Концепция современного естествознания

Основные стадии познания Природы. Эволюция гуманитарной культуры, ее роль в становлении личности человека. Научно-техническая революция. Основные гипотезы об образовании Солнечной системы, происхождение Земли. Эволюция человека, здоровье среды обитания.

Рубрика Биология и естествознание
Вид шпаргалка
Язык русский
Дата добавления 08.03.2012
Размер файла 148,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Роль науки в прогрессе человечества

Со времени превращения науки в непосредственную производительную силу человечество поставило производство орудий труда на поток, создало систему искусственных органов деятельности общества. В этой системе опредмечиваются уже коллективные трудовые навыки, коллективные знания и опыт в познании и использовании природных сил. Машинное производство орудий труда позволило говорить о формировании системы техники, которая не отвергает, наоборот, включает в себя человека. Включает потому, что техника может существовать и действовать только по логике человека и благодаря его потребностям.

Систему Человек-техника» традиционно относили к производительным силам общества. Однако с развитием производства два названных компонента дополнил третий, не менее важный -- природа. позже -- вся окружающая среда. Случилось так потому, что человек создает технику по законам природы, для производства продуктов труда использует природный материал, и, в конечном счете, продукты человеческой деятельности сами становятся элементами окружающей среды. В наше время последняя формируется целенаправленно по логике потребностей человека. Таким образом, в современном понимании технику можно определить как элемент системы, несущей на себе отпечаток ее многочисленных закономерностей. Успехи современной техники в первую очередь зависят от развития науки. Технические новшества базируются на научно-технических знаниях. Но не следует забывать, что и техника ставит перед наукой все новые и новые задачи. Не случайно уровень развития современного общества определяют достижения науки и техники. С функционально-производственной точки зрения для нынешнего этапа научно-технического прогресса характерны следующие черты:

наука превращается в ведущую сферу развития общественного производства,

качественно преобразуются все элементы производительных сил -- производитель, орудие и предмет труда,

интенсифицируется производство благодаря использованию новых, более эффективных видов сырья и способов его обработки;

снижается трудоемкость за счет автоматизации и компьютеризации, повышения роли информации и др.

С социальной точки зрения современное научно-техническое развитие вызывает потребность в людях с высоким уровнем общего и специального образования, в координации усилий ученых на международном уровне. Сегодня затраты на научные исследования столь велики, что очень немногие могут позволить себе роскошь вести их в одиночку. К тому же такие исследования часто оказываются бессмысленными, потому что их результаты очень быстро массово тиражируются и не служат для авторов долгосрочным источником сверхприбылей. Но как бы там ни было, автоматизация и кибернетизация высвобождают и время работников, и саму рабочую силу. Появляется новый вид производства -- индустрия досуга.

С общественно-функциональной точки зрения современный этап научно-технического прогресса означает создание новой базы производств.

18. Методология современного естествознания. Основные методы научного познания: общелогические, эмпирические, теоретические, исторические

Большую роль в научном познании играет научный метод. Чтобы понять, что такое научный метод, рассмотрим сначала, что такое метод вообще. В широком смысле метод -- это способ организации средств (инструментов, приемов, операций и др.) теоретической и практической деятельности. Любое разумное действие подчиняется определенным регулятивным принципам, от выбора которых существенно зависит результат деятельности. Метод оптимизирует деятельность человека, вооружает его наиболее рациональными способами ее организации. Понятие метода тесно связано с понятием методологии. Методология -- это наука о закономерностях, которым подчиняется метод деятельности, о происхождении, сущности методов, их эффективности. Методология призвана выработать принципы создания наиболее совершенных методов в каждой форме деятельности. В естествознании исторически сложилось и в настоящее время применяется много научных методов познания: наблюдение, эксперимент, индукция, дедукция, анализ, синтез, формализация, измерение, сравнение, идеализация, моделирование, аксиоматизация, гипотетико-дедуктивный метод, метод математической гипотезы, генетический метод и др. Обычно методы подразделяют на эмпирические и теоретические в соответствии с двумя основными уровнями научного познания. В структуре естественнонаучного познания четко выделяются два уровня познавательной деятельности -- эмпирический и теоретический, каждый из которых характеризуется особенными формами организации научного знания и его методами.

К эмпирическому уровню относятся приемы, методы и формы познания, связанные с непосредственным отражением объекта, материально-чувственным взаимодействием с ним человека. На этом уровне происходят накопление, фиксация, группировка и обобщение исходного материала для построения опосредованного теоретического знания.

К эмпирическому уровню относят такие методы, как наблюдение, различные формы экспериментирования, предметное моделирование, описание полученных результатов, измерение и др. На эмпирическом уровне познания складываются основные формы знания -- научный факт и закон. К теоретическому уровню относятся все те формы, методы и способы организации знания, которые характеризуются той или иной степенью опосредованности и обеспечивают создание, построение и разработку научной теории. В структуру научной теории входят идеальные объекты, исходные понятия, принципы и законы, правила логического вывода. Существуют разные типы научных теорий: фундаментальные, прикладные, частные, феноменологические и др.

В становлении теории большую роль играет выдвижение научной идеи, в которой высказывается предварительное и абстрактное представление о возможном содержании сущности предметной области теории. Затем формулируются гипотезы, в которых это абстрактное представление конкретизируется в ряде четких принципов. Следующий этап становления теории -- эмпирическая проверка гипотез и обоснование той из них, которая больше всего соответствует эмпирическим данным. Только после этого можно говорить о перерастании удачной гипотезы в научную теорию. Методологические установки познания. Важным компонентом научной деятельности являются методологические установки познания. Наиболее общие методологические принципы в каждой науке называются методологическими установками данной науки. Они выполняют функцию регулятивной основы познавательной деятельности, направляют, ориентируют и контролируют построение эмпирических обобщений и теоретических схем. По своему содержанию методологические установки -- это система представлений об общих свойствах объекта познания, процесса исследования этого объекта и о том, каким (по форме) должен быть результат исследования.

