Ответы на вопросы по генетике

Этапы развития генетики, ее связь с другими науками. Вклад отечественных учёных в ее развитие. Строение ядра и хромосом. Свойство хромосом и понятие о кариотипе. Особенности кариотипов разных видов с/х животных. Митоз, его биологическое значение.

Рубрика Биология и естествознание
Вид шпаргалка
Язык русский
Дата добавления 08.05.2009
Размер файла 98,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

28. Понятия: мутация, мутагенез, мутант. Классификация мутаций

Мутация - стойкое изменение в ДНК и кариотипе особи. Мутагенез - процесс возникновения мутации. Мутаген - фактор, вызывающий мутацию. Мутант - осыбь, у которой мутация проявилась. Классификация: І. По возможности наследования 1. соматические, возник в кл тела и по наследству не передаётся, но в организме появляется клон мутантных кл, одна из причин рака. 2. генеративные в гаметах или в зиготе, передаются по наследству.II По влиянию на жизнеспособ. 1 суперлитальные или полезные - повышают жизнеспособность. 2 нейтральные - не влияют на жизнеспособность. 3 вредные - понижают, в том числе а) сублетальные - выживания от 50-100% б) полулетальные - не более 50% выживаемости. 4. летальные -100%смертельный исход.III По способности проявляться у гетерозигот. 1. доминантные - проявляются в первом поколении. 2. рецессивные - проявл-ся, когда рецессивный мутантный ген перейдёт в гомозиготное состояние. IV. По направлению мутирования. 1. прямые - от нормы к мутации. 2. обратные - от мутации к норме. V. По причинам возникновения. 1. спонтанные - возникают в естественных условиях. 2. индуцированные - получают искусственным путём. VI. По фенотипу. 1. морфологические - изменение внешнего и внутреннего строения. 2. физиологические - влияют на плодовитость, продуктивность, резистентность. 3. биохимические - на обмен веществ. 4. поведенческие - на поведение. VII. По характеру изменения генетического материала. 1. геномные или числовые. 2. хромосомные или структурные. 3. генные или точковые. 4. цитоплазматические.

29. Геномные, хромосоиные, генные, цитоплазматические мутации

Мутация - стойкое изменение в ДНК и кариотипе особи. Геномная мутация - изменение числа хром-м в кариотипе. 1) полиплоидия - изменение числа хром-м, кратное гаплоидному набору. n- гаплоиды, 3n - триплоиды. Использ-ся в растениеводстве особенно n, 3n. У растений это возможно, т.е. они могут размножаться вегетативно. У животных 100 % полиплоиды погибают на стадии эмбриона. Причины полиплоидии: а) нерасхождение всего набора хром-м в мейозе, б) ошибка при оплодотворении. 2) анэуплоидия - увеличение (уменьшение0 числа хром-м в кариотипе на 1-2. 2n+1 - трисомия (синдром Дауна). 2n+2 - тетросомия. 2n-1- моносомия (синдром Тернера). 2n-2 - нулисомия. Причина - нарушение расхождения по одной паре хром-м в анафазе I. Мозаицизм - часть клеток тела имеет ненормальный набор хром-м из-за нарушения митоза во время раннего дробления зиготы. Хромосомная мутация - изменение формы, размера хром-мы, порядка расположения генов в ней. Могут быть сбалансированными (нет утраты или избытка генетического материала, они не проявляются фенотипически) и несбалансированными. Виды: внутрихромосомная (дупликация - в рез-те неравного кроссинговера в гомологичных хром-мах происходит удвоение участка одной хром-мы из пары - выживание; фрагментация - разрыв хром-мы на куски - летальный; инверсия - переворот участка хром-мы на 180? - не влияет на жизнеспособность; нехватки- потеря участка хромосомы: а) делеции - выпадение внутреннего участка, б) дефишенции - потеря конца хром-м - более 2% летально) и межхромосомная - транслокация - перемещение участка из одной хром-мы в другую, ей негомологичную (а) если обмен взаимный - транслокация реципрокная,б) если не взаимный - транспозиция, в) если 2 одноплечие хром-мы сливаются в области центромера, образуют одну равноплечую, то это транслокация Робертсона - эмбриональная смертность). Генная мутация - изменение отдельных нуклеотидов внутри гена. Может быть потеря, вставка, замена одного на другой или перенос на другое место, переворот нескольких нуклеотидов на 180?. Нуклеотид, затронутый мутацией - сайт. 5 типов (синтез белка): 1) гипоморфные - мутантный ген уменьшает синтез белка, 2) гиперморфные - увеличивает синтез белка, 3) аморфные - прекращает синтез белка, 4) неаморфные - синтезирует новый белок, 5) антиморфные - сиртезирует фермент, тормозящий синтез исходного белка. 3 вида (транскрипция): 1) миссенсмутация - замена нуклеотида в триплете заменяет аминокислоту в белке. 2) нонсенс - замена нуклеотида превращает триплет в терминатор. 3) мутация сдвига рамки чтения - вставка или выпадение нуклеотида изменяет аминокислотный состав белка. Цитоплазматическая мутация - изменение ДНК митохондрий и пластид, передаётся только по материнской линии.

