Влияние предшественника лей-энкефалина на активность ферментов обмена регуляторных пептидов головного мозга и периферических органов крыс в норме и при эмоционально-болевом стрессе
Опиоидные пептиды и физиолого-биохимические аспекты их действия. Обмен регуляторных пептидов. Ферменты обмена нейропептидов при стрессе. Схема введения предшественника лей-энкефалина. Тканевое распределение КПН, ФМСФ-ингибируемой КП и АПФ у самцов крыс.
Рубрика | Биология и естествознание |
Вид | диссертация |
Язык | русский |
Дата добавления | 15.12.2008 |
Размер файла | 132,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Обнаруженное под воздействием субстратов и продуктов каталитических реакций, изменение активности ферментов обмена регуляторных пептидов, вероятно имеет важный биологический смысл для регуляции уровня нейропептидов при различных патологических состояниях организма, таких как алкоголизм, стресс-реакции и т.д.
В целом ряде работ имеются данные о повышении активности некоторых ферментов обмена нейропептидов (КПН и АПФ) при введении этанола [19, 41], глюкокортикоидов [47], резерпина, каптоприла [58]. Поскольку in vitro подобных эффектов не обнаружено, то предполагается, что показанное воздействие опосредовано механизмами регуляции активности данных ферментов и является одним из звеньев неспецифической реакции организма на действие экстремальных факторов.
Таким образом, сведения, касающиеся механизмов регуляции активности ферментов обмена регуляторных пептидов активными формами нейропептидов, а также их предшественниками носят фрагментарный характер. Вместе с тем изучение этого вопроса позволит понять принципы функциональной организации ферментов, с тем, чтобы использовать эти сведения на практике при разного рода патологических состояниях организма, таких как алкоголизм, стресс-реакции и т.д.
1.3. ОПИОИДНЫЕ ПЕПТИДЫ ПРИ ВОЗДЕЙСТВИИ СТРЕССОРНЫХ ФАКТОРОВ.
В числе актуальных проблем современной биологии и медицины все большее внимание уделяется проблеме стресса. Такой интерес к изучению этого вопроса обусловлен многими факторами, в числе которых постоянное ускорение темпов жизни, шум, урбанизация, которые, так или иначе, воздействуют на организм человека и животных, провоцируя развитие стресса. Достаточно сильное и продолжительное действие стресс-факторов может стать причиной различных функциональных нарушений и патологий [4, 90].
Определение стресса как “неспецифической реакции организма на любое требование извне”, данное Г.Селье [132], а также предложенная им концепция развития стресс-реакции, подверглись критическому анализу со стороны многих ученых. Сегодня, стресс рассматривается как совокупность общих, неспецифических биохимических, физиологических и психических реакций организма, возникающих в ответ на действие чрезвычайных раздражителей различной природы и характера, обеспечивающих мобилизацию организма в целях поддержания гомеостаза или его адаптации [144].
Общей концепцией ограничения стресс-реакции признана концепция сопряжения действия стресс-лимитирующих и стресс-реализующих (АКТГ-подобных) систем [116, 138, 144]. Существование в организме специализированных стресс-лимитирующих систем, ограничивающих само возбуждение стресс-реализующих систем, обеспечивает резистентность к стрессу [124, 125, 134, 135]. Известно, что при воздействии стрессорных факторов происходит активация центральных и местных (антиоксидантная и аденозинэргическая системы) стресс-лимитирующих систем и механизмов. Среди центральных лимитирующих систем активируются такие как: ГАМК-эргическая, серотонинэргическая, холинэргическая и опиоидэргическая системы [29, 116]. Обнаружено, что характер и интенсивность развития стресс-реакции, а также степень участия в ней различных функциональных систем, во многом зависит от исходного состояния организма [80, 232, 270]. Различия животных по врожденной реакции на стресс-раздражители, послужили основанием для деления их на стрессустойчивых (низкоэмоциональных) и стресснеустойчивых (высокоэмоциональных, предрасположенных к стрессу). Основным показателем принадлежности животных к тому или иному типу является проявление их двигательной активности в тесте “открытое поле”: высокий уровень активности позволяет отнести животных к сильному типу (стрессустойчивому) и наоборот [51, 80]. Показано, что устойчивость к эмоциональному стрессу обусловлена прежде всего высоким уровнем опиоидных пептидов, вещества Р, ПВДС [131, 236, 243].
Степень развития стресс-реакции, во многом, определяется видом стресс-воздействия. Например, известно, что, кратковременное острое импульсное стрессирование приводит к экстренному повышению адаптивных способностей организма [37, 70, 145, 151]. Одним из таких воздействий может быть признан острый эмоционально-болевой стресс (ЭБС) [37, 52, 64, 121]. Показано, что при ЭБС происходит мобилизация ГГНС, адренэргической, симпато-адрееналовой и опиоидэргичекой систем. Литературные данные свидетельствуют о возможности включения в круг этих систем и мозговой железы - эпифиза [7]. Осуществление эпифизом своей антистрессорной защиты достигается при участии эндогенных опиоидов.
Таким образом, опиоидным пептидам принадлежит важная роль среди известных естественных биорегуляторов, участвующих в формировании адаптации к стрессорным факторам. Ниже представлены сведения о роли данной группы пептидов в реакциях стресса.
Система эндогенных опиоидных пептидов представляет собой одну из основных регуляторных систем, функционирующих в условиях стресса и адаптации [8, 102, 106, 134, 242]. Течение стресс-реакции сопровождается глубоким сдвигом в опиоидной системе, причем в ответ на воздействие болевого фактора наблюдается повышение уровня опиоидных пептидов, а при воздействии эмоционального - снижение их содержания [14, 18, 72, 239]. Увеличение содержания опиоидов при воздействии стресс-факторов отмечается в крови, ликворе, головном и спинном мозге [33, 34, 72, 140, 243]. Изменения метаболизма в головном мозге при воздействии сильных раздражителей, вызывают повышение проницаемости гемато-энцефалического барьера (ГЭБ) во всех его отделах [88, 97, 108]. Подобные изменения способствуют более интенсивному проникновению различных биологически активных веществ в структуры головного мозга, особенно эмоциогенные и гипофиз [88]. Повышенная проницаемость ГЭБ отмечена в гипоталамусе, что связывают с большой плотностью сети капилляров в нем [88]. При этом концентрация различных представителей семейства опиоидных пептидов также неодинакова, так как при эмоциональном стрессе в гипоталамусе преобладает мет-энкефалин, а уровень -эндорфина достаточно низок, если же к этому воздействию присоединяется болевой фактор, то отмечается преобладание лей-энкефалина и концентрация -эндорфина повышена [14, 18, 140, 242]. Повышение уровня энкефалинов способствует стабилизации внутренней среды организма, результатом чего является ограничение или прерывание стресс-реакции [6, 33, 100, 134, 238].