19. Модели развития естествознания. Парадигмы науки

Парадигма - совокупность научных достижений, в первую очередь теорий, признаваемых всем научным сообществом в определенный период времени. Примерами такого рода парадигм являются геоцентрическая система мира Птолемея, кислородная теория Лавуазье, теория эволюции Дарвина, теория атома Бора и т. п. Использование понятия парадигмы означает вовлечение исторического подхода в обсуждение того, что считать научной концепцией (и прямо связано со словом "современного" в названии нашего курса). Истине теперь вообще отказывается в существовании, поскольку время идет, и парадигмы меняются. Принятая в данное время парадигма очерчивает круг проблем, имеющих смысл и решение. Все, что не попадает в этот круг, не заслуживает рассмотрения. Кроме того, парадигма устанавливает допустимые методы решения этих проблем. Таким образом, на каждом историческом этапе существует так называемая "нормальная" наука, та, что действует в рамках парадигмы. В ее задачи входит уточнение фактов, распознавание подтверждающих фактов, установление количественных закономерностей, определение констант с максимальной точностью, совершенствование самой парадигмы. Наука предстает в виде своеобразной игры - решение головоломок, складывание кубиков или популярных нынче puzzles. Она представляет собой ремесло, требующее определенных умений и навыков, основа которого есть необсуждаемая догма (а никакая не возвышенная истина). И критерием демаркации служит лишь непротиворечие новой предлагаемой теории современной парадигме. Так, однако, происходит лишь до поры. В наблюдаемых явлениях или теоретических построениях возникают аномалии, их число растет, их отклонения от предсказаний "нормальной" теории увеличиваются по мере роста точности наблюдений или появления новых экспериментальных данных. Парадигма терпит крах, наступает кризис. На ее развалинах появляются новые гипотезы, наука вступает в аномальную фазу. Одна из гипотез доказывает свою жизнеспособность, успешно объясняя не только старые данные, но и новые, и становится началом новой парадигмы. Старая парадигма отбрасывается. Произошла научная революция. Старая игра продолжается по новым правилам.Теория парадигм свергает науку с пьедестала, на который она иногда бывает возведена.

20. Порядок и беспорядок в природе, энтропия, хаос

В химии, как и в физике, все естественные изменения вызваны бесцельной “деятельностью” хаоса. Мы познакомились с двумя важнейшими достижениями Больцмана: он установил, каким образом хаос определяет направление изменений и как он устанавливает скорость этих изменений. Мы убедились также в том, что именно непреднамеренная и бесцельная деятельность хаоса переводит мир в состояния, характеризующиеся все большей вероятностью. На этой основе можно объяснить не только простые физические изменения (скажем, охлаждение куска металла), но и сложные изменения, происходящие при превращениях вещества. Но вместе с тем мы обнаружили, что хаос может приводить к порядку. Если дело касается физических изменений, то под этим понимается совершение работы, в результате которой в свою очередь могут возникать сложные структуры, иногда огромного масштаба. При химических изменениях порядок также рождается из хаоса; в этом случае, однако, под порядком понимается такое расположение атомов, которое осуществляется на микроскопическом уровне. Но при любом масштабе порядок может возникать за счет хаоса; точнее говоря, он создается локально за счет возникновения неупорядоченности где-то в ином месте. Таковы причины и движущие силы происходящих в природе изменений. Хаотические эффекты, нарушавшие стройную картину классической физики с первых дней становления теории, в XVII в воспринимались как досадные недоразумения. Кеплер отмечал нерегулярности в движении Луны вокруг Земли.

Ньютон, по словам своего издателя Роджера Котеса, принадлежал к тем исследователям, которые силы природы и простейшие законы их действия "выводят аналитически из каких-либо избранных явлений и затем синтетически получают законы остальных явлений". Но закон -- однозначное и точное соответствие между рассматриваемыми явлениями, он должен исключать неопределенность и хаотичность Отсутствие однозначности в науке Нового времени рассматривалось как свидетельство слабости и ненаучного подхода к явлениям Постепенно из науки изгонялось все, что нельзя формализовать, чему нельзя придать однозначный характер Так пришли к механической картине мира и "лапласовскому детерминизму". Необратимость процессов нарушила универсальный характер механических законов. По мере накопления фактов менялись представления, и тогда Клаузиус ввел "принцип элементарного беспорядка" Поскольку проследить за движением каждой молекулы газа невозможно, следует признать ограниченность своих возможностей и согласиться, что закономерности, наблюдаемые в поведении массы газа как целого, есть результат хаотического движения составляющих его молекул. Беспорядок при этом понимается как независимость координат и скоростей отдельных частиц друг от друга при равновесном состоянии. Более четко эту идею высказал Больцман и положил ее в основу своей молекулярно- кинетической теории. Максвелл указал на принципиальное отличие механики отдельной частицы от механики большой совокупности частиц, подчеркнув что большие системы характеризуются параметрами (давление, температура и др ), не применимыми к от дельной частице. Так он положил начало новой науке -- статистической механике Идея элементарного беспорядка, или хаоса устранила противоречие между механикой и термодинамикой. Знаменитое второе начало (закон) термодинамики в формулировке немецкого физика Р. Клаузиуса звучит так: "Теплота не переходит самопроизвольно от холодного тела к более горячему. Для отражения этого процесса в термодинамику было введено новое понятие - "энтропия". Под энтропией стали понижать меру беспорядка системы.

Более точная формулировка второго начала термодинамики приняла такой вид: при самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает.

Физический смысл возрастания энтропии сводится к тому, что состоящая из некоторого множества частиц изолированная (с постоянной энергией) система стремится перейти в состояние с наименьшей упорядоченностью движения частиц. Это и есть наиболее простое состояние системы, или термодинамическое равновесие, при котором движение частиц хаотично. Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно хаосу.

21. 0ткрытые системы в природе и обществе

Классическая термодинамика имела дело с закрытыми системами, т.е. такими системами, которые не обмениваются со средой веществом, энергией и информацией. Напомним, что центральным понятием термодинамики является понятие энтропии. Это понятие относится к закрытым системам, находящимся в тепловом равновесии, которое можно охарактеризовать температурой Т. Изменение энтропии определяется формулой:

d E = d Q / T,

где d Q - количество тепла, обратимо подведенное к систем или отведенное от нее (см.8.1.2.).

Именно по отношению к закрытым системам и были сформулированы два начала термодинамики. В соответствии с первым началом термодинамики, в закрытой системе энергия сохраняется, хотя и может приобретать различные формы.