30. Классификация мутагенов. Антимутагены

Мутаген - фактор, вызывающий мутацию. Классы: физические (основными мутагенами явл-ся ионизирующие излучения, ультрафиолетовые лучи и повышенная температура. К группе ионизирующих излучений относят рентгеновы лучи, ?-лучи и ?-частицы, протоны, нейтроны. Ионизирующие излучения, проникая в клетки, на своем пути вырывают электроны из молекул, что приводит к образованию положительно заряженных ионов. Освободившиеся электроны присоединяются к другим молекулам, кот становятся отрицательно заряженными. В рез-те облучения клеток образуются свободные радикалы водорода (Н) и гидроксила (ОН), кот дают соединение Н2О2. Такие превращения в молекулах ДНК и кариотипе в приводят к изменению функций генетического аппарата клеток, возникновению точковых мутаций. Ионизирующие облучения могут нарушить процессы деления в соматических клетках, вследствие чего возникают нарушения и злокачественные образования), химические (это вещества химической природы, способные индуцировать мутации: алкилирующие соединения (диметил- и диэтилсульфат, фотрин), аналоги азотистых оснований и нуклеиновых кислот (кофеин), красители (акридин желтый и оранжевый), азотистая кислота, пероксиды, пестициды, минеральные удобрения (нитраты). Химические мутагены индуцируют генные и хромосомные мутации) и биологические (это простейшие живые организмы, вызывающие мутации у животных: вирусы, бактерии. Биологические мутагены вызывают широкий спектр мутаций в клетках животных (хромосомные). Антимутагены - вещества, в различной степени снижающие уровень мутабильности. Важная особенность их - стабилизация мутационного процесса до естественного уровня. Им присуща физиологичность действия (в высоких дозах могут действовать как мутагены - аргинин). Отдельные мутагены характеризуются специфичностью действия - они эффективны только по отношению к аберрациям хромосом или генным мутациям. Механизм действия антимутагенов связывают с нейтрализацией мутагена до его взаимодействия с ДНК; активацией ферментных систем детоксикации поступающих из среды загрязнителей; предотвращением ошибок в процессе репликации ДНК. Группы антимутагенов: 1) витамины и провитамины ( витамин Е снижает мутагенное действие ионизирующих излучений и химических соединений; витамин С способствует уменьшению частоты аберраций хромосом, вызванных ионизирующими излучениями; витамин А снижает естественное и искусственное мутирование в клетках у животных; витамина В снижает действия алкилирующих соединений, ультрафиолетового облучения путем усиления репарации.) 2) аминокислоты (аргинин, гистидин, метионин, цистеин). 3) ферменты (пероксидаза, каталаза). 4) фармакологические средства (интерферон). 5) группа веществ с антиокислительными свойствами (производные галловой кислоты). 6) комплексные соединения. Пути снижения концентраций вредных веществ: создание безотходных технологий; переход от химических средств борьбы в сельском хозяйстве на безвредные биологические; создание устойчивых сортов растений, не требующих химических средств защиты; выявление мутагенов в окружающей среде и их изъятие .

34. Закон гомологических рядов в наследственной изменчивости и его значение

Вавилов сформулировал закон гомологических рядов наследственной изменчивости: 1) генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть существование параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и линнеоны, тем полнее сходство в рядах их изменчивости; 2) целые семейства растений, в общем, характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство. Этот закон имеет универсальный характер. Обнаружено сходство мутаций не только у растений, но и у животных. Так, были подмечены появления аналогичных форм аномалий у разных видов животных, что указывает на сходство строения многих ферментов и белков и соответственно на сходство генотипов у них. Эти данные подтверждают закон гомологических рядов. Зная формы аномалий у одного вида животных, следует предполагать, что они имеются или могут возникнуть и у другого вида, близкого с первым по происхождению.

