Динамическое поведение мембранных систем и липидно-белковые взаимодействия

Функции биологических мембран и их компонентов. Спектроскопические методы измерения скорости вращения липидов и белков внутри мембраны и скорости латеральной диффузии этих компонентов в плоскости мембраны. Использование спиновых или флуоресцентных зондов.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 01.08.2009
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Цитохром с-оксидаза связывает от 40 до 55 молекул липидов. Этот фермент отдает предпочтение кардиолипину по сравнению с фосфатидилхолином. Как правило, при очистке митохондриальной цитохром с-оксидазы она выделяется вместе с кардиолипином. Высказывалось предположение, что у этого фермента имеется небольшое число мест связывания, обладающих высоким сродством к этому липиду, и что последний необходим для обеспечения его каталитической активности. Для выяснения биологической роли предпочтительного связывания кардиолипина необходимо провести дальнейшие исследования. Кроме того, поскольку кардиолипин является димерным фосфолипидом, возникают трудности при анализе данных по конкурентному связыванию.

4. Са2 + -АТРаза привлекла внимание ученых в связи с тем, что, как предполагается, ее ферментативная активность определяется так называемым «липидным кольцом», или «пограничным липидным слоем», непосредственно примыкающим к белку. Активность Са2 + -АТРазы не зависела от содержания холестерола в реконструированных везикулах, а чистый холестерол тоже не оказывал никакого влияния на ее активность. Это наводило на мысль, что холестерол в указанном пограничном слое отсутствует. Однако работы по связыванию свидетельствовали об обратном, а дело было в том, что относительная константа связывания холестерола с белком примерно вдвое меньше, чем для фосфатидилхолина. Небольшое количество холестерола присутствует и в природных мембранах, содержащих данный фермент. Относительное сродство Са2 + -АТРазы к фосфо-липидам почти не зависит от природы полярной головки, а также типа ацильных цепей, хотя при реконструкции фермента с разными липидами ферментативная активность существенно варьирует.

Скорость обмена пограничных липидов со свободными липидами

Термин «пограничный липидный слой» был введен в связи с появлением идеи о существовании стационарного слоя липида, связанного с поверхностью белка, например цитохромокси-дазы. Под «стационарностью» понимается отсутствие обмена липидов за время, сравнимое со временем оборота фермента, т. е. ~ 10 ~3 с, поэтому такой фермент вместе с его непосредственным окружением может рассматриваться как долгоживущий комплекс. Во всех изученных к настоящему времени случаях это условие не выполняется, но термин «пограничный липидный слой» остается полезным описательным термином, если речь идет о ближайшем липидном окружении белка.

Данные 2Н-ЯМР четко показали, что пограничные липиды быстро обмениваются с основной массой липидов в бислое. Спектры ЭПР меченых фосфолипидов свидетельствуют о существовании свободных и связанных липидных компонентов, в то же время аналогичные эксперименты с дейтерированными липидными зондами говорят о том, что организация и динамические свойства липидов в присутствии таких белков, как цитохромоксидаза, практически не изменяются. Такое расхождение, по-видимому, объясняется различиями в характерных временах измерения двух методов. Время обмена пограничных липидов составляет 10"6-- 10 7 с, поэтому метод 2Н-ЯМР выявляет только один тип липидов, тогда как данные ЭПР свидетельствуют о наличии двух разных липидных популяций.

Если коэффициент латеральной диффузии фосфолипидов в мембранном бислое равен величине, приведенной в табл. 5.2, то среднее время перескока липидной молекулы из одного положения в мембране в соседнее составляет около 10"7 с. Наличие такого быстрого обмена между пограничными и свободными липидами позволяет предположить, что в известных нам случаях липиды, находящиеся по соседству с белком, и свободные липиды практически равноценны. Необходимо подчеркнуть, что это только грубые оценки, полученные для относительно небольшого числа белков, главным образом производных фосфатидилхолина.