Открытые системы - это такие системы, которые поддерживаются в определенном состоянии за счет непрерывного притока извне вещества, энергии или информации. Постоянный приток вещества, энергии или информации является необходимым условием существования неравновесных состояний в противоположность замкнутым системам, которые неизбежно стремятся (в соответствии со вторым началом термодинамики) к однородному равновесному состоянию. Открытые системы - это системы необратимые; в них важным оказывается фактор времени.

В открытых системах ключевую роль - наряду с закономерным и необходимым - могут играть случайные факторы, флуктуационные процессы. Иногда флуктуация может стать настолько сильной, что существовавшая прежде организация не выдерживает и разрушается.

22. Основные положения теории систем

Классическое и неклассическое естествознание объединяет одна общая черта: предмет познания у них - это простые (замкнутые, изолированные, обратимые во времени) системы. Но в сущности такое понимание предмета познания является сильной абстракцией. Вселенная представляет из себя множество систем. И лишь некоторые из них могут трактоваться как замкнутые системы, т.е. как "механизмы". Во Вселенной таких "закрытых" систем меньшинство. Подавляющее большинство реальных систем открытые. Это значит, что они обмениваются энергией, веществом и информацией с окружающей средой. К такого рода системам относятся и такие системы, которые больше всего интересуют человека, значимы для него - биологические и социальные системы. Одной из важных проблем в определении системы является выяснение сущности тех сил, которые объединяют множество в одну систему. Действительно, как образуются, существуют, функционируют, развиваются системы, как они сохраняют свою целостность, структуру, форму, ту особенность, которая позволяет отличить одну систему от другой? Здесь просматриваются два направления поисков ответа:

Первое - естественнонаучное - заключается в том, что исследуются особенности, специфика, характер системообразующих факторов в каждой анализируемой системе (химики, например, выделяют различные типы связи в веществе: ковалентная, водородная, ионная и др.).

Другое направление характеризуется попытками выявить за спецификой, уникальностью, единичностью конкретных системообразующих факторов закономерность присущую всем системам без исключения, но проявляющаяся по разному в разноуровневых системах. Сегодня специальные науки убедительно доказывают системность познаваемых ими частей мира. Вселенная предстает перед нами как система систем. Конечно, понятие “система” подчеркивает отграниченность, конечность и, метафизически мысля, можно прийти к выводу, что поскольку Вселенная это “система”, то она имеет границу, т.е. конечна. Но с диалектической точки зрения как бы ни представлять себе самую большую из систем, она всегда будет элементом другой, более обширной системы. Это справедливо и в обратном направлении, т.е. Вселенная бесконечна не только “вширь”, но и “вглубь”. Системность неорганической природы

Согласно современным физическим представлениям, неорганическая природа в общем виде делится на две системы - поле и вещество. Материальная сущность физического поля в настоящее время еще четко не определена, но что бы из себя не представляло поле, общепризнанно, что оно проявляется в различных сосуществующих, взаимодействующих и взаимопроникающих видах. Физическое поле, как обобщающее понятие, включает в себя физический “вакуум”, электронно-позитронное, мезонное, ядерное, электромагнитное, гравитационное и другие поля. Иначе говоря, представляет собой систему конкретных материальных полей.

Как и все в природе, живые организмы состоят из молекул и атомов, но где граница между живым и неживым? Существует предел, после которого теряют силу имеющиеся системообразующие факторы и неживое переходит в разряд живого. Так, например, молекула состоящая из 5000000 атомов представляет собой вирус табачной мозаики - самое малое известное живое образование, способное к самостоятельному существованию [2].

В целом вопрос о системности живой природы не вызывает сомнений. Более того, именно изучение живых материальных образований в значительной мере способствовало формированию системных представлений о мире.

Основными системами живого, образующими различные уровни организации, в настоящее время признаются: 1) вирусы - системы, состоящие в основном из двух взаимодействующих компонентов: молекул нуклеиновой кислоты и молекул белка; 2) клетки - системы, состоящие из ядра, цитоплазмы и оболочки; каждая из этих подсистем, в свою очередь, состоит из особенных элементов; 3) многоклеточные системы (организмы, популяции одноклеточных); 4) виды, популяции - системы организмов одного типа; 5) биоценозы - системы, объединяющие организмы различных видов; 6) биогеоценоз - система, объединяющая организмы поверхности Земли; 7) биосфера - система живой материи на Земле.

23. Иерархический принцип организаций систем

К XXI веку философия и наука подошли, имея в своем арсенале достаточно стройную концепцию устройства материального мира. В ее основе лежит принцип системности, требующий рассматривать мир как иерархическую композицию сложноподчиненных объектов, каждый их которых представляет определенную систему.

Общая теория систем (основоположниками которой принято считать, в частности, А.А. Богданова и Л. фон Берталанфи) с точки зрения философии является весьма удачной попыткой решения старой философской проблемы: соотношения части и целого. Давно подмечено, что целое практически всегда «больше» составляющих его частей. Оно обладает некими интегративными свойствами, которые отсутствуют у каждой из частей по отдельности. Так, любая деталь автомобиля сама по себе ехать не может. А вот собранные в определенном порядке вместе, они превращаются в средство передвижения. Новые свойства появляются даже у так называемой «суммативной целостности», т.е. просто собранных вместе однородных объектов. Так, например, группы болельщиков на стадионе или зрителей в театре демонстрируют свойства, отличные от имеющихся у составляющих эти целостности единиц. Применение системного подхода со всем его понятийным аппаратом к миру в целом позволяет составить достаточно стройную и упорядоченную картину его функционирования. Весь известный нам мир (Вселенная) представляет собой целостную систему (границы которой, если они вообще есть, пока точно не определены), состоящую из множества взаимосвязанных элементов (подсистем), каждый из которых также может рассматриваться как целостная система, имеющая свой набор элементов. Применение системного подхода со всем его понятийным аппаратом к миру в целом позволяет составить достаточно стройную и упорядоченную картину его функционирования. Весь известный нам мир (Вселенная) представляет собой целостную систему (границы которой, если они вообще есть, пока точно не определены), состоящую из множества взаимосвязанных элементов (подсистем), каждый из которых также может рассматриваться как целостная система, имеющая свой набор элементов. Отсюда можно и говорить о иерархическом принципе организации систем.

