Клетка

Современная клеточная теория. Атомный состав клетки как единицы живого, ее молекулярный состав. Обмен веществ, превращение энергии и воспроизведение. Сравнительная характеристика животной и растительной клеток. Электронограмма клеточного центра.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 23.05.2012
Размер файла 4,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Телофаза заключается в реконструкции дочерних ядер из хромосом, собравшихся у полюсов, разделении клеточного тела (цитотомия, цитокинез) и окончательном разрушении митотического аппарата с образованием промежуточного тельца. Реконструкция дочерних ядер связана с деспирализацией хромосом, восстановлением ядрышка и ядерной оболочки. Цитотомия осуществляется путём образования клеточной пластинки (в растительной клетке) или путём образования борозды деления (в животной клетке). Механизм цитотомии связывают либо с сокращением желатинизированного кольца цитоплазмы, опоясывающего экватор (гипотеза "сократимого кольца"), либо с расширением поверхности клетки вследствие распрямления петлеобразных белковых цепей (гипотеза "расширения мембран").

Продолжительность митоза зависит от размеров клеток, их плоидности, числа ядер, а также от условий окружающей среды, в частности от температуры. В животных клетках М. длится 30-60 мин, в растительных - 2-3 часа. Более длительны стадии М., связанные с процессами синтеза (препрофаза, профаза, телофаза); самодвижение хромосом (метакинез, анафаза) осуществляется быстро.

Мейоз.

Мейоз (от греч. meiosis - уменьшение), редукционное деление, деления созревания, способ деления клеток, в результате которого происходит уменьшение (редукция) числа хромосом в два раза и одна диплоидная клетка (содержащая два набора хромосом) после двух быстро следующих друг за другом делении даёт начало 4 гаплоидным (содержащим по одному набору хромосом). Восстановление диплоидного числа хромосом происходит в результате оплодотворения. М. - обязательное звено полового процесса и условие формирования половых клеток (гамет). Биологическое значение М. заключается в поддержании постоянства кариотипа в ряду поколений организмов данного вида и обеспечении возможности рекомбинации хромосом и генов при половом процессе. М. - один из ключевых механизмов наследственности и наследственной изменчивости. Поведение хромосом при М. обеспечивает выполнение основных законов наследственности.

Первая фаза М. - профаза I, наиболее сложная и длительная (у человека 22,5, у лилии 8-10 суток), подразделяется на 5 стадий. Лептотена - стадия тонких нитей, когда хромосомы слабо спирализованы и наиболее длинны, видны утолщения - хромомеры. Зиготена - стадия начала попарного, бок о бок соединения (синапсиса, конъюгации) гомологичных хромосом; при этом гомологичные хромомеры взаимно притягиваются и выстраиваются строго друг против друга. Пахитена - стадия толстых нитей; гомологичные хромосомы стабильно соединены в пары - биваленты, число которых равно гаплоидному числу хромосом; под электронным микроскопом видна сложная ультраструктура в месте контакта двух гомологичных хромосом внутри бивалента: т. н. синаптонемальный комплекс, который начинает формироваться ещё в зиготене; в каждой хромосоме бивалента обнаруживаются 2 хроматиды; Т.о., бивалент (тетрада, по старой терминологии) состоит из 4 гомологичных хроматид; на этой стадии происходит кроссинговер, осуществляющийся на молекулярном уровне; цитологические последствия его обнаруживаются на следующей стадии. Диплотена - стадия раздвоившихся нитей; гомологичные хромосомы начинают отталкиваться друг от друга, но оказываются связанными, обычно в 2-3 точках на бивалент, где видны хиазмы (перекресты хроматид) - цитологическое проявление кроссинговера. Диакинез - стадия отталкивания гомологичных хромосом, которые по-прежнему соединены в биваленты хиазмами, перемещающимися на концы хромосом (терминализация); хромосомы максимально коротки и толсты (за счёт спирализации) и образуют характерные фигуры: кресты, кольца и др. Следующая фаза М. - метафаза I, во время которой хиазмы ещё сохраняются; биваленты выстраиваются в средней части веретена деления клетки, ориентируясь центромерами гомологичных хромосом к противоположным полюсам веретена. В анафазе I гомологичные хромосомы с помощью нитей веретена расходятся к полюсам; при этом каждая хромосома пары может отойти к любому из двух полюсов, независимо от расхождения хромосом др. пар. Поэтому число возможных сочетаний при расхождении хромосом равно 2n, где n - число пар хромосом. В отличие от анафазы митоза, центромеры хромосом не расщепляются и продолжают скреплять 2 хроматиды в хромосоме, отходящей к полюсу. В телофазе I у каждого полюса начинается деспирализация хромосом и формирование дочерних ядер и клеток. Далее следует короткая интерфаза без редупликации ДНК - интеркинез, и начинается второе деление М. Профаза II, метафаза II, анафаза II и телофаза II проходят быстро; при этом в конце метафазы II расщепляются центромеры, и в анафазе II расходятся к полюсам хроматиды каждой хромосомы. Эта классическая схема М. имеет исключения. Например, у растений рода ожика (Luzula) и насекомых семейства кокцид (Coccidae) в первом делении М. расходятся хроматиды, а во втором - гомологичные хромосомы, однако и в этих случаях в результате М. происходит редукция числа хромосом. Различия между сперматогенезом и оогенезом у животных и образованием микроспор и мегаспор у растений не отражаются на поведении хромосом в ходе М., хотя размеры и судьбы сестринских клеток оказываются разными.