35. Генная инженерия

Генная инженерия -- раздел биотехнологии, связанный с целенаправленным конструированием новых комбинаций генетического материала, способного размножаться в клетке и синтезировать определенный продукт. Генная инженерия решает следующие задачи: 1) получение генов путем их синтеза или выделения из клеток; 2) получение рекомбинантных молекул ДНК; З) клонирование генов или генетических структур; 4) введение в клетку генов или генетических структур и синтез чужеродного белка. Получёние генов. Два способа: химический и ферментативный. Химическим путем синтезировали ген аланиновой т - РНК дрожжей. ,однако ген аланиновой т - РНК при введении в клетку кишечной палочки не функционировал, т.к. он не имел промотора и терминальных кодонов, которые дают сигнал о завершении синтеза иРНК. Осуществили синтез гена супрессорной тирозиновой т - РНК - оказался работоспособным. Химико-ферментативный обнаружили фермент обратную транскриптазу. При помощи неё вирусы могут синтезировать ДНК, используя в качестве матрицы иРНК. Ферментативным синтезом - транскрибирование комплементарной нити ДНК (гена) на молекулах РНК в пробирке. Система для синтеза представляет собой раствор, в котором содержатся все четыре нуклеотида, входящих в состав ДНК, ионы магния, фермент обратная транскриптаза и и - РНК. Рестриктирующие эндонуклеазы (рестриктазы). Важным событием для развития генной инженерии было открытие в клетках бактерий ферментов, способных разрезать молекулу ДНК в строго определенных местах. Ферменты эти называются рестриктирующими эндонуклеазами или рестриктазами, а процесс «разрезания» молекулы ДНК называется рестрикцией. Палиндромом называется последовательность ДНК, которая считывается одинаково в обоих направлениях, начиная от 3'-конца каждой цепи. Рекомбинантная ДНК -- это искусственно полученная молекула ДНК. Она имеет форму кольца, включает ген, составляющий объект генетических манипуляций, и так называемый вектор, обеспечивающий размножение рекомбинантной ДНК и синтез в клетке хозяина определенного продукта, кодируемого внесенным геном. Векторы должны обладать особенностями: 1) иметь свойства репликона; 2) содержать один или несколько маркирующих генов, чтобы по фенотипу можно было определить факт его передачи. Соединение вектора с фрагментом ДНК может производиться путями: при помощи липких концов, под действием эндонуклеаз рестрикции; дополнительного синтеза полинуклеотидных фрагментов каждой из цепей ДНК (поли-А и поли-Т); соединения тупых концов при помощи Т4-лягазы. Размножение в бактериях идентичных рекомбинантных ДНК называется клонирование. Каждый клон бактерий содержит свою рекомбинантную ДНК. Введение в клетку рекомбинантных молекул и синтез чужеродного белка. Чаще всего рекомбинантные молекулы вводятся в клетки бактерий методом трансформации. В последние годы уделяется много внимания созданию генно-инженерных вакцин. Получают антигены из рекомбинантных микроорганизмов или культур клеток, в которые введен определенный ген возбудителя болезни. Этим методом получен материал для вакцинации против гепатита В, гриппа А, малярии, ящура, бешенства и др. Штаммы бактерий, продуцирующие вещества, активные в организме человека и животных, могут быть использованы для промышленного производства лекарственных препаратов.

36. Клеточная инженерия. Получение моноклональных антител

Под клеточной инженерией понимают метод конструирования клеток нового типа на основе их культивирования гибридизации и реконструкции. Культура клеток -- метод сохранения жизнеспособности клеток вне организма в искусственно созданных условиях жидкой или плотной питательных сред. Для культивирования могут быть использованы клетки различных органов, лимфоциты, фибробласты, эмбрионы, клетки почек животных и человека, раковые клетки человека и т. д. Культуры, приготовленные непосредственно из тканей организма, называются первичными. В большинстве случаев клетки первичной культуры можно перенести из культуральной чашки и использовать для получения вторичных культур, которые можно последовательно перевивать в течение недель и месяцев. Технология культивирования некоторых клеток животных настолько хорошо отработана, что может быть использована в производственных целях для получения различных продуктов. Они используются как медицинские препараты. Получение моноклональных антител. Введение антигена (бактерий, вирусов и т. д.) вызывает образование разнообразных антител против многих детерминант антигена. В 1975 получены моноклональные антитела с помощью гибридомной технологии. Моноклональные антитела -- это иммуноглобулины, синтезируемые одним клоном клеток. Моноклональное антитело связывается только с одной антигенной детерминантой на молекуле антигена. Гибридомная технология - слияние с помощью полиэтиленгликоля лимфоцитов сёлезенки предварительно иммунизированных организмов определенным антигеном с раковыми клетками, способными к бесконечному делению. Отбирают клоны клеток, синтезирующие необходимые антитела. Гибридомы - бессмертные клоны клеток, синтезирующие моноклональные антитела. Получение и использование моноклональных антител -- одно из существенных достижений современной иммунологии. С их помощью можно определить любое иммуногенное вещество. В медицине моноклональные антитела можно использовать для диагностики рака и определения локализации опухоли, для диагностики инфаркта миокарда. Для использования в терапии моноклональные антитела можно соединять с лекарством благодаря специфичности антител они доносят это вещество непосредственно к раковым клеткам или патогенным микроорганизмам, что позволяет значительно повысить эффективность лечения. Можно использовать моноклональные антитела для определения пола у крупного рогатого скота на предимплантационной стадии развития, а также для стандартизации методов типирования тканей при трансплантации органов, при изучении клеточных мембран, для построения антигенных карт вирусов, возбудителей болезней.