природа культура научный земля человек

24. Принципы организаций открытых и замкнутых систем и их эволюция

Закрытые системы, т.е. системы, которые не обмениваются со средой веществом, энергией и информацией, а центральным понятием термодинамики является понятие энтропии. Оно относится к закрытым системам, находящимся в тепловом равновесии, которое можно охарактеризовать температурой. Именно по отношению к закрытым системам были сформулированы два начала термодинамики. В соответствии с первым началом в закрытой системе энергия сохраняется, хотя может приобретать различные формы. Второе начало термодинамики гласит, что в замкнутой системе энтропия не может убывать, а лишь возрастает до тех пор, пока не достигнет максимума. Согласно этому началу, запас энергии во Вселенной иссякает, а вся Вселенная неизбежно приближается к «тепловой смерти».

Открытые системы -- это такие системы, которые поддерживаются в определенном состоянии за счет непрерывного притока извне и (или) стока вовне вещества, энергии или информации. Причем приток и сток обычно носят объемный характер, т.е. происходят в каждой точке данной системы. Так, во всех компонентах биологического организма (ткани, органы, клетки и т.д.) происходит обмен веществ, приток и отток вещества (с помощью кровеносных сосудов, эндокринной и других систем). Постоянный приток (и сток) вещества, энергии или информации является необходимым условием существования неравновесных, неустойчивых состояний в противоположность замкнутым системам, неизбежно стремящимся (в соответствии со вторым началом термодинамики) к однородному равновесному состоянию.

Неравновесность, неустойчивость открытых систем порождается постоянной борьбой двух тенденций. Первая -- это порождение и укрепление неоднородностей, структурирования, локализации элементов открытой системы. И вторая -- рассеивание неоднородностей, «размывание» их, диффузия, деструктурализация системы. Если побеждает первая тенденция, то открытая система становится самоорганизующейся системой, а если доминирует вторая -- открытая система рассеивается, превращаясь в хаос. А когда эти тенденции примерно равны друг другу, тогда в открытых системах ключевую роль -- наряду с закономерным и необходимым -- могут играть случайные факторы, флуктуационные процессы. Иногда флуктуация может стать настолько сильной, что существовавшая организация разрушается.

Открытые системы -- это системы необратимые; в них важен фактор времени.

25. Методы исследования систем

Структура научного познания, о которой мы говорили выше, представляет собой способ научного познания или научный метод. Метод это совокупность действий, призванных помочь достижению желаемого результата. Современная наука основывается на определенной методологии - то есть совокупности используемых методов и учений о методе. Система методов научного исследования включает в себя, во-первых, методы применяемые не только в науке, но и в других отраслях знания, во-вторых, методы применяемые во всех отраслях науки и. В-третьих, методы специфические для отдельных определенных разделов науки, отдельных научных дисциплин. Среди всеобщих методов, характерных для всех сфер человеческого познания можно выделить такие методы как:

1. анализ - расчленение целостного предмета на составные части (стороны признаки отношения) с целью их более глубокого изучения.

2. синтез - соединение ранее выделенных частей предмета в единое целое.

3. абстрагирование - отвлечение от ряда несущественных для данного исследования свойств и отношений с одновременным выделением интересующих нас свойств и отношений.

4. обобщение - прием мышления - в результате исследования, в результате которого общие свойства и признаки целого класса объектов.

5. индукция.

6. дедукция.

7. аналогия - прием познания при котором на основе сходства объектов по одним признакам делается заключение об их сходстве по другим.

8. моделирование - изучение объекта (оригинала) путем создания и исследования его копии (модели), воспроизводящей оригинал с определенной точки зрения интересующей исследователя.

9. классификация - разделение всех изучаемых предметов на отдельные группы в соответствии с каким-либо важным для исследователя признаком (особое значение имеет в описательных науках: геологии, географии, некоторых разделах биологии).

Научный метод как таковой разделяется на методы используемые на каждом уровне исследования. Таким образом, выделяются эмпирические и теоретические методы.

Эмпирические методы:

1. наблюдение - целенаправленное восприятие явлений объективной действительности.

2. описание - фиксация средствами естественного или искусственного языка сведений об объектах.

3. измерение - сравнение объектов по каким-либо сходным свойствам или сторонам.

4. эксперимент - наблюдение в специально создаваемых и контролируемых условиях, он позволяет восстановить ход явления при повторении условий.

Научные методы теоретического уровня исследования:

1. формализация - построение абстрактно-математических моделей, раскрывающих сущность изучаемых процессов действительности.

2. аксиоматизацию - построение теорий на основе аксиом (утверждений доказательства истинности которых не требуются).

3. гипотетико-дедуктивный метод - создание систем дедуктивно связанных между собой гипотез, из которых выводятся утверждения об эмпирических фактах.

Большое значение в современной науке приобрели статистические методы, позволяющие определять средние значения характеризующие всю совокупность изучаемых явлений или предметов. Применение статистического метода не позволяет ученым предсказывать поведение отдельного индивида в совокупности, можно лишь утверждать, что он будет вести скбя определенным образом с определенной вероятностью. Статистические законы применяются только к большим совокупностям.

26. Механистическая концепция Вселенной

Развитие Вселенной, по Канту, это процесс, который имеет начало, но не имеет конца. В каждый момент времени происходит образование новых космических систем на все более далеких расстояниях от центра -- места, где этот процесс начался (предположительно в районе Сириуса). В старых областях Вселенной космические системы постепенно разрушаются и гибнут. Правда, на месте погибших систем могут возникнуть новые: на потухшие солнца падают замедлившиеся планеты и кометы и вновь нагревают их. Кантовская теория происхождения Вселенной была величайшим достижением астрономии со времен Коперника. Как Коперник разрушил геоцентризм -- ядро аристотелевской картины мира, так Кант разрушил ядро метафизического мировоззрения -- представления о том, что природа не имеет истории во времени. Кант впервые убедительно показал, что понять настоящее состояние природных систем можно только через знание истории развития этих систем. Методологические установки классической астрономии. Методологические установки классической физики стали принципиальной методологической базой всего классического естествознания. Методологические установки других естественных наук выступали в роли особенного по отношению к такому общему, как определенные модификации, учитывающие своеобразие объекта и процесса познания в данной науке. В полной мере это относится к астрономии. Объективно существующая Вселенная (как объект астрономического познания) единственна, вечна во времени, бесконечна и безгранична в пространстве. Она представляет собой некую механическую систему множества миров (при этом не исключалась возможность их населенности), подобных нашей Солнечной системе (Дж. Бруно). Исходными составляющими космических тел являются атомы, движущиеся в пустоте. Начиная с И. Канта, впервые показавшего действительную возможность научно обоснованного изучения истории становления Вселенной, одной из фундаментальных установок классической астрономии было представление о том, что Вселенная имеет свою историю, ее нынешнее состояние есть результат определенной эволюции. При этом считалось, что развитие космических тел есть постепенное очень медленное количественное эволюционирование, без скачков, перерывов постепенности, переходов количества в качество. Такое понимание дополнялось представлением о том, что эволюция Вселенной не нарушает ее структурную организацию и стационарность.