5.2 Изменения в липидном бислое, связанные с присутствием интегральных мембранных белков

Результаты большинства исследований липидных бислоев методом 2Н-ЯМР с применением дейтерированных фосфолипидов свидетельствуют о том, что белки оказывают лишь слабое влияние на упорядоченность липидов в бислое и их динамические свойства. Сходные данные были получены методами 'Н-, l9F- и 3|Р-ЯМР. Имеются сообщения о существовании пограничных липидов в природных мембранах. Эти данные получены методом 3,Р-ЯМР и предполагают иммобилизацию полярных головок дол-гоживущими липидно-белковыми комплексами. Однако эти факты нельзя считать окончательно установленными. Так, из данных ЯМР можно сделать следующие общие выводы: 1) скорость обмена между пограничными и свободными липидами весьма велика; 2) в присутствии белков упорядоченность связанных липидов почти не изменяется; 3) скорость переориентации ацильных цепей в присутствии белков слабо уменьшается в частотном диапазоне 109с~'; 4) соседство с трансмембранными белками не сказывается существенным образом на ориентации и динамических свойствах полярных головок. По данным ЯМР, организация и динамика липидов при контактировании с белками очень слабо, но изменяются. Это связывают с некой «жесткостью» поверхности белка, контактирующего с липидом, но сами эффекты весьма незначительны.

Влияние мембранных белков на липидные бислои исследовали и многими другими методами. Рассмотрим вкратце некоторые из полученных результатов.

1. Подвижность спин-меченных липидов ограничивается при контактировании их с белками или при захвате липидно-белковыми агрегатами. В большинстве ЯМР-исследований по релаксации сходные эффекты в том же частотном диапазоне не обнаруживаются. Возможно, эти эффекты обусловлены присутствием объемной нитроксидной спиновой метки. Однако, по крайней мере, в одном случае и данные ЯМР, и данные ЭПР свидетельствовали об уменьшении подвижности ацильных цепей в этом временном диапазоне при липидно-белковых взаимодействиях. Единого мнения о том, влияет ли белок на подвижность спиновых меток за пределами пограничного липидного слоя, не выработано. О существовании некоего липидного слоя за пределами пограничного слоя свидетельствовали спектроскопические данные; эти данные объяснялись в предположении, что имеется единый липидный слой, подверженный воздействию белков. В любом случае важно помнить, что методом ЯМР значительные ограничения подвижности обычно не выявляются.

Деполяризация флуоресценции мембранных зондов, например ДФГ, зависит от присутствия интегральных мембранных Щелков. По мере встраивания белков в бислой микровязкость последнего возрастет, о чем свидетельствуют поляризационные данные в стационарных условиях. Для согласования экспериментальных данных с представлением о том, что ограничение подвижности испытывают только зонды, соседствующие с белком, использовалось простое моделирование. Однако детальный анализ, Включавший измерения анизотропии образцов во времени, в одном случае показал, что а) влияние белка проявляется в основном в увеличении параметра упорядоченности, т. е. в ограничении диапазона Движения, и б) данный эффект распространяется за пределы пограничного слоя. Однако эффекты, наблюдаемые при работе с этими зондами, не обязательно будут характерны для фосфолипидов.

Для определения конфигурации ацильной цепи использовался Метод инфракрасной спектроскопии с фурье-преобразованием. Полученные результаты согласовывались с данными 2Н-ЯМР и свидетельствовали о незначительном изменении упорядоченности ацильной цепи в присутствии белка. Природа наблюдаемых эффектов зависит от свойств ацильной цепи, поэтому построение какой-то общей модели затруднено {34]. Использование дейтерированных препаратов позволяет избирательно изучать различные липиды; так, было выявлено преимущественное взаимодействие между гликофорином и фосфатидилсерином.