37. Трансплантация и клонирование эмбрионов млекопитающих

Трансплантация--метод ускоренного воспроизводства высоко продуктивных животных путем получения и переноса одного или нескольких эмбрионов от высокоценных животных (доноров) менее ценным животным (реципиентам). Использование трансплантации позволяет получать от одной генетически ценной самки в десятки раз больше потомства. Приемы: 1) гормональное вызывание суперовуляции; 2) осеменение доноров семенем производителей, оцененных по качеству потомства; 3) извлечение и оценку качества эмбрионов, сохранение и пересадку или криоконсервирование эмбрионов в жидком азоте, оттаивание и пересадку. Цели: 1) размножения генетически ценных особей; 2) получения идентичных животных путем разделения ранних эмбрионов. 3) сохранения мутантных генов, малых популяций; 4) получения потомков от бесплодных, но генетически ценных по генотипу животных; 5) выявления вредных рецессивных генов и хромосомных аномалий; б) повышения устойчивости животных к болезням; 7) акклиматизации импортных животных иностранных пород; 8) определения пола эмбриона и получения животных определенного пола; 9) межвидовых пересадок; 10) получения химерных животных, которые развиваются из ранних эмбрионов, полученных из бластомеров разных животных. Клонирование - получение эмбриональных клонов. Метод пересадки ядер соматических клеток зародышей в энуклеированные яйцеклетки лягушек. Разрушали ядра яйцеклеток лягушки ультрафиолетовыми лучами, затем в каждое из яиц вводил ядро из дифференцированной клетки плавающего головастика. Такие ядра вызывали развитие генетически идентичных эмбрионов и взрослых лягушек (клон головастика). Метод культивирования клеток кожи взрослых лягушек. При использовании ядер соматических клеток взрослых животных развитие клонов ограничивалось стадией головастиков. Ядра взрослых организмов и даже поздних эмбрионов по каким-то причинам утрачивают свои потенции. Метод разделения эмбрионов на ранней стадии развития. Если количество клеток эмбриона (бластомеров) не превышает 16, они еще не дифференцированы. Это позволяет разъединять эмбрионы (бластулы) на 2 и большее число и получать однояйцевых близнецов.

38. Химерные и трансгенные животные

Понятие химера означает составное животное - искусственном объединении эмбриональных клеток двух и более животных. Животные могут быть как одной породы, так и разных пород и даже разных видов. Два метода получения химер: 1) агрегационный - объединение двух и более морул или бластоцист в один эмбрион; 2) инъекционный - микроинъекция клеток внутриклеточной массы бластоцисты доноров в бластоцель эмбриона-реципиента. Имеются внутривидовые и межвидовые химеры лабораторных животных и с/х животных. В потомстве химерных животных не сохраняется родительский генотип, происходит расщепление, и нарушаются ценные генетические комбинации. Трансгенные животные, в геном которых интегрируют чужеродные гены. Трасгеноз-- экспериментальный перенос генов, выделенных из определённого генома или искусственно синтезированных, в другой геном. В ряде экспериментов было установлено, что мыши, развивающиеся из зиготы, в которую была введена чужеродная ДНК, содержат в своем геноме фрагменты этой ДНК, а иногда у них происходит и экспрессия чужеродных генов. Мышам были введены гены: гемоглобина кролика, ? - глобина человека, лейкоцитарного интерферона человека, гормона роста крысы и человека. Схема получения трансгенных животных: 1) выбор, получение и клонирование чужеродного гена; 2) получение зигот и выявление пронуклеусов; З) микроинъекция определенного числа копий генов в видимый пронуклеус; 4) трансплантация зиготы в половые пути гормонально подготовленной самки; 5) оценка родившихся животных по генотипу и фенотипу.

39. Полное доминирование. Пример и схема

Полное доминирование - когда у гетерозигот доминантная аллель подавляет полностью рецессивный. Пример: у морских свинок всклоченность шерсти доминирует над гладкой. А - всклоченная, а - гладкая: Аа*Аа=АА,Аа,Аа,аа; б) Аа*аа=Аа,Аа,аа,аа. Может быть и доминантный и рецессивный.