27. Гипотезы затухающей и развивающейся Вселенной

С глубокой древности и до начала нынешнего столетия космос считали неизменным. Звездный мир олицетворял собой абсолютный покой, вечность и беспредельную протяженность. Открытие в 1929 году взрывообразного разбегания галактик, то есть быстрого расширения видимой части Вселенной, показало, что Вселенная нестационарна. Экстраполируя процесс расширения в прошлое, сделали вывод, что 15-20 миллиардов лет назад Вселенная была заключена в бесконечно малый объем пространства при бесконечно большой плотности и температуре вещества-излучения (это исходное состояние называют "сингулярностью"), а вся нынешняя Вселенная конечна - обладает ограниченным объемом и временем существования.

Отсчет времени жизни такой эволюционирующей Вселенной ведут от момента, при котором, как полагают, внезапно нарушилось состояние сингулярности и произошел "Большой Взрыв". По мнению большинства исследователей, современная теория "Большого Взрыва" (ТБВ) в целом довольно успешно описывает эволюцию Вселенной, начиная примерно с 10-44 секунды после начала расширения. Когда Вселенная пребывала в исходном точечном состоянии, рядом, вне ее не существовало материи, не было пространства, не могло быть времени. Поэтому невозможно сказать, сколько продолжалось это - мгновение или бессчетные миллиарды лет. Невозможно сказать не только потому, что нам это неизвестно, а потому что не было ни лет, ни мгновений - времени не было. Его не существовало вне точки, в которую была сжата вся масса Вселенной, потому что вне ее не было ни материи, ни пространства. Времени не было, однако, и в самой точке, где оно должно было практически остановиться. Нам неизвестно, почему, в силу каких причин это исходное, точечное состояние было нарушено и произошло то, что обозначается сегодня словами "Большой Взрыв". Согласно сценарию исследователей, вся наблюдаемая сейчас Вселенная размером в 10 миллиардов световых лет возникла в результате расширения, которое продолжалось всего 10-30 с. Разлетаясь, расширяясь во все стороны, материя отодвигала безбытие, творя пространство и начав отсчет времени. Так видит становление Вселенной современная космогония. Если концепция о "Большом Взрыве" верна, то он должен был бы оставить в космосе своего рода "след", "эхо". Такой "след" был обнаружен. Пространство Вселенной оказалось пронизано радиоволнами миллиметрового диапазона, разбегающимися равномерно по всем направлениям. Это "реликтовое излучение Вселенной" и есть приходящий из прошлого след сверхплотного, сверхраскаленного ее состояния, когда не было еще ни звезд, ни туманностей, а материя представляла собой дозвездную, догалактическую плазму.

Некоторые ученые считают, что событие это в нашей Вселенной уже произошло, галактики падают друг на друга, и Вселенная вступила в эпоху своей гибели. Существуют математические расчеты и соображения, подтверждающие эту мысль. Что произойдет после того, как Вселенная вернется в некую исходную точку? После этого начнется новый цикл, произойдет очередной "Большой Взрыв", праматерия ринется во все стороны, раздвигая и творя пространство, снова возникнут галактики, звездные скопления, жизнь. Такова, в частности, космологическая модель американского астронома Дж. Уиллера, модель попеременно расширяющейся и "схлопывающейся" Вселенной. А как представляет себе гибель Вселенной современная космогония? Известный американский физик С.Вайнберг описывает это так. После начала сжатия в течение тысяч и миллионов лет не произойдет ничего, что могло бы вызвать тревогу наших отдаленных потомков. Однако, когда Вселенная сожмется до 1/100 теперешнего размера, ночное небо будет источать на Землю столько же тепла, сколько сегодня дневное. Затем через 70 миллионов лет Вселенная сократится еще в десять раз и тогда "наши наследники и преемники (если они будут) увидят небо невыносимо ярким". Еще через 700 лет космическая температура достигнет десяти миллионов градусов, звезды и планеты начнут превращаться в "космический суп" из излучения, электронов и ядер. После сжатия в точку, после того, что мы именуем гибелью Вселенной (но что, может, вовсе и не есть ее гибель), начинается новый цикл.

28. Основные уровни организации материального мира

К XXI веку философия и наука подошли, имея в своем арсенале достаточно стройную концепцию устройства материального мира. В ее основе лежит принцип системности, требующий рассматривать мир как иерархическую композицию сложноподчиненных объектов, каждый их которых представляет определенную систему.

Таким образом, современная научная мысль главный акцент делает на организационном, структурном моделировании материального мира. А системный анализ -- одно из главных средств построения таких моделей.

Его базовые понятия: система, структура, элемент. Под системой обычно понимают любое упорядоченное множество элементов, взаимосвязи между которыми сильнее их связей с внешней средой. Элемент -- минимальный, неразложимый далее компонент системы. Данные понятия, разумеется, относительны и соотносительны. Человека, например, можно рассматривать и как элемент системы «общество», и как самостоятельную систему, состоящую в свою очередь из множества собственных элементов. Структурой же принято называть способ связи элементов системы между собой. Это -- наиболее устойчивый, инвариантный аспект системы. Применение системного подхода со всем его понятийным аппаратом к миру в целом позволяет составить достаточно стройную и упорядоченную картину его функционирования. Весь известный нам мир (Вселенная) представляет собой целостную систему (границы которой, если они вообще есть, пока точно не определены), состоящую из множества взаимосвязанных элементов (подсистем), каждый из которых также может рассматриваться как целостная система, имеющая свой набор элементов. Критерий выделения элементов (подсистем) внутри даже самой большой системы (Вселенной) несложен: наличие некоторого множества материальных объектов, имеющих одинаковую структуру. Так, все те же атомы ста с лишним химических элементов, конечно же, отличаются друг от друга (тем более, что их разнообразят ионы, изотопы и пр.), но структура у них всех схожа -- положительно заряженное ядро, окруженное электронными оболочками. Что позволяет отнести эти материальные объекты к одному классу. То же и с молекулами: их многообразие базируется на одинаковой структуре -- ядра атомов стягиваются общими электронными оболочками.