Известны аномалии М. У межвидовых гибридов все хромосомы, а у анеуплоидов непарные хромосомы не способны конъюгировать и остаются в виде унивалентов; у автополиплоидов образуются объединения более чем из 2 хромосом - т. н. мультиваленты. В каждом из этих случаев невозможна правильная редукция числа хромосом в анафазе I; образующиеся гаметы (с несбалансированными наборами хромосом) либо сами нежизнеспособны, либо дают нежизнеспособное или уродливое потомство. Отсутствие хиазм (ахизматия) обычно приводит к тем же результатам, однако у самцов некоторых видов мух, в том числе у дрозофилы, хиазмы всегда отсутствуют, хотя гаметы образуются нормальные. Причины перехода клеток от деления путём митоза к М. в жизненном цикле каждого организма, а также молекулярные механизмы конъюгации гомологичных хромосом и кроссинговера исследуются.

Животная и растительная клетки. Сравнение

Перед тем как начать сравнение надо еще раз упомянуть (хотя об этом уже не раз говорилось), что и растительные и животные клетки объединяются (вместе с грибами) в надцарство эукариот, а для клеток данного надцарства типично наличие мембранной оболочки, морфологически обособленного ядра и цитоплазмы (матрикс) содержащей различные органоиды и включения.

Итак, сравнение животной и растительной клеток:

Общие признаки:

1. Единство структурных систем - цитоплазмы и ядра.

2. Сходство процессов обмена веществ и энергии.

3. Единство принципа наследственного кода.

4. Универсальное мембранное строение.

5. Единство химического состава.

6. Сходство процесса деления клеток.

Растительная клетка

Животная клетка

Размер (ширина)

10 - 100 мкм

10 - 30 мкм

Форма

Однообразная - кубическая или плазматическая.

Форма разнообразная

Клеточная стенка

Характерно наличие толстой целлюлозной клеточной стенки, углеводный компонент клеточной оболочки сильно выражен и представлен целлюлозной клеточной оболочной.

Имеют, как правило тонкую клеточную стенку, углеводный компонент относительно тонок (толщина 10 - 20 нм), представлен олигосахаридными группами гликопротеинов и гликолипидов и называется гликокаликсом.

Клеточный центр

У низших растений.

Во всех клетках

Центриоли

нет

есть

Положение ядра

Ядра у высокодифференцированных растительных клеток, как правило, оттеснены клеточным соком к периферии и лежат пристеночно.

У животных клеток они чаще всего занимают центральное положение.

Пластиды

Характерны для клеток фотосинтезирующих организмов (растения фотосинтезирующие - организмы). В зависимости от окраски различают три основных типа: хлоропласты, хромопласты и лейкопласты.

нет

Вакуоли

Крупные полости, заполненные клеточным соком - водным раствором различных веществ, являющихся запасными или конечными продуктами. Осмотические резервуары клетки

Сократительные, пищеварительные, выделительные вакуоли. Обычно мелкие

Включения

Запасные питательные вещества в виде зерен крахмала, белка, капель масла; вакуоли с клеточным соком; кристаллы солей

Запасные питательные вещества в виде зерен и капель (белки, жиры, углевод гликоген); конечные продукты обмена, кристаллы солей; пигменты

Способ деления

Цитокинез путем образования посередине клетки фрагмопласта.

Деление путем образования перетяжки.

Главный резервный питательный углевод

Крахмал

Гликоген

Способ питания

Автотрофный (фототрофный, хемотрофный)

Гетеротрофный

Способность к фотосинтезу

есть

нет

Синтез АТФ

В хлоропластах, митохондриях

В митохондриях

Эукариотическая клетка

Рис.1. Схема строения эукариотической клетки:

1 - ядро;

2 - ядрышко;

3 - поры ядерной оболочки;

4 - митохондрия;

5 - эндоцитозное впячивание;

6 - лизосома;

7 - агранулярный эндоплазматический ретикулум;

8 - гранулярный эндоплазматический ретикулум с полисомами;

9 - рибосомы;

10 - комплекс Гольджи;

11 - плазматическая мембрана.