40. Неполное доминирование. Пример и схема

У гетерозигот рецессивный признак частично проявляется, поэтому она отлична от гомозигот доминантных меньшей степенью развития доминантных признаков. А - красный, а - белый: 1)АА*аа=Аа 2)Аа*Аа=АА,Аа,Аа,аа.

41. Промежуточное наследование. Пример и схема

У гетерозигот аллели в паре равноправны, поэтому оба альтернативных признака проявляются с одинаковой интенсивностью. Такие равноправные аллели обозначают одной большой буквой с индексом: А - красная, А' - белая, АА' - чалая. 1)АА*А'А'=АА' 2)АА'*АА'=АА,2АА',А'А'

42. Сверхдоминирование. Гетерозис и его использование в животноводстве

Сверхдоминирование - превосходство детей над родителями. Гетерозис - превосходство детей над родителями по продуктивности, плодовитости, жизнеспособности. Проявляется только в F1, чтобы поддерживать гетерозис в течении нескольких поколений используют особый вид скрещивания - переменная. Гетерозис получается при спаривании гомозиготных, разных по генотипу родителей, чтобы у детей возросла гетерозиготность, но и в этом случае гетерозис бывает не всегда, а только при удачном сочетании родительских генов. Виды: 1) истинный - превосходство детей над лучшим родителем (отцом); 2) гипотетический - превосходство над средним арифметическим показателем продуктивности родителей; 3) относительная - превосходство над худшим родителем (мать). Если дети хуже худших родителей - гибридная депрессия. Гипотезы: 1) Гипотеза доминирования. У детей доминантные гены, прошедшие отбор и значительно благоприятно влияющие на организм, подавляют действие рецессивного гена. 2) Гипотеза сверхдоминирования. У гетерозигот разнообразнее состав ферментов и значительно выше уровень обмена веществ. 3) Гипотеза генетического баланса. При повышении гетерозиготного возникновения нов сочетаний генов по типу эпистаза и комплиментарности, в том числе благоприятных сочетаний.

43. Плеотропное действие генов. Пример и схема

Плеотропия - (множественное деление гена) - один ген влияет на 2 признака и более, т.к. контролирует синтез ферментов, участвующих в различных обменных процессов в кл и в организме в целом. Т - белая, ts - бежевая: 1) Tta*tsts=Tts,Tts,tats,tsta; 2) Tts*tats=Tta,Tts,tsta,tsts.

44. Множественный аллелизм. Пример и схема

Каждый ген в норме имеет 2 аллели. Иногда в результате мутации у гена образуется более 2 аллелей. Множество образует серию аллелей данного гена, обозначаются лдной буквой с разными индексами. Пример: шерсть у кроликов: С-агути, сsh -шиншилла, ch - гималайский, с - альбинос. В одной серии может быть сразу несколько типов доминирования. С>сsh> ch> с - полное доминирование; сsh> ch, ch> с - неполное доминирование. Любой организм может иметь только 2 аллеля из общей серии, одинаковых или разных.

45. Кодоминирование. Пример и схема

Кодоминирование - проявление в потомстве признаков обеих родителей - тип наследования групп крови и полиморфных белков. У к.р.с. 2 типа групп крови (Нв): Нв(в степени)А, Нв(в степени)В: 1) НвА/НвА*НвВ/НвВ = НвА/НвВ; 2) НвА/НвВ* НвА/НвВ = НвА/НвА, 2НвА/НвВ,НвВ/НвВ.

46. Возрастное, анализирующее, рецепрокное скрещивание. Пример. Практическое использование

Скрещивание гибридов первого поколения (Аа) с особями, сход ными по генотипу с родительскими формами (АА или аа), называется возвратным. А - белый, а - чёрный: Аа*АА=2Аа,2АА. 2) Аа*аа=2Аа,2аа. Скрещивание с рецессивной родительской формой (аа) получило название анализирующего. Применяется при гибридологическом анализе, когда нужно установить генотип интересующей нас особи. А - белый, а - чёрный: Аа*аа=2Аа,2аа. Рецессивные наследственные задатки в гетерозиготном организме остаются неизменными и вновь проявляются при встрече с такими же рецессивными наследственными задатками. Позднее на основании этих наблюдений. Скрещивание, при котором исходные родительские формы меняются местами - реципрокные и сост. из 2-х скрещиваний прямого и обратного. Широко применяется в птицеводстве и свиноводстве.