Такие классы материальных объектов, имеющих одинаковую структуру, называются структурными уровнями организации материи. Они представляют собой как бы наиболее крупные звенья, «этажи» в организационной иерархии нашего мира. Воспроизвести ныне принятую общую схему системной организации материального мира не трудно. Сначала по сложности организации выделяем три больших типа систем: 1) системы неживой природы, 2) биосистемы и 3) системы социальные (что соответствует выделенным нами ранее видам бытия). А далее внутри каждого из этих типов систем ищем структурные уровни, т.е. большие классы систем со схожей структурой. В неживой природе это: физический вакуум, элементарные частицы, поля, атомы, молекулы, макроскопические тела, планеты, звезды, галактики и Метагалактика, или Вселенная.

В природе живой структурными уровнями считают: нуклеиновые кислоты и белки, клетки, многоклеточные организмы, популяции, биоценозы и всю биосферу в целом.

В организации общественной жизни отчетливо просматриваются системы и подсистемы человеческого действия (материальное производство, духовное производство, регулятивные подсистемы: политика, право и мораль, социальная сфера как подсистема производства и воспроизводства самого человека). Кроме того, структурные уровни общества образуют и естественно-исторически складывающиеся социальные общности: род, семья, этнос, человечество в целом.

Таким образом, материальный мир представляет собой многоярусную конструкцию, образуемую структурными уровнями материи.

29. Микромир. Виды взаимодействий (сил) в материальном мире

В современном естествознании множество материальных систем принято условно делить на микромир, макромир и мегамир.

1. К микромиру относятся молекулы, атомы и элементарные частицы.

2. Материальные объекты, состоящие из огромного числа атомов и молекул, образуют макромир.

3. Самую крупную систему материальных объектов составляет мегамир -- мир планет, звезд, галактик и Вселенной. Материальные системы микро-, макро- и мега мира различаются между собой размерами, характером доминирующих процессов и законами, которым они подчиняются. Важнейшая концепция современного естествознания заключается в материальном единстве всех систем микро-, макро- и мега мира. Можно говорить о единой материальной основе происхождения всех материальных систем на разных стадиях эволюции Вселенной.

Микромир - это мир на уровне элементарных частиц. Элементарных частиц очень много: около четырехсот. Большинство из этих частиц - физическая экзотика. Мы не знаем, зачем их так много. Весь наш привычный мир построен всего из трех элементарных частиц, которые были открыты первыми - это электрон, протон и нейтрон. К элементарным частицам относят также фотон - частицу электромагнитного поля. По современным представлениям вопрос о размерах частиц ставить некорректно. У них нет четкой границы, они как бы размазаны по пространству, и мы можем знать только вероятность нахождения частицы в той или иной области. Тем не менее не вызывает возражений утверждение, что элементарные частицы очень малы. Только про фотон мы не можем так сказать. Мы можем сказать, что фотон обладает незначительной энергией и малым импульсом.

Процессы, в которых участвуют различные элементарные частицы, сильно различаются по характерным временам их протекания и энергиям. Согласно современным представлениям, в природе осуществляется четыре типа взаимодействий, которые не могут быть сведены к другим, более простым видам взаимодействий: сильное, электромагнитное, слабое и гравитационное. Эти типы взаимодействий называют фундаментальными.

Сильное (или ядерное) взаимодействие - это наиболее интенсивное из всех видов взаимодействий. Они обуславливает исключительно прочную связь между протонами и нейтронами в ядрах атомов. В сильном взаимодействии могут принимать участие только тяжелые частицы - адроны (мезоны и барионы). Сильное взаимодействие проявляется на расстояниях порядка и менее 10-15 м. Поэтому его называют короткодействующим.

Электромагнитное взаимодействие. В этом виде взаимодействия могут принимать участие любые электрически заряженные частицы, а так же фотоны - кванты электромагнитного поля. Электромагнитное взаимодействие ответственно, в частности, за существование атомов и молекул. Оно определяет многие свойства веществ в твердом, жидком и газообразном состояниях. Кулоновское отталкивание протонов приводит к неустойчивости ядер с большими массовыми числами. Электромагнитное взаимодействие обуславливает процессы поглощения и излучения фотонов атомами и молекулами вещества и многие другие процессы физики микро- и макромира.

Слабое взаимодействие - наиболее медленное из всех взаимодействий, протекающих в микромире. В нем могут принимать участие любые элементарные частицы, кроме фотонов. Слабое взаимодействие ответственно за протекание процессов с участием нейтрино или антинейтрино, например, в-распад нейтрона а также безнейтринные процессы распада частиц с большим временем жизни (ф ? 10-10 с).

Гравитационное взаимодействие присуще всем без исключения частицам, однако из-за малости масс элементарных частиц силы гравитационного взаимодействия между ними пренебрежимо малы и в процессах микромира их роль несущественна. Гравитационные силы играют решающую роль при взаимодействии космических объектов (звезды, планеты и т. п.) с их огромными массами.