4. Для изучения температурного фазового перехода в липидах и влияния мембранных белков на этот переход использовалась дифференциальная сканирующая калориметрия. Вообще говоря, в присутствии интегральных мембранных белков происходят: а) весьма незначительное уменьшение температуры фазового перехода; б) увеличение ширины интервала перехода и в) уменьшение АН перехода. Если в присутствии белка наблюдается только один фазовый переход, то его относят к липидам, которые не подвергаются влиянию белков. Белок как бы изолирует связанные с ними липиды и предотвращает их участие в фазовом переходе. Это приводит к уменьшению молярной энтальпии перехода. Обычно АН0 уменьшается с увеличением содержания белка линейно, что позволяет легко найти число липидных молекул, связанных с одной молекулой белка. Это число варьирует от примерно 20 для бактериородопсина до 685 для белка полосы 3. Сюда входят не только молекулы пограничных липидов, но и липиды, захваченные белковыми агрегатами, находящиеся в обогащенных белком доменах, а также, возможно, липиды, претерпевшие изменения из-за взаимодействий с углеводными цепями гликопротеинов. Латеральное разделение фаз и агрегация белков затрудняют использование этого подхода для получения подробной информации о липидно-белковых взаимодействиях. Однако изучение влияния белков на температурные переходы бинарных смесей липидов позволило выявить преимущественные взаимодействия между гликофорином и фосфатидилсерином и между цитохром с-оксидазой и кардиолипином.

В некоторых случаях были зарегистрированы дополнительные индуцированные белком фазовые переходы в липидах. Возможно, эти липиды содержатся в обогащенных белками доменах, а может быть, наблюдаемый эффект связан с влиянием изолированных белковых молекул белка на липиды, не принадлежащие пограничному слою.

Влияние белков на полиморфизм фосфолипидов

Некоторые белки оказывают сильное влияние на полиморфизм фосфолипидов, стабилизируя ламеллярные или гексагональные формы. Этот факт представляет интерес в связи с гипотезой о том, что инвертированные гексагональные цилиндры или липидные частицы играют какую-то роль в перемещении липидов через мембранный бислой и в слиянии мембран. В присутствии гидрофобного полипептида грамицидина А при соотношении липид/ белок, равном 10:1, диолеилфосфатидилхолин переходит из бислойной структуры в гексагональную Нц-фазу. При этом, по-видимому, происходит агрегация грамицидина и последующая дегидратация липидов, стабилизирующая гексагональную фазу. Напротив, гликофорин стабилизирует бислойную конфигурацию диолеилфосфатидилэтаноламина, в то время как обычно этот липид находится в гексагональной Нц-фазе. На полиморфизм кардиолипина влияют положительно заряженные белки, например кардиотоксин, цитохром с. В связывании кардиотоксина участвуют как электростатические, так и гидрофобные силы, как и в случае белков, связывающихся с поверхностью мембраны.

Возможная роль упругих деформаций бислоя, обусловленных белками

Искажения в структуре бислоя, о которых шла речь в предыдущем разделе, в большинстве своем возникают при точном соответствии ацильных цепей липидов форме белковой молекулы, при этом налагаются некоторые ограничения на определенные быстрые движения липидных молекул, соседствующих с белком. Такие искажения распространяются на очень небольшие расстояния, лишь немного выходя за рамки пограничного слоя. Интересно было бы рассмотреть более серьезные возмущения, при которых белки, встраиваясь в бислой, производят более существенные изменения в липидном бислое. Некоторые возмущения такого рода представлены на рис. 5.7. В принципе деформации, индуцируемые в бислое, могут распространяться на значительные расстояния, так реорганизуя липиды и/или белковые компоненты, что система переходит в наиболее стабильное состояние. Было разработано несколько теоретических подходов к исследованию этого вопроса, но, к сожалению, экспериментальные данные весьма немногочисленны.

1. Белок в форме клина или белок, проникающий только в один монослой, изменяет наклон ацильных цепей липидных молекул в одном или обоих слоях мембраны. Это изменение может распространяться на большие расстояния от белка и влиять на взаимодействия липидов с другими мембранными белками. Возникающие при этом напряжения в бислое могут сниматься благодаря реорганизации липидов. Например, липиды с относительно небольшими полярными головками могут группироваться вокруг белковой молекулы. Одним из преимуществ многокомпетентности мембраны может быть оптимизация упаковки липидов

вокруг отдельных мембранных белков, уменьшающая возможные деформации на границе белок--липид.