Функционирование этой системы самостоятельно, без взаимодействия с некоторыми регуляторными системами представляется маловероятным. Установлены антагонистические взаимоотношения между опиоидными пептидами и симпатоадреналовой, гипоталамо-гипофизарно-надпочечниковой системами [74, 124, 139, 176, 270], которые играют ключевую роль в генерации первой стадии общего адаптационного синдрома.
В течение первых суток (фаза тревоги) наблюдается снижение уровня энкефалинов в крови [134, 135, 140], в результате чего развивается острый адаптационный синдром, который сопровождается активацией ГГНС [21, 25, 128, 142, 143]. Дальнейшее, повышение уровня эндогенных опиоидных пептидов, в ответ на стресс-воздействие, способствует блокаде ГГНС [135, 261]. Торможение ГГНС опиоидными пептидами эффективно и препятствует избыточной стимуляции ГГНС, если стресс-воздействие осуществляется в легкой форме и непродолжительно по времени. При длительном стресс-воздействии опиоидная система не эффективна, в результате чего развивается гиперэргическая реакция со стороны ГГНС, заканчивающаяся общим стресс-повреждением организма [128, 142].
Одной из важных характеристик стресса является активация симпато-адреналовой системы (САС) [21, 150]. В общий ответ САС на действие раздражителя вовлекаются в первую очередь катехоламины - дофамин, норадреналин и адреналин. Установлено, что активация системы катехоламинов является основным фактором, обуславливающим увеличение концентрации опиоидных пептидов в мозге, а также выброс -эндорфина из гипофиза в кровь [52, 79, 125, 139]. Опиоидные пептиды, действуя через -рецепторы, снижают уровень катехоламинов в мозге, приближая их содержание к норме, тем самым ослабляя стресс-реакцию [125, 144]. Активация САС сопровождается также интенсивным высвобождением АКТГ [18, 106, 232]. Установлено, что эндогенные опиоидные пептиды модулируют процессы избыточного синтеза и секреции АКТГ, приближая их уровень к норме [18, 125].
Показанные выше взаимодействия системы опиоидных пептидов с другими функциональными системами организма, а также обнаруженное модулирующее влияние на процессы транссинаптической передачи нервного импульса и активность нейронов, являются следствием включения цепи сложных механизмов внутри клетки [10, 118, 122, 135, 261, 269]. В первую очередь к ним следует отнести депрессивное влияние опиоидных пептидов на систему циклических нуклеотидов, концентрация которых при воздействии экстремальных факторов эмоциональной и болевой природы, повышается [18, 109]. Такое изменение концентрации циклических нуклеотидов в клетке при воздействии стресс-фактора приводит к значительному снижению возбудимости нейронов и оказывает влияние на транспорт нейротрансмиттеров. Действие опиоидных пептидов основано на угнетении активности аденилатциклазы и, как следствие, снижении концентрации цАМФ в клетке [18, 109, 135]. Возможно, также, что энкефалины в первую очередь индуцируют повышение уровня цГМФ, после чего наблюдается активация фосфодиэстеразы и лишь затем идет торможение аденилатциклазы [18]. В любом случае, результатом является снижение избыточного синтеза цАМФ в клетке, что ведет к торможению ряда физиологических реакций, усугубляющих стресс-повреждения систем организма [18, 109 135].
Известно, что при тяжелых и продолжительных видах стресса той активации, которая достигается под влиянием опиоидных пептидов при легких и кратковременных стрессах недостаточно, в результате чего наблюдается неадекватность синтеза и секреции опиоидных пептидов и/или блокада опиоидных рецепторов продуктами метаболизма [112, 134, 145, 261]. Эти изменения влекут за собой истощение нейрогуморальной системы. В этой связи, необходимым становится экзогенное введение опиоидных пептидов с целью повышения потенциальных возможностей системы эндогенных опиоидов [102, 116, 125, 134, 135].
Показано, что экзогенное введение пептидных лигандов опиатных рецепторов приводит к снижению степени гипертрофии надпочечников [9, 34, 100], ослаблению инволютивных процессов в тимусе и селезенке [6], снижению степени стресс-повреждения сердца [102, 104, 238], а также положительно влияет на общее состояние животных при острой ишемии миокарда [103, 145, 269]. В ряде работ показана способность экзогенных опиоидов оказывать седативное действие при аффективных состояниях на синтез и секрецию стресс-гормонов [129], а также влиять на эмоциональный компонент стресса [136, 141, 151]. Стресс-лимитирующий характер действия опиоидных пептидов опосредуется через ингибирование избыточной секреции АКТГ, катехоламинов и других катаболических гормонов на начальных этапах развития общего адаптационного синдрома. В фазу резистентности реализация эффектов экзогенных опиоидных пептидов осуществляется через стимуляцию образования анаболических инкретов - пролактина, соматотропина и др. [101].
Предполагается, что адаптогенным действием обладает предшественник лей-энкефалина - лей5-энкефалин-арг6 [69, 134, 135].
Основными причинами, ограничивающими широкое использование регуляторных пептидов в клинике являются: слабовыраженный эффект при приеме внутрь, зависимость эффекта от исходного функционального состояния организма, трудности при прохождении ГЭБ, а также кратковременность действия, обусловленная в основном их быстрым протеолизом. Одним из наиболее известных препаратов, устойчивым к действию пептид-гидролаз, обладающим селективным пролонгированным действием, а также биодоступным, является даларгин - аргининсодержащий гексапептидный аналог лей- энкефалина ( Д-ала2-лей5-арг6-энк ) [69, 94, 105, 123, 146]. Внутримышечное введение его стимулирует репаративную регенерацию периферических нервных образований в условиях их повреждения, повышает активность коры надпочечников при стрессе [34], положительно влияет на организм после перенесенного инфаркта миокарда, симптоматика которого сходна с изменениями, возникающими в организме, подверженном острому эмоционально-болевому стрессу [245]. Показана также возможность использования даларгина для профилактики и патогенетической коррекции стресс-индуцированных нарушений иммунитета [148]. Выраженное антистресорное действие аргининсодержащего гексапептидного аналога обусловлено наличием аргининового компанента [101]. Важное значение в механизмах действия даларгина при стрессе имеет стимулирующее влияние его на опиатные рецепторы нейрональных структур мозга, а также на тормозную ГАМК-эргическую систему [101, 146]. Обнаруженные эффекты способствуют ограничению стресс-реакции на стадии тревоги и формированию резистентности к действию стресса в ходе общего адаптационного синдрома [89, 101].
Таким образом, экспериментально и теоретически доказана значимость системы опиоидных пептидов в адаптации и устойчивости организма к стрессу. Одним из важных, и в то же время малоизученных, вопросов в понимании механизмов регуляции активности нейропептидов в организме при воздействии стресса является выяснение путей их синтеза и деградации при экстремальных условиях.