30. Строение Вселенной и галактик. Основные типы галактик

Вскоре после изобретения телескопа внимание наблюдателей привлекли многочисленные светлые пятна туманного вида, -- так и названные туманностями. Только в 1920-е гг. с помощью крупнейших в то время телескопов удалось разложить туманности на звезды. Стало ясно, что туманности -- это не облака пыли, светящиеся отраженным светом, и не облака разреженного газа, а чрезвычайно далекие звездные системы галактики. Галактики -- это гигантские звездные системы (примерно до 1013 звезд). Некоторые галактики можно разглядеть в хороший бинокль. Галактику Андромеды, большую по размерам и находящуюся достаточно близко к Солнцу (всего в 1,5 млн. световых лет), в состоянии увидеть человек с хорошим зрением: это размытое пятно в созвездии Андромеды. Современные телескопы позволяют отыскать сотни миллионов и миллиарды галактик. Строение их различно. Но наиболее характерна и примечательна одна форма -- уплощенный диск с выпуклостью в центре, откуда исходят спиральные рукава. Галактика Андромеды, как и наша собственная, принадлежит к спиральному типу галактик. Следует помнить, что, наблюдая вселенную, мы видим галактики не такими, какие они есть теперь, а такими, какими они были в далеком прошлом. Свет от них приходит к нам через пространство в миллиарды и миллиарды километров, на преодоление которого он затрачивает миллионы лет. Свет от ближайшей к нам галактики Андромеды достигает Земли через 1,5 млн. лет. Одна из центральных проблем внегалактической астрономии связана с определением расстояний до галактик и размеров самих галактик. Расстояния до ближайших галактик, которые можно разложить на звезды, определяются по их светимости. Сложнее оценить расстояние до далеких галактик. Чрезвычайно многообразны формы галактик. Типология форм галактик, разработанная еще Э. Хабблом, в основном сохранилась до настоящего времени. Хаббл выделял три основных типа галактик: эллиптические, имеющие круглую или эллиптическую форму (обозначаются Е); это наиболее простые галактики, спиральные, неправильные галактики имеют клочковатое строение и неправильную форму; яркость и светимость их невелики; они изобилуют горячими сверхгигантами, газовыми туманностями и пылью. Форма и структура галактик связаны с их основными физическими характеристиками: размером, массой, светимостью. И по этим характеристикам мир галактик оказался поразительно разнообразным. Те отдельные звезды, которые мы можем различить на ночном небе,-- просто ближайшие к нам звезды нашей Галактики. Большая же часть Галактики видна лишь как размытая световая полоса, пересекающая небо. Это так называемый Млечный Путь. Наша Галактика -- гигантская звездная система, состоящая приблизительно из 200 млрд. звезд, среди них и наше Солнце. Солнечная система обращается вокруг центра Галактики со скоростью около 220 км/с. Центр нашей Галактики лежит в направлении на созвездие Стрельца (хотя расположен гораздо дальше). Солнце совершает один оборот вокруг центра Галактики за 250 млн. лет. Этот период может быть назван галактическим годом. История человечества по сравнению с этим периодом -- только краткий миг.

31. Звезды, основные внутризвездные процессы. Эволюция звезд

Звезды -- это огромные раскаленные солнца, но столь удаленные от нас по сравнению с планетами Солнечной системы, что, хотя они сияют в миллионы раз ярче, их свет кажется нам относительно тусклым. В ночном небе невооруженным глазом можно видеть около 6000 звезд. Общее количество звезд во Вселенной оценивается в 1022. Различны размеры звезд, их строение, химический состав, масса, температура, светимость и др. Самые большие звезды (сверхгиганты) превосходят размер Солнца в сотни и тысячи раз. Звезды-карлики имеют размеры Земли и меньше (около 10 км). Предельная максимальная масса звезд равна примерно 60 солнечным массам, а минимальная примерно 0,03 солнечной массы. Различны размеры звезд, их строение, химический состав, масса, температура, светимость и др. Самые большие звезды (сверхгиганты) превосходят размер Солнца в сотни и тысячи раз. Звезды-карлики имеют размеры Земли и меньше (около 10 км). Предельная максимальная масса звезд равна примерно 60 солнечным массам, а минимальная примерно 0,03 солнечной массы. Большинство звезд находятся в стационарном состоянии, т.е. не наблюдается изменений их физических характеристик. Это отвечает состоянию равновесия. Однако существуют и такие звезды, свойства которых меняются видимым образом. Их называют переменными звездами и нестационарными звездами. Переменность и нестационарность -- проявления неустойчивости состояния равновесия звезды. Переменные звезды изменяют свое состояние (блеск, излучение в различных диапазонах электромагнитных волн, магнитное поле и др.) регулярным или нерегулярным образом. В некоторых случаях нестационарность может быть вызвана взаимодействием с другими звездами, перетеканием вещества от одной близкой соседки к другой. Следует отметить также и новые звезды, в которых непрерывно или время от времени происходят вспышки. При вспышках (взрывах) сверхновых звезд вещество звезд в некоторых случаях может быть полностью рассеяно в пространстве. Вещество звезд представляет собой плазму, т.е. находится в ином состоянии, чем вещество в привычных для нас земных условиях. Плазма -- это четвертое (наряду с твердым, жидким, газообразным) состояние вещества, представляющее собой ионизированный газ. Звезда -- динамическая, направленным образом изменяющаяся плазменная система. В ходе жизни звезды ее химический состав и распределение химических элементов значительно изменяются. На поздних стадиях развития звездное вещество переходит в состояние вырожденного газа (в котором квантово-механическое влияние частиц друг на друга существенным образом сказывается на его физических свойствах -- давлении, теплоемкости и др.), а иногда и нейтронного вещества (пульсары -- нейтронные звезды, барстеры -- источники рентгеновского излучения и др.). Высокая светимость звезд, поддерживаемая в течение длительного времени, свидетельствует о выделении в них огромных количеств энергии. . Большую роль в динамике звездных процессов, в звездной эволюции играет межзвездная среда. Основная составляющая межзвездной среды -- межзвездный газ, который, как и вещество звезд, состоит главным образом из атомов водорода (около 90% всех атомов) и гелия (около 8%); 2% представлены остальными химическими элементами (преимущественно кислород, углерод, азот, сера, железо и др.) Основная составляющая межзвездной среды -- межзвездный газ, который, как и вещество звезд, состоит главным образом из атомов водорода (около 90% всех атомов) и гелия (около 8%); 2% представлены остальными химическими элементами (преимущественно кислород, углерод, азот, сера, железо и др.) Основная составляющая межзвездной среды -- межзвездный газ, который, как и вещество звезд, состоит главным образом из атомов водорода (около 90% всех атомов) и гелия (около 8%); 2% представлены остальными химическими элементами (преимущественно кислород, углерод, азот, сера, железо и др.) Звездообразование -- это процесс рождения звезд из межзвездного газа, газопылевых образований, облаков. Процесс звездообразования продолжается непрерывно, он происходит и в настоящее время.