Другой тип деформаций, возникающих при встраивании белка в мембрану, -- это латеральные искривления. Примером такого белка может служить «непрочно» связывающаяся форма цитохрома.

Еще одной причиной деформаций бислоя может служить несоответствие между размером данного гидрофобного участка бислоя и толщиной мембраны. Чтобы избежать экспонирования гидрофобных областей в воду, белок или липиды могут частично изменить свою конформацию. Если белок не деформируется, то может произойти следующее: а) или ацильные цепи, или белковая молекула наклоняются относительно нормали к бислою на угол, зависящий от толщины мембраны. Это предположение было в одном случае подвергнуто проверке и не нашло подтверждения; б) ацильные цепи липидов деформируются; в) в гетерогенной смеси липидов последние реорганизуются таким образом, что молекулы «неправильной» длины оказываются сгруппированными вокруг белка.

В принципе подобные упругие деформации могут индуцировать специфические взаимодействия липидов с определенными белками для уменьшения искажений в структуре бислоя путем подгонки формы и размера этих молекул, а не за счет специфических химических взаимодействий. Однако эксперментальные данные на этот счет отсутствуют. Кроме того, простирающиеся на большие расстояния деформации могут влиять на белок-белковые ассоциаты. Экспериментальные подтверждения этому были получены в результате наблюдения с помощью электронной микроскопии за распределением бактериородопсина и родопсина в реконструированных фосфолипидных везикулах при разной толщине мембраны. Адаптированный к темноте родопсин действительно агрегировал в результате изменения наклона ацильных цепей липидов при внедрении фермента в бислой, слишком толстый для идеальной упаковки вокруг белка.

5.3 Динамические свойства остова мембранных белков и их боковых цепей

Проводя ЯМР-исследования твердых образцов, можно получить детальную информацию о динамических свойствах отдельных аминокислотных остатков мембранных белков. Однако при этом необходимы большие количества препарата равномерно меченного белка. Наиболее информативным этот метод является в случае небольших белков, когда можно проводить спектроскопические измерения. Возможности этих методов иллюстрируют работы по исследованию белков оболочки нитевидных бактериофагов. При вирусной инфекции эти белки встраиваются в плазматическую мембрану Е. соН с помощью единственной трансмембранной спирали, а во время сборки фага липиды и белки клетки-хозяина исключаются из его оболочки. Малый размер белков оболочки, возможность получения их в больших количествах и легкость выделения создают значительные преимущества при их изучении методом ЯМР, а также другими методами.

Для исследования динамических свойств аминокислотных остатков белка оболочки фага fd в реконструированных фосфолипидных бислоях использовались методы 2Н- и 15N-flMP. Результаты показали, что полипептидный остов на участке от 5-го до 43-го остатков включительно относительно жесткий, при этом данный сегмент превосходит по длине участок, находящийся внутри липидного бислоя. Несколько остатков на концах полипептида свободны и могут совершать движения с большой амплитудой. Большинство боковых цепей в состоянии совершать такие движения, даже когда соответствующие остатки находятся внутри бислоя.

Работы, в которых использовались упомянутые методы, слишком немногочисленны для того, чтобы можно было составить полное представление о характере влияния липидно-белковых взаимодействий на внутреннюю динамику мембранных белков.

5.4 Связывание периферических мембранных белков с липидным бислоем

При изучении липидно-белковых взаимодействий основное внимание уделялось трансмембранным белкам, однако в последнее время проявляется все больший интерес к связыванию с бислоем периферических мембранных белков. Многие такие белки связываются с мембраной главным образом через взаимодействие с интегральными белками. Но существует большая группа разнообразных белков, которые связываются непосредственно с поверхностью липидного бислоя. Некоторые из этих белков, например основный белок миелиновой оболочки, спектрин и матриксный белок вируса везикулярного стоматита, играют в основном структурную роль. Множество растворимых белков связываются с поверхностью мембраны на непродолжительное время или при специфических условиях. В некоторых случаях связывание белка является необходимым условием проявления его ферментативной активности; такими белками являются, например, протеинкиназа С, факторы свертывания крови, пируватоксидаза. Еще одним примером белков, связывающихся с поверхностью бислоя, служат амфифильные пептидные гормоны и, возможно, сигнальные последовательности, которые ответственны за перемещение секретируемых или мембранных белков в нужное место.