ФЕРМЕНТЫ ОБМЕНА НЕЙРОПЕПТИДОВ ПРИ СТРЕССЕ
В настоящее время протеолиз рассматривается не только как процесс катаболической утилизации биологически активных пептидов, но и как регуляторный фактор, функция которого состоит в запуске и прерывании ряда биохимических и физиологических процессов при различных функциональных состояниях организма [22, 77, 177, 226]. Практически неизученным остается вопрос об изменениях в функции ферментов обмена нейропептидов при стрессе, в то время как именно активность этих ферментов определяет уровень биологически активных пептидов в организме и, следовательно, степень реализации ответной реакции организма на воздействие экстремальных факторов.
Согласно литературным данным характер изменения активности ферментов обмена нейропептидов при стрессе зависит от эмоционального статуса животного, который в свою очередь определяется генетически запрограммированной предрасположенностью к той или иной форме экспериментальных неврозов [22, 48, 80, 83, 138, 210, 236]. Исследования показывают, что у крыс с различным поведением в тесте “открытого поля” наблюдаются различия в уровне катехоламинов в мозге [232]. Поскольку регуляция функций САС при стрессе реализуется при участии опиоидных пептидов, способных влиять на направление адаптивных процессов в организме [139, 146], то не исключается, что устойчивость к стрессу зависит от функциональной активности ферментов обмена опиоидных пептидов.
Подобная зависимость отмечена для КПН, АПФ, КПN при эмоциональном стрессе [43, 44]. Отмечено, что у устойчивых к стрессу животных активность ферментов обмена нейропептидов более чувствительна к воздействию эмоционального стресса, чем у предрасположенных.
Обнаружено, что у устойчивых к стрессу животных в гипоталамусе и стриатуме активность КПН при воздействии стресса повышается [41, 42, 43, 56]. Авторами высказано предположение, что такой эффект наблюдается в связи с активацией синтеза в исследованных отделах нейропептидов (энкефалинов, вещества Р и др.), играющих ключевую роль при адаптации к стрессу. В гипофизе, где синтезируется АКТГ, активность растворимой фракции КПН, напротив, существенно повышалась у предрасположенных к стрессу животных. Предполагается, что причина отмеченных изменений состоит в том, что КПН участвует в процессинге АКТГ, который в свою очередь усиливает чувство страха и тревоги и тем самым усугубляет эмоциональный стресс [189].
Известно, что КПN и АПФ также участвуют в обмене ПВДС, -эндорфина [40, 209], уровень которых различен у предрасположенных и устойчивых к стрессу животных [92, 130,131]. Повышение содержание этих пептидов в мозге и крови у животных связывают, прежде всего, с высокой скоростью их обмена. Показано, что у устойчивых к эмоциональному стрессу животных, активность КПN и АПФ в сыворотке крови выше, чем у предрасположенных [44]. В связи с этим, авторами высказано предположение о более интенсивном обмене нейропептидов у этих животных и косвенном влиянии КПN и АПФ на эмоциональный статус организма [44].
Немаловажную роль в изменении функциональной активности ферментативных систем мозга и периферических тканей при стрессе играет вид стресс-воздействия (хронический и острый звуковой, иммобилизационный, эмоционально-болевой и т.д.).
Такая зависимость показана, в частности, для КПН [37, 41, 42, 43, 45, 64]. Активность данного фермента при воздействии стресса различной природы, в основном, повышалась, однако, степень ее повышения была различной, что обуславливают спецификой воздействия, вызывающего стресс. Так при хроническом эмоционально-болевом стрессе (ЭБС) повышение активности фермента было меньшим, чем при остром воздействии стресс-факторов [37, 42]. Кроме того, показано, что повышение активности фермента было различным для растворимой и мембраносвязанной форм КПН, что свидетельствует о различной роли этих форм фермента в организме [45, 186]. Наиболее выраженными изменения активности фермента были в гипофизе - отделе, отвечающем за синтез и секрецию стресс-пептидов [37, 45]. Значительное повышение активности показано также в стриатуме - отделе, где синтезируется ряд биологически активных пептидов стресс-протективного действия. Причем отмечено, что при однократном ЭБС такое повышение активности сохранялось в течение достаточно длительного промежутка времени, что указывает, на длительный характер биосинтеза нейропептидов при оказанном воздействии. Предполагается, что причина различия в динамике изменения активности КПН при остром и хроническом воздействии стресса состоит в развитии адаптации организма к неблагоприятным факторам среды при хроническом (многократном) стресс-воздействии [37].
Особый интерес представляют исследования, касающиеся влияния различных веществ на ферменты обмена нейропептидов при стрессе. Известно, что этанол ослабляет некоторые физиологические проявления стресса, усиливает секрецию стресс-пептидов, а так же активирует энкефалинэргическую систему [19, 41]. Поскольку уровень опиоидных и стресс-пептидов в организме контролируется КПН, то представляется возможным, что КПН определяет характер влияния этанола на организм при стрессе [19, 41]. Характер влияния этанола на физиологические проявления стресса связан с особенностями стрессирующего фактора [61]. Сведения о гиперактивации КПН при совместном действии этанола иммобилизационного или хронического ЭБС в отделах мозга, где синтезируются опиоидные пептиды, вещество Р, подтверждают данные об адаптогенном действии этанола при стрессе. Однако такая активация пептидэргических систем ведет к тяжелым последствиям для организма, так как вызывает более быстрое истощение этих систем [41].
Дальнейшее изучение механизмов, предотвращающих возникновении стресс-реакции, способствовало поиску новых веществ, обладающих стресс - протективным действием. Особое место в ряду таких веществ отводится транквилизаторам (резерпин, диазепам), которые широко используются в клинической практике. Однако влияние их на пептидэргические системы и ферменты обмена нейропептидов изучено недостаточно. Между тем этот вопрос достаточно важен, для понимания механизмов развития стресса.
Известно, что резерпин повышает уровень энкефалинов в организме [58]. При введении резерпина, активность ферментов процессинга, обладавших КПБ-подобной активностью (КПН и КПN), повышалась в 2-3 раза [58]. Предполагается, что изменение активности изучаемых ферментов является причиной активизации энкефалинэргической системы.
Транквилизаторы бензодиазепиновой природы также обладают стресс - протективным действием. Изучение их воздействия на ферменты обмена нейропептидов при стрессе становится тем более интересным, что в цепи реакций, которые они осуществляют в организме есть вещества, которые являются либо продуктами их деятельности, либо они участвуют в регуляции их синтеза. Так бензодиазепиновые транквилизаторы модулируют уровень АКТГ как в норме так и при воздействии стресс-факторов [114, 252], в частности введение фенозепама уменьшает концентрацию АКТГ при стрессе. Поскольку известно, что КПН участвует в биосинтезе АКТГ, то особый интерес представляет изучение возможности вовлечения этого фермента в стресс-протективное действие транквилизаторов.