47. Менделевские законы наследственности. Неменделевское наследование признаков

I закон - единообразия первого поколения гибридов (правило доминирования). При скрещивании 2 гомозиготных организмов, отличающихся друг от друга по одной паре альтернативных признаков, всё первое поколение гибридовокажется единообразным и будет нести признак одного родителя (при условии полного доминирования). 2 закон - закон расщепления признаков - в потомстве, полученном от скрещивания гибридов первого поколения, наблюдается явление расщепления: четверть особей из гибридов второго поколения имеет рецессиный признак, три четверти - доминантных. Расщепление по фенотипу - 3:1, по генотипу -1:2:1. При неполном доминировании в потомстве гибридов (F2) расщепление по генотипу и фенотипу совпадает (1:2:1). Все гомозиготные организмы имеют признаки родителей - доминантные или рецессивные, все гетерозиготные имеют промежуточные признаки. 3 закон - независимого комбинирования (наследования) признаков и генов - при скрещивании 2 гомозиготных особей, отличающихся друг от друга по двум парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях. Этот закон применим лишь к наследованию альтернативных генов, находящихся в разных парах гомологичных хромосом. Пример: ген окраски семян гороха расположены в одной паре хромосом, а гены обусловливающие форму семян гороха, - в другой. Неменделевское наследование признаков. 1) наследование, сцепленное с полом; 2) митохондриальные болезни 1 класса - участие мутационного белка в реакциях синтеза АТФ; причина мутации в генах митохондральная ДНК; 3) геномный инбридинг, когда отцовские и материнские гены работают по разному. Отцовские гены важны для развития плаценты, а материнские для разв. тела эмбриона. Если в яйцеклетку лишённую ядра прони-вают 2 спермия. То образуется зигота с диплоидным набором отцовских хромосом - ткани эмбриона не развиваются. Если имеется 2 набор материнских хромосом, то развивается эмбриональная опухоль - тератома.

48. Эпистаз. Пример и схема.

Эпистаз - подавление генов из одной пары аллелей доминантного и рецессивного генов из другой пары аллелей. Подавляющий ген - эпистатический или супрессор, или ангибитор; подавляющий ген - гипостатичный. Виды: 1) доминантный - супрессор явл доминантным геном 12:3:1 или 13:3; 2) рецессивный - супрессор - рецессивный ген 9:7 или 9:3:4. А - серая (супрессор), а - не влияет, В - вороная, в - рыжая. 1) ААВВ*аавв=АаВв; 2) АаВв*АаВв=2Аавв, ААВВ, 2ААВв, Аавв, 2АаВВ, 4АаВв, ааВВ, 2ааВв, аавв. 12:3:1

49. Комплиментарность. Пример и схема

Комплиментарные - дополняющие друг друга - доминантные неаллельные гены, которые при совместном действии в гомо- и гетерозиготном состоянии вызывают развитие нового признака, которого не было у родителей. Однако, этот новый признак явл атавизмом, т.е.для комплементарности характерно возвращение к дикому фенотипу в F1. 9:7 или 9:3:4 или 9:6:1. У душистого горошка окраска цветов определяется 2-мя парами генов. А, а - В,в - белые, А?В? - пурпурный. 1) Аавв*ааВВ=АаВв - пурпурные; 2) АаВв*АаВв=9:7

50. Новообразование. Пример и схема

Новообразование -это разновидность комплементарности. Характеризуется тем, что в F1появл нов признак, которого не было у родителей и которые не встречались в природе. 9:3:3:1 (F2). А - розовитый, а - не влияет,В - гороховодный, в - не влияет, аавв - простой, А?В? - ореховидный (новообразование). 1) Аавв*ааВВ=АаВв; 2) АаВв*ААВв=9А?В?, 3А?вв, 3ааВ?, аавв.

51. Гены - модификаторы. Пример и схема

Гены - модификаторы - не имеют собственного влияния на признак, однако изменяют действие др генов из неаллельных пар, тем самым вызывая модификаторы (изменения) простых признаков. 9:3:4 (F2).с ними связаны понятия - пенетрантности, экспрессивности. Пенетрантность - способность гена проявиться фенотипически, выражается в процентах и бывает полной (у всех особей популяции, имеющих данный ген, он проявляется в виде признака) и неполной (у некоторых особей ген имеется, но внешне не проявляется). Экспрессивность - степень проявления признака, т.е. один и тот же признак у разных особей выражен с разной интенсивностью. А - чёрный, а - коричневый, В - модификация ослабляет чёрн до дымчатого, А?В? - дымчатый, в - не влияет. 1) Аавв*ааВВ=АаВв; 2) АаВв*АаВв=9А?В?, 3А?вв, 4аа??