Стрелки указывают направление потоков при эндо - и экзоцитозе.

Схема строения плазматической мембраны:

Рис.2. Схема строения плазматической мембраны:

1 - фосфолипиды;

2 - холестерин;

3 - интегральный белок;

4 - олигосахаридная боковая цепь.

Электронограмма клеточного центра (две центриоли в конце G1-периода клеточного цикла):

Рис.5. Электронограмма клеточного центра (две центриоли в конце G1-периода клеточного цикла):

1 - центриоли в поперечном сечении;

2 - центриоли в продольном сечении.

Комплекс Гольджи:

Рис.3. Комплекс Гольджи:

1 - цистерны;

2 - везикулы (пузырьки);

3 - крупная вакуоль.

Растительная и животная клетки

(см. рис.1 для более подробного ознакомления со структурой эукариотической клетки)

Список источников информации

1. Биология для поступающих в ВУЗы. Москва "Высшая школа" 1998 год.

2. Большая Советская Энциклопедия (Электронный вариант).

3. Малая Медицинская Энциклопедия (Электронный вариант).

4. Биология "Человек" 9 класс, Москва, "Дрофа", 2001 год.

Размещено на Allbest.ru


Подобные документы

  • Клетка–элементарная единица жизни на Земле. Химический состав клетки. Неорганические и органические вещества: вода, минеральные соли, белки, углеводы, кислоты. Клеточная теория строения организмов. Обмен веществ и преобразование энергии в клетке.

    реферат [36,2 K], добавлен 13.12.2007

  • Клетка как основная единица живого. Химический состав клетки, ее элементарные частицы и характер протекающих внутри процессов. Роль и значение воды в жизнедеятельности клетки. Этапы энергетического обмена клетки, реакций расщепления (диссимиляции).

    реферат [28,2 K], добавлен 11.07.2010

  • Субклеточные структуры растительной клетки. Клеточная стенка и ее химический состав. Одревеснение, опробковение и кутинизация клеточной стенки. Ослизнение и минерализация клеточной стенки. Формирование рост и функции клеточной стенки.

    реферат [33,9 K], добавлен 16.01.2009

  • Определение эукариотов и прокариотов (ядерных и безядерных организмов). Ознакомление с характеристиками растительной, животной, грибной клеток. Изучение органоидов и включений как структурных компонентов клетки. Строение плазматической мембраны.

    презентация [3,9 M], добавлен 09.11.2014

  • Уровни организации живой материи. Клеточная мембрана, поверхностный аппарат клетки, ее части и их назначение. Химический состав клетки (белки, их структура и функции). Обмен веществ в клетке, фотосинтез, хемосинтез. Мейоз и митоз – основные различия.

    контрольная работа [58,3 K], добавлен 19.05.2010

  • Цитология - наука о биологии клетки как элементарной единицы живого. Клеточная теория – обобщенные представления о строении клеток, их размножении и роли в формировании многоклеточных организмов; гомологичность и тотипотентность, прокариоты, эукариоты.

    лекция [35,3 K], добавлен 27.07.2013

  • Концепция структурных уровней живого. Иерархическая соподчиненность структурных уровней, системность и органическая целостность живых организмов. Закономерность функционирования структурных уровней. Обмен веществ, метаболизм клеток. Клеточная теория.

    контрольная работа [20,6 K], добавлен 26.01.2009

  • Прокариоты и эукариоты, строение и функции клетки. Наружная клеточная мембрана, эндоплазматическая сеть, их основные функции. Обмен веществ и превращения энергии в клетке. Энергетический и пластический обмен. Фотосинтез, биосинтез белка и его этапы.

    реферат [20,8 K], добавлен 06.07.2010

  • Строение и функции оболочки клетки. Химический состав клетки. Содержание химических элементов. Биология опухолевой клетки. Клонирование клеток животных. А была ли Долли? Клонирование - ключ к вечной молодости? Культивирование клеток растений.

    реферат [27,3 K], добавлен 16.01.2005

  • Основные положения нейронной теории. Структурные элементы нервной клетки. Обмен веществ в нейроне, кровоснабжение нервных клеток. Особенности питания нервных клеток и обмена веществ. Основные функции нервной клетки: воспринимающая функция нейрона.

    контрольная работа [28,9 K], добавлен 16.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.