Данные исследований показывают, что активность КПН при совместном воздействии диазепама и стресса, в основном, ниже, чем только при стрессе [39]. Активность АПФ в сыворотке при введении диазепама изменяется сходным образом. Поскольку АПФ участвует в деградации энкефалинов, вещества Р и ПВДС - биологически активных пептидов, основная роль которых заключается в адаптации организма к стрессу [107, 135, 152], то не исключается, что антистрессорное действие диазепама обусловлено его модулирующим действием на активность КПН и АПФ. Изменение активности данных ферментов может привести к уменьшению содержания АКТГ и увеличению содержания опиоидных нейропептидов, способствуя тем самым развитию адаптационных реакций в организме.
Таким образом, изменения в проявлении функциональной активности ферментов процессинга и инактивации биологически активных пептидов при стрессе свидетельствуют о важной роли этих ферментов в регуляции уровня активных нейропептидов, участвующих, как в развитии, так и в торможении размаха стресс-реакции.
Суммируя вышеизложенные сведения необходимо отметить следующее:
Опиоидные пептиды, их синтетические аналоги (например, даларгин), а также предшественники (лей5-энкефалин-арг6) обладают стресс-протективным свойством.
При воздействии на организм стресс-факторов различной природы наблюдаются значительные изменения в обмене биологически активных пептидов, а также жизнедеятельности организма в целом. Наиболее существенные изменения отмечаются при остром стресс-воздействии.
Важная роль в обмене регуляторных пептидов принадлежит ферментам пептид-гидролазам, которые регулируют уровень биологически активных пептидов при различных функциональных состояниях организма, в том числе и при стрессе. Особое место в ряду этих ферментов занимают основные карбоксипептидазы, которые действуют на конечном этапе процессинга предшественников регуляторных пептидов, а также ферменты, участвующие в инактивации активных форм нейропептидов.
Стресс-протективные вещества различной природы влияют на активность ферментов обмена нейропептидов мозга и периферических тканей стрессированных животных, что свидетельствует об изменениях в метаболизме нейропептидов у этих животных.
В связи с этим, представляет интерес изучение влияния предшественника лей-энкефалина на активность некоторых ферментов обмена нейропептидов головного мозга и периферических тканей животных, подверженных воздействию острого ЭБС. Полученные данные могут способствовать выяснению роли пептидгидролаз в механизмах развития стресс-реакции, а также в реализации эффектов экзогенного предшественника на организм, подверженный стрессу.
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ.
2.1. МАТЕРИАЛЫ ИССЛЕДОВАНИЯ.
Объектом исследования служили головной мозг и периферические ткани (надпочечники и семенники) самцов белых беспородных крыс в возрасте 5 месяцев, массой 160-190 г. Животных содержали в стандартных условиях вивариума.
Животных декапитировали, извлекали головной мозг, гипофиз, надпочечники и семенники. Затем ткани помещали в охлажденный физиологический раствор, очищали от оболочек и кровеносных сосудов, высушивали фильтровальной бумагой. Затем выделяли отделы мозга - гипоталамус, средний мозг, гиппокамп, стриатум, большие полушария.
Образцы выделенных отделов мозга и тканей гомогенизировали в стеклянном гомогенизаторе Поттера в 20 мМ натрий ацетатном (NaAc) буфере рН 5,6, содержащем 50 мМ NaCl. Соотношения вес/объем были различны: 1/400- для гипофиза, 1/200- для надпочечников, 1/100- для семенников, 1/50- для отделов мозга. Гомогенаты использовали в качестве источников КПН, ФМСФ-ингибируемой КП и АПФ.
В работе были использованы 4 группы животных. 1 группа - интактные животные. Животным 2 группы вводили раствор лей5-энкефалин-арг6 в дозе 20 мкг/кг соответственно. Животные 3 группы подвергались воздействию острого ЭБС. Животным 4 группы перед воздействием острого ЭБС инстиллировали на конъюнктиву глаза 2 мкл раствора предшественника лей-энкефалина - лей5-энкефалин-арг6 в дозе 20 мкг/кг.
2.2. МЕТОДЫ ИССЛЕДОВАНИЯ.
2.2.1. Схема введения предшественника лей-энкефалина
Введение предшественника лей-энкефалина - тир-гли-гли-фен-лей-арг (лей-энкефалин-арг) осуществлялось способом инстилляции на конъюнктиву глаза (доза 20 мкг/кг веса). Раствор лей-энкефалин-арг наносился на правый глаз крысы, с помощью дозатора с мягким катетером из поливинилхлорида (объем наносимого раствора 2 мкл). Введение предшественника энкефалина осуществлялось утром в одно и то же время.
Раствор лей-энкефалин-арг был приготовлен на физиологическом растворе.
Декапитацию животных производили через 0,5 часа, 4 часа, 24 часа, 72 часа и 10 суток после введения лей-энкефалин-арг, физиологического раствора и через 0,5 часа, 4 часа, 24 часа, 72 часа и 10 суток с начала воздействия острого ЭБС.
2.2.2. Моделирование острого эмоционально-болевого стресса
Для моделирования острого эмоционально-болевого стресса (ЭБС) крыс помещали в клетку с полом из металлической проволоки и встроенной в нее электрической лампочкой и звонком.
Для создания модели стресса крыс в течение 20 мин через каждые 10 секунд в беспорядочном режиме подвергали воздействию одного из трех факторов: вспышке света (лампа накаливания мощностью 100 Вт, расстояние 0,5 м), звука силой 70 Дб, электрокожному раздражению пороговой силы (2 мА). Длительность каждого воздействия составляла 1 сек.
2.2.3. Метод определения активности КПН.
Активность КПН определяли флюориметрически, используя метод Fricker и Snayder c некоторыми модификациями [193]. Активность фермента определяли по освобождению дансил-фен-ала из дансил-фен-ала-арг при рН 5,6, как активность ингибируемая ГЭМЯК - высокоспецифичным ингибитором КПН [193].
Для определения активности КПН смешивали 150 мкл 50 мМ NaAc буфера рН 5,6, содержащего 50 мМ NaCl (проба без ГЭМЯК - контрольная) или 150 мкл раствора, содержащего ГЭМЯК, в том же буфере - опытная проба (концентрация в пробе 1 мкМ) с 50 мкл препарата фермента. Затем пробы преинкубировали 8 мин, при 37 0С, по истечении этого времени прибавляли предварительно нагретый до 37 0С раствор дансил-фен-ала-арг (концентрация 210 мкМ), объемом 50 мкл (конечная концентрация субстрата в пробе 42 мкМ). Реакционную смесь инкубировали 60 мин при t = 37 0С, реакцию останавливали прибавлением 50 мкл 1 н. НСl.