52. Полимерия. Пример и схема. Особенности наследования количественных признаков

Полимерия - на один признак влияют несколько неаллельных, но сходно действующих генов. Такие гены наз полимерными (множественными). Они обладают аддитивным (суммирующим) действием, т.е. чем больше таких генов, тем ярче выражен признак, который они определяют. 15:1 или 1:4:6:4:1 - для качественных признаков; 1:4:6:4:1 - для колич (F2). Окраска зерновки у пшеницы определяется 2-мя парами полимерных генов. А1 - АААА- тёмно-красный -1; а1 - АААа - красный-4; А2 -Аааа - светло - красный -6; а2 - Аааа - бледнокрасный - 4; аааа - белый. 1) А1А1А2А2*а1а1а2а2=А1а1А2а2; 2) А1а1А2а2*А1а1А2а2=1:4:6:4:1

53. Явление сцепленного наследования. Полное сцепление генов и признаков

Гены, расположенные в одной хромосоме, представляют собой группу сцепления. Сцепление генов - это совместное наследование генов, расположенных в одной и той же хромосоме. Количество групп сцепления соответствует гаплоидному числу хромосом. Сцепление генов, расположенных в одной хромосоме, может быть полным или неполным. Полное сцепление: Морган скрещивал черных длиннокрылых самок с серыми с зачаточными крыльями самцами. У дрозофилы серая окраска тела доминирует над черной, длиннокрылость - над зачаточными крыльями. Серое тело - А, черное тело а; длиннокрылые - В, зачаточные крылья - в. При спермиогенезе в период мейоза гомологичные хромосомы расходятся в разные половые клетки. 1) АА//АВ*ав//ав=4АВ//ав; 2) АВ//ав*АВ//ав=АВ//АВ, АВ//ав, ав//АВ, ав//ав. Если гены наход в аутосомах, то при полном сцеплении в F1 будет единообразие по фенотипу, а в F2 - 3:1, по скольким бы признакам не различались родители, т.к. изучается одна пара хромосом.

54. Явление неполного сцепления в наследовании признаков

В результате скрещивания потомки имели сочетание признаков, как у исходных родительских форм, но появились особи и с новым сочетанием признаков - сцепление неполное. В - серое, в - чёрное, V - нормальные, v - зачаточные. Bv||Bv*bV||bV=Bv||bV; самок из первого поколения скрестили с самцами анализаторами: BV//bV*bv//bv=Bv//bv,bV//bv - не кроссоверное. Bv//bV*bv//bv=2bv//bv, 2BV//bv - кросоверное. Обмен гомологичных хромосом своими частями называется перекрестом или кроссинговером. Особей с новыми сочетаниями признаков, образовавшимися в результате кроссинговера, называют кроссоверами. Количество появления новых форм зависит от частоты перекреста, которая определяется по следующей формуле: Частота перекрёста = (Число кроссоверных форм)·100/ Общее число потомков. За единицу измерения перекреста принята его величина, равная 1 %. Ее называют морганидой. Величина перекреста зависит от расстояния между изучаемыми генами. Чем больше отдалены гены друг от друга, тем чаще происходит перекрест; чем ближе они расположены, тем вероятность перекреста меньше.

55. Карты хромосом. Пример их построения

Карта хромосом - план расположения генов в хромосоме. Гены расположены в хромосомах в линейной последовательности на определенных расстояниях друг от друга. Явление торможения кроссинговера на одном участке кроссинговером на другом получило название интерференции. Чем меньше будет расстояние, разделяющее три гена, тем больше интерференция. Принимая во внимание линейное расположение генов в хромосоме, взяв за единицу расстояния частоту кроссинговера, Морган составили первую карту расположения генов в одной из хромосом дрозофилы: сh___13.6___ y___28.2___b. При построении карт указывают не расстояние между генами, а расстояние до каждого гена от нулевой точки начала хромосомы. Доминантный аллель обозначается прописной буквой, рецессивный - строчной. После построения генетических карт встал вопрос о том, отвечает ли расположение генов в хромосоме, построенное на основании частоты кроссинговера, истинному расположению. Каждая хромосома по длине имеет специфические рисунки дисков, что позволяет отличать разные ее участки друг от друга. Материалом для проверки служили хромосомы, у которых вследствие мутации возникали различные хромосомные перестройки: не хватало отдельных дисков, или они были перевернуты, или удвоены. Физические расстояния между генами на генетической карте не вполне соответствуют установленным цитологическим. Однако это не снижает ценности генетических карт хромосом для предсказания вероятности появления особей с новыми сочетаниями признаков. На основании анализа результатов многочисленных экспериментов с дрозофилой Т. Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем: 1) гены находятся в хромосомах, располагаются в них линейно на определенном расстоянии друг от друга; 2) гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом; З) признаки, гены которых находятся в одной хромосоме, наследуются сцеплено; 4) в потомстве гетерозиготных родителей новые сочетания генов, расположенных в одной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза. Частота кроссинговера зависит от расстояния между генами; 5) на основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом.