По-видимому, существует два основных, не исключающих друг друга типа связывания белков с липидами: 1) связывание осуществляется при участии амфифильной структурной единицы, обычно а-спирали. Эта вторичная структура может индуцироваться и стабилизироваться при взаимодействии с липидами; 2) связывание имеет в основном электростатическую природу и осуществляется при участии положительно заряженного участка белковой молекулы и кислых фосфолипидов. При этом значительную роль могут играть гидрофобные взаимодействия, зависящие от того, насколько глубоко белок проникает в бислой. Во многих случаях для связывания с кислыми фосфолипидами необходим Са2 +, но истинная роль этого двухвалентного катиона точно не определена.

Взаимодействие периферических мембранных белков с фосфолипидами изучали многими методами. Так, за связыванием белков с везикулами можно следить с помощью светорассеяния или путем измерения флуоресценции белков, при этом можно определить константы диссоциации. Возмущения в бислое, вызванные связыванием с ним белков, можно выявить по изменению проницаемости везикул или параметров температурного фазового перехода липидов, хотя анализировать эти результаты на молекулярном уровне довольно трудно. Весьма полезным оказалось также изучение монослоев, при этом степень проникновения белка в монослой можно оценить по изменению площади поверхности монослоя после внедрения белка.

Для получения детальной информации на молекулярном уровне одним из наиболее ценных методов оказался ЯМР. С помощью ЯМР были детально проанализированы последствия взаимодействия липидного бислоя с основным белком миелиновой оболочки и цитохромом с. Оба этих белка взаимодействуют с кислыми липидами главным образом электростатически, хотя физиологическая роль такого взаимодействия цитохрома с с липидами неясна. В отличие от трансмембранных белков два указанных периферических белка значительно различаются по взаимодействию с фосфолипидами. Так, при изучении везикул, содержащих димиристоил-фосфатидилглицерол и фосфатидилхолин, обнаружилось, что основный белок миелиновой оболочки специфически взаимодействует с первым из этих липидов. Исследования методом инфракрасной спектроскопии с фурье-преобразованием показывают, что при связывании с фосфатидилглицеролом белок приобретает высокоупорядоченную вторичную структуру; в основном он образует /3-слой, который в отсутствие этого липида не наблюдается. По данным 2Н-ЯМР белково-липидные взаимодействия приводят к существенному изменению упаковки полярных головок кислых фосфолипидов. Сходные работы, выполненные на цитохроме с с использованием метода 2Н-ЯМР, показали, что при связывании с этим белком происходят лишь небольшие изменения в упаковке головок фосфатидилсерина; в этих опытах использовались везикулы, содержащие также фосфатидилхолин. В обеих системах не наблюдалось никакого латерального разделения фаз и происходил быстрый обмен между свободными и связанными с белками липидами. Однако с другими кислыми фосфолипидами цитохром с взаимодействует по-разному. Например, в везикулах, содержащих кардиолипин и фосфатидилхолин, он вызывает латеральное разделение фаз, а в везикулах, содержащих кардиолипин и фосфатидилэтаноламин, стабилизирует иебислойные структуры.

Итак, по-видимому, типы взаимодействия между периферическими мембранными белкам и фосфолипидным бислоем весьма разнообразны.

Резюме

Чтобы до конца установить функции биологических мембран, необходимо изучить динамические свойства их компонентов. Для измерения скорости вращения липидов и белков внутри мембраны и скорости латеральной диффузии этих компонентов в плоскости мембраны были разработаны специальные спектроскопические методы. Они основаны на использовании спиновых или флуоресцентных зондов, которые встраиваются в мембрану или связываются с конкретными белками. Как правило, мембранные липиды могут свободно диффундировать в плоскости мембраны со скоростью, сравнимой со скоростью их диффузии в модельных мембранах. Напротив, латеральное движение интегральных белков в биологических мембранах часто ограничено. Это может быть связано с их ассоциацией с другими мембранными белками или с элементами цитоскелета либо внеклеточного матрикса. Многие белки способны свободно вращаться в плоскости мембраны, но это вращение также может быть затруднено из-за образования белковых агрегатов.