К пробам приливали хлороформ объемом 1,5 мл. и тщательно встряхивали в течение 60 сек. При этом продукты реакции переходят в хлороформную фазу, а субстрат, нерастворимый в хлороформе, остается в водной фазе. Для разделения хлороформной и водной фаз пробы центрифугировали в течение 5 мин при 1000 об/ мин.
Флюоресценцию хлороформной фазы измеряли на флюориметре ФМЦ - 2 в кювете толщиной 1 см при ex = 360 нм и em= 530 нм. В качестве стандартного раствора использовали 1 мкМ раствор дансил-фен-ала в хлороформе.
Активность КПН определяли как разность в накоплении продуктов реакции в пробах, содержащих и не содержащих ГЭМЯК. Активность выражали в нмоль дансил-фен-ала, образовавшегося за 1 мин инкубации в пересчете на 1 мг белка.
2.2.4. Метод определения активности
ФМСФ - ингибируемой карбоксипептидазы.
Активность ФМСФ-ингибируемой карбоксипептидазы определялась флюориметрически, методом, разработанным в лаборатории нейрохимии ПГПУ им. В.Г. Белинского [49]. В качестве субстрата использовали раствор дансил-фен-лей-арг.
В контрольные пробы вносили 150 мкл 50 мМ NaAc буфера, содержащего 50 мМ NaCl рН 5,6 и 50 мкл препарата фермента. Опытные пробы содержали 140 мкл указанного буфера и 50 мкл препарата фермента, ингибитор фенилметилсульфонилфторид (ФМСФ), приготовленный на этаноле, вносился в пробу непосредственно перед преинкубацией в объеме 10 мкл. Пробы преинкубировали 8 мин при 370С, затем вносили 50 мкл 210 мкМ раствора дансил-фен-лей-арг. Далее контрольные и опытные пробы обрабатывали, как описано для КПН.
Активность ФМСФ - ингибируемой карбоксипептидазы определяли как разность в накоплении продуктов реакции в пробах, содержащих и не содержащих ФМСФ и выражали в нмоль дансил-фен-лей, образовавше-гося за 1 мин инкубации в пересчете на 1 мг белка.
2.2.5.Метод определения активности АПФ.
Активность АПФ также определялась флюориметрически. В качестве субстрата использовали дансил-фен-ала-арг, приготовленный на воде. В качестве ингибитора использовали высокоспецифичный ингибитор АПФ - каптоприл.
Контрольные пробы содержали 100 мкл 200 мМ трис НСl рН 7,6 и 100 мкл препарата фермента. В опытные пробы вносили 90 мкл указанного буфера, 10 мкл 25 мМ каптоприла, приготовленного на воде и 100 мкл гомогената. Пробы преинкубировали в течение 8 мин при 370С, затем в каждую пробу прибавляли предварительно нагретый до 370С раствор субстрата дансил-фен-ала-арг объемом 50 мкл. Реакционные смеси инкубировали в течение 30 мин при 37 0С, реакцию останавливали прибавлением 50 мкл 1н раствора НСl. Далее пробы обрабатывали по схеме, приведенной для КПН.
Активность фермента определяли как разницу в приросте флюорисценции в пробах содержащих и не содержащих ингибитор АПФ - каптоприл и выражали в нмоль дансил-фен-ала, образовавшегося за 1 мин инкубации в пересчете на 1 мг белка.
2.2.6. Методы определения активности КПН, ФМСФ-ингибируемой КП и АПФ in vitro
В опытах in vitro, влияние лей-энкефалин-арг на активность ферментов изучали в гомогенатах гипофиза, надпочечников и больших полушарий. Раствор лей-энкефалин-арг добавляли непосредственно в среду инкубации, концентрация исследуемого предшественника составляла 2,4 мМ. Все последующие операции по определению активности ферментов проводили по схеме, описанной выше.
2.2.7. Метод определения содержания белка
Содержание белка в пробах определяли по методу Лоури [65]. Метод основан на способности белка окрашиваться раствором Фолина. В качестве стандарта для построения калибровочной кривой использовали БСА.
2.2.8.Статистическая обработка результатов исследования.
Результаты подвергали статистической обработке с использованием t-критерия Стьюдента, различия считали достоверными при p<0,05 [98].
ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ.
3.1. РЕГИОНАЛЬНОЕ И ТКАНЕВОЕ РАСПРЕДЕЛЕНИЕ АКТИВНОСТИ КПН, ФМСФ-ИНГИБИРУЕМОЙ КП И АПФ У САМЦОВ КРЫС.
Известно, что уровень биологически активных пептидов регулируется пептидгидролазами, которые отщепляют остатки аргинина и лизина с С-конца пропептидов. Неоднородное распределение нейропептидов, а также разница в течение процессинга регуляторных пептидов в тканях (нервной и периферической) [14, 212, 271] указывают на необходимость изучения тканевого и регионального распределения активности ферментов их обмена. Особый интерес вызывает изучение распределения активности ФМСФ-ингибируемой КП - фермента, биологическая роль которого в полной мере не определена. Важным представляется, также, сравнение уровня активности этого фермента с активностью КПН и АПФ - ферментов, тканевое и региональное распределение и биологическая роль которых известны.
Результаты исследования распределения активности КПН, ФМСФ-ингибируемой КП и АПФ в отделах мозга и некоторых периферических тканях представлены в таблице 1 (приложение).
3.1.1.Распределение активности КПН.
Максимальная активность КПН обнаружена в гипофизе - отделе, синтезирующем группу биологически активных пептидов. В отделах мозга активность КПН примерно в 6-7 раз ниже, чем в гипофизе. По убыванию активности КПН отделы мозга можно расположить следующим образом: средний мозг, гипоталамус, гиппокамп. В этих регионах мозга секреторные пептиды не синтезируются, однако данные отделы характеризуются достаточно высоким их содержанием [221]. Далее по убыванию активности КПН следуют стриатум и большие полушария, уровень активности фермента, в которых примерно одинаков. В семенниках и надпочечниках активность КПН на порядок ниже, чем в отделах мозга.
Таким образом, высокая активность КПН обнаружена в отделах мозга, связанных с образованием, секрецией или высоким содержанием регуляторных пептидов [221]. Полученные данные хорошо согласуются с литературными о распределении активности КПН [39, 40, 193, 194].
Следует указать на то, что в наших исследованиях активность КПН определялась как активность, ингибируемая ГЭМЯК, являющейся высокоспецифичным ингибитором КПН, в то время как другие авторы использовали данные по активности КПН, стимулируемой ионами Со2+ [188, 193, 194], что предполагает несколько завышенные результаты, не всегда соответствующие действительному уровню активности этого фермента в мозге и тканях. В связи с этим значения активности КПН в наших исследованиях несколько ниже значений, имеющихся в литературе.
3.1.2. Распределение активности АПФ.