32. Основные гипотезы об образовании Солнечной системы. Строение Coлнечной системы. Типы планет

Группа планет вместе с Солнцем составляет Солнечную систему. Планеты хотя и кажутся похожими на звезды, в действительности гораздо меньше последних и темнее. Они видны только потому, что отражают солнечный свет, который кажется очень яркими, поскольку планеты гораздо ближе к Земле, чем звезды. Кроме планет, в солнечную «семью» входят спутники планет (в том числе и наш спутник -- Луна), астероиды, кометы, метеорные тела. Планеты расположены в следующем порядке: Меркурий, Венера, Земля (один спутник -- Луна), Марс (два спутника), Юпитер (15 спутников), Сатурн (16 спутников), Уран (5 спутников), Нептун (2 спутника) и Плутон (1 спутник). Важную роль в Солнечной системе играет межпланетная среда, те формы вещества и поля, которые заполняют пространство Солнечной системы. Основные компоненты этой среды -- солнечный ветер (поток заряженных частиц, в основном протонов и электронов, истекающих с поверхности Солнца); заряженные частицы высокой энергии, приходящие из глубин космоса; межпланетное магнитное поле; межпланетная пыль (большая часть с массой 10-3--10-5 г), основным источником которой являются кометы; нейтральный газ (атомы водорода и гелия). Происхождение планет. Предполагается, что планеты возникли одновременно (или почти одновременно) 4,6 млрд. лет назад из газово-пылевой туманности, имевшей форму диска, в центре которого располагалось молодое Солнце. Образование звезд и планетных систем -- это, по-видимому, все-таки единый процесс, происходящий в результате конденсации облака межзвездного газа в силу его гравитационной неустойчивости. Таким образом, протопланетная туманность образовалась вместе с Солнцем из межзвездного вещества, плотность которого превысила критические пределы. По некоторым данным (присутствие специфических изотопов в метеоритах), такое уплотнение произошло в результате относительно близкого взрыва сверхновой звезды. Взрыв сверхновой мог ускорить и стимулировать процесс конденсации, а также обеспечить содержание в составе газовой туманности тяжелых элементов. Допланетное облако было мало массивным. Если бы его масса превышала 0,15 массы Солнца, оно аккумулировалось бы не в систему планет, а в звездообразный спутник Солнца. Протопланетное облако было неустойчивым, оно становилось все более плоским, конденсировалось в уплотненный диск, в нем возникали неустойчивости, которые приводили к образованию ряда колец, а газовые кольца превращались в газовые сгустки -- протопланеты. Протопланеты сжимались, твердые пылинки сближались, сталкивались, образовывали тела все больших размеров. В относительно короткий срок (10n лет, где, по разным оценкам, n = 5--8) сформировались девять больших планет. Астероиды, кометы, метеориты являются, вероятно, остатками материала, из которого сформировались планеты. Астероиды сохранились до нашего времени благодаря тому, что подавляющее большинство их движется в широком промежутке между орбитами Марса и Юпитера. Происхождение систем регулярных спутников (т.е. движущихся в направлении вращения планеты по почти круговым орбитам, лежащим в плоскости ее экватора) авторы космогонических гипотез обычно объясняют повторением в малом масштабе того же процесса, который они предлагают для объяснения образования планет Солнечной системы. Вступление астрономии в XXI в. ознаменовалось выдающимся достижением -- открытием планет за пределами Солнечной системы, планетных систем у других звезд. С помощью нового поколения средств и методов астрономического наблюдения начиная с 1995 г. удалось открыть уже свыше сотни планет за пределами Солнечной системы, у звезд, расположенных в радиусе примерно ста световых лет от нас.


Подобные документы

  • Эволюция человека, ее отличие от эволюции животных и движущие силы. Гипотезы естественного происхождения человека. Признаки человека и его место в системе животного мира. Основные этапы антропогенеза и характерные черты развития предков человека.

    контрольная работа [27,6 K], добавлен 03.09.2010

  • Вопросы происхождения и сущности жизни издавна стали предметом интереса человека в его стремлении разобраться в окружающем мире. Гипотезы возникновения жизни. Доказательство родства человека и животных. Эволюция человека. Теории появления человека.

    реферат [33,0 K], добавлен 05.06.2008

  • Тайна происхождения человека и его расселения на территории Земли. Путь гоминизации многих видов приматов. Теория африканского происхождения человека. Родословная человека, факторы антропогенеза. Основные этапы эволюции человека. Современный тип людей.

    презентация [1,3 M], добавлен 21.05.2015

  • Основные стадии эволюции человека. Понятие расы человека, ее признаки, классификации, гипотезы происхождения и характеристика. Антропологические типы и географическое распространение рас. Работы биологов Карла Линнея, Жана Ламарка, Чарльза Дарвина.

    презентация [1,8 M], добавлен 29.10.2013

  • Характеристика основных концепций происхождения человека: концепция креационизма, эволюции, мутагенеза, панспермии. Анализ сходства и отличия человека и животных, стадий эволюции человека. Изучение соотношения биологического и социального в человеке.

    реферат [51,3 K], добавлен 21.02.2010

  • Принципы неопределенности, дополнительности, тождественности в квантовой механике. Модели эволюции Вселенной. Свойства и классификация элементарных частиц. Эволюция звезд. Происхождение, строение Солнечной системы. Развитие представлений о природе света.

    шпаргалка [674,3 K], добавлен 15.01.2009

  • Наука как часть культуры, ее критерии и структура. Методы и подходы научного познания. Сущность современных концепций физики, химии и космологии. Земля как предмет естествознания. Теории происхождения жизни, эволюции органического мира. Феномен человека.

    учебное пособие [3,2 M], добавлен 21.09.2010

  • Зачатки эволюционных представлений о происхождении человека в трудах античных философов. Положение человека в системе животного мира. Основные стадии эволюции человека: древнейшие люди; древние люди; современные люди. Современный этап эволюции человека.

    контрольная работа [19,6 K], добавлен 22.12.2009

  • Основные признаки этапов эволюции человека. Размер и образ жизни дриопитеков. Отличия австралопитеков от человека умелого, период его появления и размер мозга. Внешний вид человека прямоходящего. Ареал обитания неандертальцев. Орудия труда кроманьонца.

    презентация [2,2 M], добавлен 06.04.2015

  • Представления о происхождении человека в Европейском средневековье. Современные взгляды на проблему происхождения человека. Предположения Ч. Дарвина о происхождении человека. Проблема прародины современного человека. Особенности хода эволюции человека.

    реферат [36,8 K], добавлен 26.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.