В любой момент времени с белком в биологической мембране соседствует значительная доля липидов. Слой липидов, непосредственно прилегающих к белку, называется пограничным. Эти липиды очень быстро обмениваются с основной массой липидов бислоя, и обычно вероятность нахождения тех или иных липидов по соседству с белком или в основной липидной фракции почти одинакова. Правда, для некоторых белков характерна определенная избирательность в связывании с липидами, но для всех известных случаев различие в связывании, измеряемое сродством липидов к пограничному слою, не превышает пяти. И даже такая слабая избирательность может приводить к тому, что липидный состав пограничного слоя будет отличаться от состава основной липидной фазы.


Подобные документы

  • Виды биологических мембран и их функции. Мембранные белки. Виды и функции мембранных белков. Структура биологических мембран. Искусственные мембраны. Липосомы. Методы исследования структуры мембран. Физическое состояние и фазовые переходы в мембранах.

    презентация [9,0 M], добавлен 21.05.2012

  • Структура биологических мембран и строение их основы - билипидного слоя. Молекулярная масса мембранных белков, их различие по прочности связывания с мембраной. Динамические свойства биологических мембран и значение организации для биологических систем.

    реферат [19,1 K], добавлен 20.12.2009

  • Топография мембранных белков и использование протеаз для ее определения. Трансмембранное и латеральное распределение мембранных компонентов. Свойства, степень ассоциации и функции эритроцитарных мембранных белков. Химическая модификация фосфолипидов.

    реферат [2,5 M], добавлен 03.08.2009

  • Строение мембран. Мембраны эритроцитов. Миелиновые мембраны. Мембраны хлоропластов. Внутренняя (цитоплазматическая) мембрана бактерий. Мембрана вирусов. Функции мембран. Транспорт через мембраны. Пассивный транспорт. Активный транспорт. Ca2+ –насос.

    реферат [18,2 K], добавлен 22.03.2002

  • Проблемы сборки мембранных белков, методы исследования и условия переноса белков через мембраны. Сигнальная и мембранная (триггерная) гипотеза встраивания белков в мембрану. Процесс сборки мультисубъединичных комплексов и обновление мембранных белков.

    курсовая работа [289,5 K], добавлен 13.04.2009

  • Подготовка студентов-биохимиков в области мембранологии. Совершенствование в методах биотехнологии и медицинской биохимии. Изучение строения, тонкой организации биологических мембран и механизмов функционирования включенных в мембраны компонентов.

    учебное пособие [26,7 K], добавлен 19.07.2009

  • Белки и липиды как основные компоненты мембран. Фосфолипидный состав субклеточных мембран печени крысы. Длинные углеводородные цепи. Мембраны грамположительных бактерий. Пути биосинтеза мембранных липидов и механизмы их доставки к местам назначения.

    реферат [1,3 M], добавлен 30.07.2009

  • Характерные частоты мембранных движений. Модели, использующиеся для анализа поступательного движения молекул внутри мембранного бислоя. Поступательное движение липидных и белковых молекул. Текучесть мембран и применение зондов. Латеральная диффузия.

    курсовая работа [818,7 K], добавлен 10.02.2011

  • Ультраструктура биологических и молекулярное строение цитоплазматических мембран, их основные функции. Физическая природа сил взаимодействия белков и липидов в их структурах. Методы изучения и исследования искусственных моделей цитоплазматических мембран.

    презентация [68,6 K], добавлен 06.06.2013

  • Понятие и строение биологической мембраны, принципы ее жизнедеятельности. Функциональные особенности липидов в ее деятельности и развитии, механизмы. Гипотеза возникновения плазматических мембран, оценка биологической роли и значения в них белков.

    реферат [18,8 K], добавлен 03.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.