Максимальная активность АПФ у интактных животных обнаружена в гипофизе. В стриатуме активность АПФ примерно в 3 раза ниже. В других отделах мозга и надпочечниках активность фермента находится на уровне предела чувствительности метода. Высокая активность АПФ обнаружена также в семенниках.
Таким образом, полученные данные хорошо согласуются с распределением регуляторных пептидов в мозге и периферических тканях крыс, что подтверждает участие данного фермента в процессах модификации белков и пептидов в этих регионах.
3.1.3.Распределение активности ФМСФ-ингибируемой КП
Полученные данные свидетельствуют, что активность ФМСФ-ингибируемой КП обнаружена во всех исследуемых регионах мозга и периферических тканях крыс (табл.1). Наибольшая активность фермента показана в надпочечниках, в гипофизе активность составляет 74% от активности ФМСФ-ингибируемой КП в надпочечниках, в других отделах активность примерно одинакова и составляет 23% от активности фермента в гипофизе.
Данные наших исследований о сравнительно высокой активности ФМСФ-ингибируемой КП в надпочечниках и гипофизе, отделах, характеризующихся высоким содержанием нейропептидов, а также их интенсивным метаболизмом [14, 34], указывают на вероятность вовлечения этого фермента в обмен биологически активных пептидов.
Сравнение регионального распределения КПН и ФМСФ-ингибируемой КП показывает некоторое сходство, так максимальный уровень активности этих ферментов отмечен в гипофизе. Однако если активность ФМСФ-ингибируемой КП характеризуется высокими показателями в надпочечниках, где синтезируется большое количество энкефалинов, то для КПН эти значения на порядок ниже. Кроме того, различия в уровне активности ФМСФ-ингибируемой КП, обнаруженные между гипофизом и отделами мозга, менее значительны по сравнению с таковыми для КПН. Полученные данные позволяют выдвинуть предположение о некоторых различиях в биологической функции этих ферментов. Вероятно, что КПН и ФМСФ-ингибируемая КП участвуют в обмене разных регуляторных пептидов или в процессах модификации одних и тех же нейропептидов, но на различных этапах их обмена.
3.2. ИССЛЕДОВАНИЕ ВЛИЯНИЯ ОСТРОГО ЭМОЦИОНАЛЬНО-БОЛЕВОГО СТРЕССА НА АКТИВНОСТЬ КПН, ФМСФ-ИНГИБИРУЕМОЙ КП И АПФ
Известно, что воздействие стресс-факторов вызывает значительные изменения в функционировании многих систем организма, таких как гипоталамо-гипофизарно-надпочечниковая (ГГНС), симпато-адреналовая (САС) и др. [5, 21, 76, 270]. Неотъемлемой частью развивающихся гормонально-медиаторных изменений при стрессе является активация пептидэргических систем головного мозга и периферических тканей [8, 91, 111, 137]. Одной из наиболее многофункциональных регуляторных систем, действующих в условиях стресса и адаптации, является система эндогенных опиоидных пептидов [116, 118, 242]. Обнаружено, в частности, что стресс-воздействие является стимулирующим фактором, приводящим к генерализованной активации стресс-лимитирующей энкефалинэргической системы [79, 100, 101]. Причем, наиболее выраженное повышение адаптивных способностей организма достигается при кратковременном остром воздействии стресс-факторов [144, 145]. В связи с этим, непродолжительное острое стрессирование рассматривается как физиологически адекватный способ изучения свойств эндогенных регуляторных пептидов при экстремальных воздействиях. Кроме того известно, что сильные раздражители, такие как электрический ток, резкий звук, вызывают повышение проницаемости ГЭБ для эндогенных биологически активных веществ, синтезируемых в ответ на стресс-воздействие [88, 97].
Практически не изучены ферментативные механизмы, обеспечивающие обмен регуляторных пептидов при остром ЭБС. Известно, что уровень нейропептидов при различных физиологических и патологических состояниях, а, следовательно, и степень реализации ответной реакции организма на оказанное воздействие, зависят от проявления функциональной активности ферментов их обмена. Участие КПН и АПФ в образовании и/или деградации энкефалинов, пептидных гормонов гипофиза и других регуляторных пептидов при стрессе сегодня не вызывают сомнений. Что же касается включения в процессы обмена нейропептидов ФМСФ-ингибируемой КП, то, на данный момент, это является только предположением. В связи с этим, для более детального определения биологической роли этого малоизученного фермента, особый интерес представляет сравнение изменений активности ФМСФ-ингибируемой КП с активностью КПН и АПФ при остром эмоционально-болевом стрессе (ЭБС). Большой интерес в связи с данными о длительном и фазном выбросе нейропептидов при воздействии стресс-факторов [134, 135, 144], вызывает изучение динамики изменения активности исследуемых ферментов.
Проведено исследование влияния острого ЭБС на активность КПН, ФМСФ-ингибируемой КП и АПФ в головном мозге, надпочечниках и семенниках крыс через 0,5 часа, 4 часа, 24 часа, 72 часа и 10 суток после воздействия острого ЭБС. Сравнение активности КПН, ФМСФ-ингибируемой КП и АПФ проводилось относительно интактной группы животных (норма). Результаты данной серии исследования представлены в таблице 2 (приложение).
3.2.1. Активность КПН в головном мозге, надпочечниках и семенниках крыс при воздействии острого эмоционально-болевого стресса
Обнаружено, что острый ЭБС вызывал статистически достоверное изменение активности КПН во всех исследованных отделах мозга и гипофизе (табл.2, рис.1). Активность КПН в надпочечниках и семенниках крыс при воздействии острого ЭБС практически не изменялась. Показано, что изменения активности изучаемого фермента в отделах мозга и гипофизе отличались по динамике, направленности и степени выраженности. Наиболее выраженное повышение активности КПН обнаружено в гипофизе и стриатуме. В гиппокампе, среднем мозге и надпочечниках после воздействия ЭБС отмечено снижение активности КПН.
Активность КПН в гипофизе через 0,5, 4, 24 и 72 часа была выше нормы. Наиболее существенное повышение активности фермента отмечено через 0,5 и 72 часа после воздействия острого ЭБС, активность КПН превышала показатели интактных животных на 43%, p<0,01 и 54%, p<0,001, соответственно. Через 10 суток статистически достоверных отклонений от нормы не обнаружено
В стриатуме активность фермента повышалась постепенно. Максимальное повышение активности фермента отмечено через 24 часа после начала воздействия стресс-фактора и отличалось от контрольного уровня на 44%, p<0,01. Через 72 часа активность КПН составляла 133%, p<0,05, от показателей активности фермента у интактных животных. Через 10 суток достоверных изменений не обнаружено.
В больших полушариях острый ЭБС вызывал статистически значимое увеличение активности КПН через 72 часа (+33%, p<0,05) после начала эксперимента.
Через 4 часа после воздействия острого ЭБС активность КПН в среднем мозге и гиппокампе была ниже показателей активности интактных животных на 18%, p<0,05 и 32%, p<0,01, соответственно.
В надпочечниках активность КПН также снижена по сравнению с показателями активности животных, не подвергавшихся воздействию ЭБС через 4 и 24 часа на 40%, p<0,05.
Таким образом, наиболее выраженные изменения активности КПН при остром ЭБС наблюдались в гипофизе. Полученные данные согласуются с данными об увеличении синтеза и секреции гормонов гипофиза пептидной природы при стрессе [232], а также с данными о повышении активности КПН при других видах стресса [42, 64]. Высокая активность фермента обнаружена также в стриатуме - отделе, где синтезируются такие нейропептиды, как энкефалины, вещество Р, т.е. биологически активные пептиды обладающие выраженным антистрессорным действием, [134, 153].
3.2.2. Активность ФМСФ-ингибируемой КП в головном мозге, надпочечниках и семенниках крыс при воздействии острого эмоционально-болевого стресса
Влияние ЭБС на активность ФМСФ-ингибируемой КП наблюдается практически во всех отделах мозга, гипофизе, надпочечниках и семенниках, однако динамика изменения активности отличается от таковой для КПН (табл.2, рис.2).
Так во всех отделах мозга после острого ЭБС активность ФМСФ-ингибируемой КП была несколько ниже показателей активности интактных животных через 0,5, 4 и 24 часа при этом статистически достоверных отличий от нормы обнаружено не было. Через 72 часа после начала воздействия активность ФМСФ-ингибируемой КП повышалась и составляла в гипофизе - 123%, p<0,01, в среднем мозге - 119%, p<0,05, в гипоталамусе - 121%, p<0,01, в гиппокампе - 127%, p<0,01, в больших полушариях - 157%, p<0,001 от активности фермента в норме (рис.2).
В отличие от КПН, наиболее выраженные изменения активности ФМСФ-ингибируемой КП по сравнению с группой интактных животных отмечены в надпочечниках. Так через 4 и 24 часа после острого ЭБС активность фермента была ниже показателей нормы на 12 (p<0,05) и 21 (p<0,01) %, соответственно. Затем активность ФМСФ-ингибируемой КП повышалась и через 72 часа превышала показатели активности интактных животных на 57%, p<0,01.
В семенниках статистически достоверные изменения в активности ФМСФ-ингибируемой КП по сравнению с интактной группой животных обнаружены только через 0,5 часа. Активность фермента в этом регионе превышала показатели группы животных, не подвергавшихся воздействию стресса, на 50%.
Таким образом, при воздействии острого ЭБС статистически достоверные отклонения активности от нормы, во всех исследуемых отделах мозга и надпочечниках, отмечены только через 72 часа после начала воздействия. В отличие от КПН максимальное повышение активности фермента обнаружено в больших полушариях и надпочечниках. Полученные сведения могут свидетельствовать о различии в биологической функции КПН и ФМСФ-ингибируемой КП при стрессе.
3.2.3. Активность АПФ в головном мозге, надпочечниках и семенниках крыс при воздействии острого эмоционально-болевого стресса
Результаты определения активности АПФ в головном мозге, надпочечниках и семенниках при воздействии острого ЭБС приведены в табл.2 и на рис.3.
Полученные данные показывают, что при воздействии острого ЭБС статистически достоверных изменений активности АПФ в головном мозге, гипофизе и надпочечниках не обнаружено. Острый ЭБС вызывал изменение активности АПФ в семенниках.
Активность фермента через 0,5 часа после начала стресс-воздействия была выше нормы на 51%, p<0,05. Через 4 часа активность снижалась и до 72 часов оставалась приблизительно на одном уровне. Показатели активности при этом были ниже соответствующих показателей группы интактных животных на 11-23%. Через 10 суток после острого ЭБС достоверных отличий от нормы не обнаружено.
В среднем мозге, гиппокампе, гипоталамусе и больших полушариях активность АПФ была ниже уровня чувствительности метода определения (табл.2).
В гипофизе и стриатуме через 4 часа после воздействия острого ЭБС обнаружено достоверное понижение активности АПФ. Активность фермента в этих отделах была ниже соответствующих показателей активности животных, не подвергавшихся воздействию острого ЭБС на 28%, p<0,01 и 32%, p<0,01, соответственно.
Таким образом, обнаружено, что острый ЭБС вызывал понижение активности АПФ в гипофизе и стриатуме через 4 часа. В семенниках через 0,5 часа после воздействия обнаружено повышение, а 4 и 24 часа снижение активности фермента. В других отделах мозга и надпочечниках активность фермента характеризуется очень низкими показателями.
Полученные данные показывают, что при воздействии острого ЭБС активность КПН изменялась во всех исследуемых регионах мозга и гипофизе, активность ФМСФ-ингибируемой КП во всех отделах мозга (исключение стриатум), гипофизе, надпочечниках и семенниках и активность АПФ - в гипофизе, стриатуме и семенниках. Обнаружено, что острый ЭБС вызывал различные по динамике, степени выраженности и направленности изменения активности КПН, ФМСФ-ингибируемой КП и АПФ. Наиболее выраженное повышение активности КПН отмечено в гипофизе - через 0,5 и 72 часа и стриатуме - через 24 часа. В среднем мозге и гиппокампе показано снижение активности фермента через 4 часа после воздействия стресса. В отличие от КПН наиболее выраженное повышение активности ФМСФ-ингибируемой КП в головном мозге, гипофизе и надпочечниках отмечалось через 72 часа после начала стресс-воздействия. Острый ЭБС вызывал разнонаправленные изменения активности АПФ в семенниках. Активность фермента в гипофизе и стриатуме через 4 часа после воздействия снижалась. В других отделах мозга и надпочечниках изменений активности АПФ не обнаружено.
3.3. ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПРЕДШЕСТВЕННИКА ЛЕЙ-ЭНКЕФАЛИНА НА АКТИВНОСТЬ КПН, ФМСФ-ИНГИБИРУЕМОЙ КП И АПФ
В последнее время интенсивное развитие получило учение о пептидах - природных регуляторах, причем, именно малых пептидов, способных проникать в клетку, взаимодействуя с клеточными рецепторами. Быстрая реакция организма на введение пептидов, высокая биологическая активность, эндогенное происхождение - все эти важные качества привлекают внимание многих исследователей. Особенно интересны в этом отношении энкефалины.
Известно, что при периферическом введении нейромедиаторов, в том числе и опиоидных пептидов, отмечается общая закономерность: сами вещества практически не проходят ГЭБ, в то время как их ближайшие предшественники хорошо проникают в структуры мозга и вызывают соответствующие изменения в функционирование других систем, в частности тех, которые включаются в ответ организма на действие экстремального фактора [82]. Результаты этих работ явились определя-ющим фактором для использования в наших исследованиях предшественника лей-энкефалина - лей5-энкефалин-арг6.
Известно, что экзогенное введение дополнительного источника жидкости приводит к изменению в функционировании пептидэргических систем, таких как ренин-ангиотензиновая, гипофизарно-надпочечниковая и опиоидэргическая [34, 86, 104, 125, 134], деятельность которых во многом определяется ферментами обмена биологически активных пептидов. Несомненно, что подобное воздействие отражается и на активности этих ферментов. Согласно данным исследований, при внутрибрюшинном введении физиологического раствора в отделах мозга отмечается увеличение активности КПН [46]. Изменения такого характера могут быть связаны, прежде всего, с реакцией организма на введение избыточного количества жидкости, а также с развитием стрессорных повреждений, вызванных внутрибрюшинной инъекцией. Показано, что введение физиологического раствора методом инстиляции на конъюнктиву глаза, является достаточно мягким способом введения, не травмирующим животное [119]. В связи с этим, а, также, учитывая тот факт, что нашим исследованием предусмотрено изучение механизмов возникновения и развития стресс-реакции, наиболее предпочтительным будет являться именно этот способ введения. Кроме того, метод инстилляции вещества на конъюнктиву глаза позволяет использовать минимальный объем жидкости, обеспечивает высокую вероятность проникновения вещества через ГЭБ [1, 24, 119], что предполагает активное включение вводимого вещества в обмен регуляторных пептидов в исследуемых регионах.
Активность исследуемых ферментов обмена нейропептидов - КПН, ФМСФ-ингибируемой КП и АПФ - в мозге, надпочечниках и семенниках крыс определялась через 0,5 часа, 4 часа, 24 часа, 72 часа и 10 суток после инстилляции лей-энкефалин-арг в дозе 20 мкг/кг веса животного. Сравнение уровня активности ферментов при введении лей-энкефалин-арг проводилось относительно интактной группы животных (контроль). Полученные данные представлены в таблице 3 (приложение).
3.3.1. Активность КПН в головном мозге, надпочечниках и семенниках крыс при введении лей-энкефалин-арг.
При введении лей-энкефалин-арг во всех исследованных отделах мозга и тканях наблюдалось повышение активности КПН относительно контрольной группы животных (табл.3, рис.4). Наиболее выраженные изменения активности фермента обнаружены в гипофизе, стриатуме и надпочечниках. Статистически достоверные изменения активности КПН в исследованных отделах мозга и периферических тканях отмечены уже через 0,5 часа после введения лей-энкефалин-арг. Кроме того, показано достаточно длительное действие исследуемого пропептида, что проявлялось повышением активности КПН до 72 часов после введения предшественника в отделах и тканях, связанных с образованием и секрецией биологически активных пептидов. Так в гипофизе активность фермента была выше соответствующих показателей контрольной группы животных через 0,5, 4, 24 и 72 часа на 152, 111, 64 и 78%, соответственно, p<0,001. Через 10 суток достоверных изменений не обнаружено. Сходная динамика изменения активности КПН обнаружена в среднем мозге, гипоталамусе, гиппокампе и больших полушариях, однако в них изменения носили менее выраженный характер. Максимальное повышение активности фермента отмечено также через 0,5 часа, затем активность КПН плавно снижалась. Через 10 суток статистически достоверных изменений обнаружено не было. В стриатуме, отделе, где синтезируются многие нейропептиды [62, 156, 221], изменения носили более выраженный характер, чем в других исследуемых отделах мозга и несколько отличались от последних динамикой. Так, активность КПН в них превышала соответствующие показатели группы контрольных животных через 0,5часа на 139%, p<0,001, через 4 часа активность снижалась (+56%, p<0,001), а через 24 и 72 часа отмечен всплеск активности КПН (+72%, p<0,001).
Подобные документы
Влияние хронической алкоголизации на организм. Влияние пренатального хронического воздействия этанола на организм. Ферменты обмена регуляторных пептидов. ФМСФ-ингибируемая карбоксипептидаза. Регуляторные пептиды и ферменты их обмена в онтогенезе.
диссертация [219,2 K], добавлен 15.12.2008Исследование биологической роли ферментов в механизмах взаимодействия адренергической и пептидергической систем. Определение активности ферментов флюорометрическим методом. Изучение гипофиза, гипоталамуса, больших полушарий и четверохолмия самцов крыс.
статья [14,0 K], добавлен 01.09.2013Ферменты обмена регуляторных пептидов. Методы определения концентрации вещества P, активности КПN, активности ангиотензинпревращающего фермента и лейцинаминопептидазы. Роль регуляторных пептидов в сыворотке крови спортсменов при физической работе.
дипломная работа [143,7 K], добавлен 25.06.2009Биологическая роль нейропептидов и их обмен. Функционирование пептидэргических систем на разных стадиях эстрального цикла. Уровень нейропептидов на разных стадиях эстрального цикла. Ферменты обмена нейропептидов на разных стадиях эстрального цикла.
диссертация [315,8 K], добавлен 15.12.2008Изучение влияния пирроксана на активность основных карбоксипептидаз в нервной ткани крыс позволило выяснить, что так как при воздействии активность КПН и ФМСФ-КП изменяется однонаправлено, то оба фермента обладают сходной биологической функцией.
курсовая работа [64,5 K], добавлен 15.12.2008Влияние тестостерона и прогестерона на активность карбоксипептидаза Н и ФМСФ-ингибируемой карбоксипептидаза в гипоталамо-гипофизарно-надпочечниково-гонадной системе самцов и самок мышей. Зависимость изменения активности ферментов от пола животного.
диссертация [87,6 K], добавлен 15.12.2008Общие представления о нейропептидах, классификация и принципы их построения. Метаболизм энкефалинов и ферменты их процессинга. Краткие характеристики карбоксипептидазо-В-подобных ферментов. Процессинг и посттрансляционная модификация нейропептидов.
реферат [1,7 M], добавлен 22.09.2009Рассмотрение острого введения диазепама и галоперидола на активность карбоксипептидазы Н, фенилметилсульфонилфторид-ингибируемой карбоксипептидазы и карбоксипептидазы М в головном мозге, надпочечниках и семенниках крыс через различные промежутки времени.
диссертация [647,7 K], добавлен 15.12.2008Кадмий как химический элемент. Изучение влияния азотнокислого кадмия на активность аланинаминотрансферазы и аспартатаминотрансферазы в сыворотке крови и тканях органов у потомства белых крыс, подвергшихся токсическому действию в неонатальный период.
дипломная работа [228,4 K], добавлен 27.10.2010Влияние различных доз токсиканта кадмия на активность АЛТ и АСТ в сыворотке крови и тканях потомства крыс, подвергшихся хроническому действию ионами кадмия в неонатальный период. Результаты поставленного эксперимента и его практическая значимость.
презентация [189,2 K], добавлен 27.10.2010