57. Бисексуальность, интерсексуальность, гиандроморфизм, химеризм по половым хром-мам. Роль гормонов и условий среды в развит признаков пола

Любая зигота имеет х-хром-мы и аутосомы, т.е. имеет гены и женского и мужского пола, т.е. генетически любой организм бисексуальный (двуполый). Интерсексы - гермофродиты - особи с развитыми и женскими и мужскими признаками. 2 типа: истинные - имеют женские и мужские половые железы из-за нарушения баланса генов; условные - имеют железы одного пола, а наружный половой признак другого пола из-за нарушения баланса гормонов. Иногда у насекомых и животных встречается гиандроморфы - одна часть тела имеет женские признаки, а другая - мужские. Причины: зигота женского пола разделяется на 2 бластомера. Один из них потерял одну х-хром-му. Из этого бластомера будет развиваться мужская половина тела. Химеризм по половине хромосом хх/ху встречается у многоплодных животных, у бычков - когда в одном и том же организме содержатся хх- хромосомы, а воспроизводство ху- хромосом нарушено. При обычном кормлении вырастают самцы, а если в корм добавлять женские половые гормоны, то вырастают самки (рыбки мальки). Если личинка морского червя прикрепится ко дну моря - самка, если к хоботку самки - самец.

58. Типы детерминации пола у животных. Первичное и вторичное соотношение полов. Проблема регулирования пола

Детерминация обеспечивает образование равного кол-ва самцов и самок, что необходимо для нормального самовоспроизведения вида. Типы: 1) эпигамный - пол особи определяется в процессе онтогенеза, зависит от внешней среды. 2) прогамный - пол определяется в ходе гаметогенеза у родителей особи. 3) сингамный - пол определяется в момент слияния гамет. Первичное и вторичное соотношение полов: соотношение полов, кот определяется в момент слияния гамет, наз-ся первичным, всегда 1:1. Любое изменение в соотношении полов, как до, так и после рождения, наз-ся вторичным. Обычно после рождения оно смещается в пользу женского пола, поэтому у многих видов животных и у чел-ка мужских особей рождается больше, чем женских: кролики - 57%, человек - 51%, птицы - 59%. Проблема регулирования пола: имеет важное хозяйственное значение. Н-р: в молочном скотоводстве, в яичном птицеводстве желательны самки, а там, где основной продукт - мясо, лучше самцы. Проблема в том, чтобы разделить сперму на х- и у- фракции. Способы: 1) электрофорез - х - спермии имеют отрицательный заряд - движутся к катоду, а у - спермии - к аноду. Гарантия 80%. 2) Метод осаждения - х - сперма более плотная и осядает вниз, а у - остаётся сверху. 3) Использование набора кислот для изменения рН женских половых путей для создания условий только для х - или только для у-. 4) Партеногенез: геногенез - получение самок - рентгеновскими лучами облучают овоцит. первого порядка, тем самым задерживают расхождение хром-м, образ-ся яйцеклетка с диплоидным набором хром-м, в кот без оплодотворения развивается самка. Андрогенез - получение самцов - ядро яйцеклетки убивают лучами рентгена, затем в неё проникают два спермия, ядра сливаются, давая диплоидный набор, будет самец. 5) Метод разделения спермы на фракции по кол-ву ДНК в спермиях. 6) Чем моложе родители, тем вероятность рождения у них мужского пола больше. 7) Чем больше спермы в половых путях самки, тем вероятнее рождение мужского пола. 8) Чем больше хранится сперма - самка. 9) У птицы кормление: если петуху в корм добавлять Са, то самка, а если К - самцы. 10) В любой популяции действует закон равновесия, т.е. соотношение полов стремится 1:1.

59. Основные положения хромосомной теории наследственности

На основании анализа результатов многочисленных экспериментов с дрозофилой Т.Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем: 1) гены находятся в хромосомах, располагаются в них линейно на определенном расстоянии друг от друга; 2) гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом; З) признаки, гены которых находятся в одной хромосоме, наследуются сцеплено; 4) в потомстве гетерозиготных родителей новые сочетания генов, расположенных в одной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза. Частота кроссинговера зависит от расстояния между генами; 5) на основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом.

60. Наследование признаков, сцепленных с полом

Признаки, гены которых наход-ся в половых хром-мах, наз-ся сцепленные с полом. В у - хром-ме генов. почти нет, поэтому если говорят, что признак сцеплен с полом, значит ген наход-ся в х - хром-ме. Если ген расположен в у - хром-ме, то это обычно оговаривается. У чел-ка известно около 300 генов, находящ-ся в х - хром-ме и вызывающих наследственные болезни. Почти все они рецессивны. Наиболее известны: гемофилия, дальтонизм, мускульная дистрофия. