под первичной корой (купена), либо отдельными тяжами в коре (лен), либо в виде блоков над проводящими пучками (бобовые и другие травянистые двудольные). Лубяные волокна камбиального происхождения входят в состав вторичной коры и хорошо развиты у древесных растений (яблоня, липа и др.).
Клетки лубяных волокон тонкие, с утолщенными целлюлозными оболочками. Их длина достигает у конопли - 40 мм, крапивы - 55, льна - 60 и у рами - 350 мм. При этом коэффициент прозенхимности (отношение длины к ширине клетки) составляет у конопли - 750, у льна - 1000, у рами - более 2000. Клетки лубяных волокон собраны в тяжи цилиндрической формы, именуемые техническими волокнами. Они характеризуются высокой прочностью, гигроскопичностью и низкой теплопроводностью. Используются для изготовления тканей (лен), канатов (новозеландский лен), веревок (манильская пенька), рогож, мочал.
Технические качества лубяных волокон зависят от сорта, уровня применяемых технологий выращивания растений и переработки сырья.
Древесинные волокна входят в состав древесины и, как правило, образуются камбием. Их мертвые клетки короче и толще лубяных, имеют плотное сложение. Целлюлозные оболочки клеток толстые, пропитаны лигнином, отличаются большой прочностью и твердостью. В частности твердой древесиной выделяются граб, дуб, железное дерево, ясень. Благодаря высокой прочности древесинных волокон стебли многих растений имеют многостороннее техническое использование.
7.4 Склереиды
В отличие от волокон клетки склереид имеют паренхимную форму и первичное происхождение. Для склереид характерно мощное развитие клеточных оболочек, пропитанных лигнином, наличие в них простых пор. По мере развития оболочек клетки отмирают. Среди склереид выделяют каменистые клетки, или брахисклереиды, и ветвистые клетки, или астеросклереиды.
Каменистые клетки округлые, имеют плотное сложение. Они могут располагаться группами в мякоти плодов груши, айвы, в корнях хрена. Кроме того, каменистые клетки могут образовывать сплошной слой как в косточке (эндокарпе) у сливы и других косточковых пород.
Ветвистые клетки имеют разветвленную, звездчатую форму. Они располагаются поодиночке в листьях чая, маслины, камелии, в воздухоносной паренхиме стеблей водных растений, где выполняют опорную функцию.
Развитие механических тканей зависит от многих эндогенных и экзогенных факторов. Под влиянием разных наборов генов формируется число и размеры клеток, фитогормоны участвуют в регулировании инкрустации оболочек лигнином. Погодные и почвенные условия, а также условия питания растений имеют большое значение в развитии механических тканей, что должно учитываться в агрономической практике.
8. Выделительные ткани
8.1 Выделительная система растений и её значение
Жизнь растений представляет собой генетически детерминированную совокупность биохимических реакций, скорость и интенсивность которых в значительной мере модифицируется условиями среды произрастания. В этих реакциях образуется большое разнообразие побочных продуктов, не используемых растением для построения тела или для регулирования обмена веществами, энергией и информацией с окружающей средой. Такие продукты могут удаляться из растения разными способами: при отмирании и отделении ветвей и участков корневищ, при опадании листьев и слущивании наружных слоев корки, в результате деятельности специализированных структур внешней и внутренней секреции. В совокупности эти приспособления образуют выделительную систему растений.
В отличие от животных выделительная система у растений не направлена на удаление соединений азота, который может реутилизироваться в процессе жизнедеятельности.
Выделительная система растений многофункциональна. В её структурах осуществляются: синтез, накопление, проведение и выделение продуктов метаболизма. Например, в секреторных клетках смоляных ходов в листьях хвойных пород образуется смола, которая выделяется через смоляные ходы. В нектарниках цветков липы образуется и выделяется сладкий сок нектар. В специальных вместилищах в плодовой оболочке у цитрусовых накапливаются эфирные масла.
Образование и выделение побочных продуктов метаболизма имеет многообразное приспособительное значение:
привлечение насекомых-опылителей. В цветках яблони, огурца и других энтомофильных перекрестноопылителей образуется нектар, привлекающий пчёл, а зловонные выделения цветка раффлезии привлекают мух;
отпугивание травоядных животных (тмин, крапива и др.);
защита от бактерий и грибов, разрушающих древесину (сосна, ель и др.);
выделение в атмосферу летучих соединений, что способствует очищению воздуха от болезнетворных бактерий;
внеклеточное переваривание добычи у насекомоядных растений за счёт выделения протеолитических ферментов (росянка, альдрованда и др.);
минерализация органических остатков в почве благодаря выделению корнями специальных почвенных ферментов;
регулирование водного режима посредством водяных устьиц - гидатод, расположенных по краю листовой пластинки (земляника, капуста, толстянка и др.);
регулирование испарения воды в результате выделения летучих эфирных соединений, которые уменьшают прозрачность и теплопроводность воздуха около поверхности листа (хвойные породы);
регулирование солевого режима клеток (марь, лебеда и др.);
изменение химических и физических свойств почвы, а также регулирование видового состава почвенной микрофлоры под влиянием корневых выделений;
регулирование взаимодействия растений в фитоценозе посредством корневых, стеблевых и листовых выделений, именуемое аллелопатией (лук, чеснок и др.).
Выделяемые растениями вещества весьма разнообразны. Их природа зависит от генотипа растений.
Многие виды выделяют воду (земляника, капуста), соли (марь, лебеда), моносахариды и органические кислоты (одуванчик, цикорий), нектар (липа, гречиха), аминокислоты и белки (тополя, ивы), эфирные масла (мята, роза), бальзам (пихта), смолы (сосна, ель), каучук (гевея, кок-сагыз), слизи (клетки корневого чехлика, набухающие семена разных растений), пищеварительные соки (росянка, жирянка), ядовитые жидкости (крапива, борщевик) и другие соединения.
8.2 Структуры внешней секреции
Структуры внешней секреции располагаются на поверхности органов растений и выделяют свои продукты, или секреты, во внешнюю среду. К ним относятся железистые волоски, железистые эмергенцы, желёзки, нектарники, гидатоды.
Железистые волоски являются трихомами, т.е. выростами эпидермиса. Они характерны для растений семейств Астровые, Паслёновые, Яснотковые и др. Железистые волоски бывают простыми и сложными. У простых волосков одна (томат) или несколько (табак) вытянутых клеток образуют длинную ножку, клетки которой имеют хлоропласты. На ножке располагается одно- или многоклеточная головка с густой цитоплазмой, но не содержащая хлоропластов. Головки часто имеют округлую форму и являются собственно выделительным органом. У сложных волосков клетки ножки и головки не содержат хлоропластов и обеспечивают выделение веществ.
Число клеток в головке и ножке железистого волоска является диагностическим признаком, который учитывается при распознавании растений. Например, у пеларгонии волоски имеют длинную многоклеточную ножку и округлую одноклеточную головку, которая выделяет эфирные масла между оболочкой клетки и слоем кутикулы. По мере увеличения объёма секрета кутикула растягивается и лопается, что обеспечивает выход выделяемых веществ наружу. После этого образуется новый слой кутикулы и начинается формирование новой капли секрета. У лебеды в солевом волоске ножка и округлая головка одноклеточные. Из клетки головки выделяется раствор соли. При испарении воды на головке остаются кристаллы соли, придающие листьям характерный цвет и блеск. Кроме эфирных масел и солей железистые волоски могут выделять слизи.
Железистые эмергенцы образуются не только эпидермисом, но и клетками более глубоко расположенных тканей. Например, у крапивы нижняя часть большой клетки погружена в субэпидермальный слой листа и стебля. Верхняя часть - вытянутая, с хрупкой целлюлозной оболочкой, пропитанной окисью кремния. Головчатое окончание такой клетки легко обламывается при соприкосновении, образуя острые режущие края. Это обеспечивает лёгкое проникновение обломанных клеток в мягкие ткани животных и выделение в них едкого сока. Подобные волоски встречаются также у молочайных и гидрофилловых.
Желёзки имеют короткую многоклеточную ножку и многоклеточную округлую или уплощенную щитовидную головку и весьма часто располагаются на почечных чешуях древесных растений. Они известны также у астровых, крыжовниковых, яснотковых и в других семействах. Выделяемые эфирные масла образуются в клетках головки и поступают в субкутикулярную полость, а из неё - в атмосферу. У насекомоядных растений (росянка, альдрованда и др.) имеются переваривающие желёзки, которые вырабатывают и выделяют пищеварительные ферменты. К желёзкам относятся также осмофоры, расположенные на лепестках и других частях цветка. В них вырабатываются эфирные масла, от которых зависит аромат цветков розы, орхидеи, нарцисса, лютика, душистого горошка и других растений.
Нектарники бывают флоральными (цветочными) и экстрафлоральными (внецветочными). Флоральные располагаются у оснований лепестков и тычинок (пасленовые, яснотковые), завязей пестиков (розоцветные), в шпорцах и медовых ямках лепестков (лютиковые). Иногда нектарники образуются на видоизмененных тычинках - стаминодиях (барбарисовые). Экстрафлоральные нектарники образуются, как у пассифлоры, на цветоножке, стебле и листьях.
Секреторная часть нектарников образуется эпидермисом или субэпидермальными клетками. Нектар выводится через специальные отверстия или через субкутикулярную полость. Химический состав нектара весьма сложен. В него входят глюкоза, фруктоза, сахароза; ионы К+, Na+, Ca2+, Mg2+, PO43- ; органические кислоты, витамины, аминокислоты и белки, иногда липиды, а также стероидные гормоны, необходимые для воспроизводительных функций у насекомых. Важнейшими нектароносными растениями являются плодовые семечковые и косточковые породы, ягодные кустарники, липа, акация, вереск, клевер и др.
Гидатоды представляют собой водяные устьица, которые выделяют воду не в виде пара, как транспирирующие устьица, а в жидком состоянии. При этом вместе с водой могут выделяться соли, сахара и другие органические вещества. Такое явление называется гуттацией.
Гидатоды характерны для растений влажных тропиков, но встречаются и у растений белорусской флоры, например, у представителей семейств Капустные, Розовые, Первоцветные, Мятликовые, Толстянковые. Гидатоды располагаются преимущественно на зубчиках края листовой пластинки. По строению они бывают разными. В типичном варианте постоянно открытые устьица гидатоды находятся в эпидермисе. Под ними расположена эпитема, т.е. рыхлая паренхимная ткань их тонкостенных бесхлорофильных клеток. К эпитеме подходят трахеиды мелких ответвлений проводящих пучков. Комплекс этих тканей окружен паренхимными клетками обкладки и погружен в мезофилл листа.
8.3 Структуры внутренней секреции
К структурам внутренней секреции относятся млечники, или млечные сосуды, вместилища выделений и идиобласты. Их основными функциями является образование, транспорт и накопление смол, эфирных масел, дубильных веществ, млечного сока, кристаллов солей. Выведение этих веществ происходит при механических разрушениях и естественном отмирании и опадании ветвей, листьев и других органов.
Млечники, или млечные сосуды, встречаются у разных жизненных форм растений: деревьев, кустарников, лиан, трав. Они образуются живыми клетками, у которых цитоплазма с многочисленными ядрами занимает пристенное положение, а в центре располагается крупная вакуоль, заполненная млечным соком. Как и в ситовидных трубках, в млечниках часто разрушается тонопласт. Поэтому между цитоплазмой и вакуолью нет четкой границы.
Млечный сок может быть молочно-белым (одуванчик) или окрашенным в желто-коричневый (конопля), или красно-оранжевый цвет (чистотел). В состав млечного сока входят вода, углеводы, органические кислоты, белок, алкалоиды, эфирные масла, смолы, слизи, каучук и каротиноиды.
По строению млечники бывают простыми (нечленистыми) и сложными (членистыми). Простые млечники образуются из одной крупной клетки, которая возникает в зародыше семени. По мере роста растения эта клетка разрастается не делясь и проникает во все органы растений. Она имеет множество ядер. Неветвящиеся простые млечники встречаются у крапивы и конопли, а ветвящиеся - у молочая и шелковицы.
У некоторых растений в млечниках могут запасаться питательные вещества. У молочая - крахмал, фикуса - белки, цикория - сахара. Млечный сок тропического дынного дерева папайи содержит сахара, жиры, ферменты.
Сложные (членистые) млечники встречаются у астровых, колокольчиковых, маковых. Они состоят из отдельных члеников, т.е. живых клеток, у которых разрушаются поперечные клеточные стенки. В результате их протопласты сливаются в единую разветвлённую сеть. Такие млечники увеличиваются в длину за счёт деятельности апикальных меристем, и могут проникать в цветки и плоды.
Членистые млечники вытянуты вдоль оси органов. Часто между рядом расположенными членистыми млечниками образуются анастамозы - выросты, выполняющие роль перемычек, как у латука.
Вместилища выделений весьма разнообразны по происхождению, размерам и форме. Различают лизигенные и схизогенные вместилища.
Лизигенные вместилища образуются в результате лизиса (растворения) оболочек клеток, наполненных секретом. В результате появляются полости и ходы, окруженные секретирующими клетками. Такие вместилища характерны для листьев и плодов цитрусовых.
Схизогенные вместилища развиваются в молодых тканях вследствие значительного увеличения размеров межклетников. При этом образуются полости и ходы, выстланные секретирующими эпителиальными клетками. Схизогенные ходы характерны для аралиевых, астровых, миртовых, сельдерейных. У сосновых они представлены многочисленными смоляными ходами, расположенными в корнях и стволах деревьев, в иглице и шишках.
Во вместилищах накапливаются летучие терпены, вязкие бальзамы, камеди, слизи и другие вещества.
Идиобласты - это обособленные клетки, которые располагаются среди клеток других тканей. Они встречаются в коре и листьях растений. Идиобласты способны накапливать слизи, танины, соли. Эфиромасляные идиобласты характерны для представителей семейств Лавровые, Магнолиевые, Перечные и др. Из щавелевокислого кальция в идиобластах образуются одиночные кристаллы, кристаллический песок, друзы, рафиды, цистолиты. Оболочки идиобластов могут пропитываться суберином, изолируя ядовитое содержимое клетки от окружающих живых тканей растения.
Продукты, выделяемые растениями, широко используются в народном хозяйстве.
Для пищевых целей выращивают эфиромасличные культуры: тмин, укроп, кориандр, анис. Замечательными вкусовыми качествами и высокой пищевой ценностью отличаются плоды папайи и цитрусовых. Нектар липы, акации, гречихи, вереска и других растений входит в кормовую базу пчеловодства.
Ароматические масла розы, лаванды, фиалки применяются в парфюмерной промышленности. Ментол входит в состав многих лекарственных и профилактических средств.
Латекс гевеи используется для производства натурального каучука. Из живицы хвойных добывают канифоль, скипидар. Пихтовый бальзам является ценным сырьём для производства камфары, а также нашёл применение в художественных промыслах. Канадский бальзам используется в оптике и для изготовления постоянных препаратов. Большую ценность представляет янтарь - окаменевшая смола ископаемых хвойных.
Заключение
Многообразие путей и направлений эволюции в различающихся условиях среды обитания привело к возникновению видового богатства современных высших растений. Их важным отличительным признаком является дифференциация органов на ткани. Происхождение тканей в онтогенезе, особенности их клеточного строения и местоположения в растительном организме, а также интенсивность выполняемых функций генетически детерминированы. Это свойство лежит в основе гистолого-анатомического метода филогенетической систематики и может быть использовано в генетике и семеноводческой практике для идентификации генотипов. Кроме того, особенности анатомического строения растений могут быть использованы в качестве критериев при проведении отборов на продуктивность и сопутствующих ей хозяйственно-полезных признаков. Развитие гистологических признаков модифицируется условиями произрастания растений. Это должно учитываться в практической агрономии при планировании агротехнических мероприятий по возделыванию культурных растений.
Литература
1. Бавтуто Г.А. Атлас по анатомии растений: учеб. пособие для вузов/ Г.А. Бавтуто, В.М. Еремин, М.П. Жигар. Минск: Ураджай, 2001. 146 с.: ил.
2. Ботаника. Морфология и анатомия растений: учеб. пособие для студентов пед. ин-тов по биол. и хим. спец. / А.Е. Васильев, Н.С. Воронин, А.Г. Еленевский и др. 2-е изд., перераб. М.: Просвещение, 1988. 480 с.: ил.
3. Жизнь растений: в 6 т. / гл. ред. А.Л. Тахтаджян. Т. 5 (1). Цветковые растения / под ред. А.Л. Тахтаджяна. М.: Просвещение, 1980. 432 с.: ил.
4. Жуковский П.М. Ботаника. / П.М. Жуковский. Изд. 5-е. М.: Колос, 1982. 623 с.
5. Лазаревич С.В. Эволюция анатомического строения стебля пшеницы / С.В. Лазаревич. Минск.: Хата, 1999. 296 с.: ил.
6. Полевой В.В. Физиология растений: учебник для биол. спец. вузов/ В.В. Полевой. М.: Высш. шк., 1989. 464 с.: ил.
7. Раздорский В.Ф. Анатомия растений/ В.Ф. Раздорский. М.: Советская наука, 1949. 524 с.
8. Суворов В.В. Ботаника с основами геоботаники / В.В. Суворов, И.Н. Воронова. Л.: Колос, 1979. 560 с.
9. Хржановский В.Г. Курс общей ботаники . Ч.1 / В.Г. Хржановский. 2-е изд., перераб. и доп./ В.Г. Хржановский. М.: Высш. шк., 1982. 384 с.
10. Шкуратова Н.В. Анатомия коры и система Salicaceae Mirb. / Н.В. Шкуратова // Весн. Брэсц. ун-та. 2004. № 1 (38). С. 81 - 84.
11. Эсау К. Анатомия растений: перевод с 2-го англ. изд. / К. Эсау; под ред. и с предисловием проф. Л.В. Кудряшова. М.: Мир, 1969. 564 с.
Размещено на Allbest.ru
Подобные документы
Описание комплементарного взаимодействия генов. Рассмотрение характерных особенностей модификационной и наследственной (комбинативной, мутационной) закономерностей изменчивости организма. Задачи и методы селекции растений, животных и микроорганизмов.
реферат [20,8 K], добавлен 06.07.2010Схема стадий симбиогенеза. Разнообразие клеток высших растений. Направления эволюции в строении тела низших первичноводных растений - водорослей. Схема эволюции высших растений. Жизненный цикл равноспорового папоротника. Преимущества цветковых растений.
презентация [47,5 M], добавлен 05.05.2012Отделы моховидных, плауновидных, хвощевидных, голосеменных и покрытосеменных. Эволюция высших растений, их морфологические и биологические особенности, распространение. Развитие специализированных тканей как важное условие для выхода растений на сушу.
презентация [2,3 M], добавлен 25.10.2010Исследование основных жизненных форм растений. Описание тела низших растений. Характеристика функций вегетативных и генеративных органов. Группы растительных тканей. Морфология и физиология корня. Видоизменения листа. Строение почек. Ветвление побегов.
презентация [21,1 M], добавлен 18.11.2014Рассмотрение основных функций тканей высших растений. Изучение места обитания, строения, питания и способов размножения водорослей, их роль в природе и в жизни человека. Ознакомление с разнообразием растений тундры и их адаптивными особенностями.
контрольная работа [22,9 K], добавлен 26.10.2011Морфология растений: их жизненные формы; органы. Характеристика основных групп растительных тканей. Сроение образовательных тканей, латеральных меристем. Основные виды проводящих тканей флоэмы, ксилемы. Виды покровных, основных, выделительных тканей.
презентация [14,0 M], добавлен 15.04.2011Флаваны в высших растениях: структура, основные представители, локализация, функциональная роль. Морфофизиологические и биохимические характеристики клеточных и каллусных культур чайных растений. Определение содержания флаванов и проантоцианидинов.
дипломная работа [2,4 M], добавлен 02.02.2018Классификация растений и определение термина "систематика растений" в ходе развития ботаники. Трехчленное деление царства растений. Типы царства протистов. Исследование Линн Маргулиса предполагаемой эволюции "высших" форм жизни из "низших" форм.
реферат [6,3 M], добавлен 05.06.2010Составляющие растительной клетки. Плазматическая мембрана, ее функции. Компоненты клеточной стенки. Типы митоза эукариот. Образовательные ткани в теле растений и их расположение. Механические свойства растительных клеток. Наружные выделительные ткани.
учебное пособие [76,4 K], добавлен 12.12.2009Покровная, пучковая и основная ткани растений. Ткани и локальные структуры, выполняющее одинаковые структуры функции. Клеточное строение ассимиляционного участка листа. Внутреннее строение стебля. Отличие однодольных растений от двудольных растений.
презентация [15,3 M], добавлен 27.03.2016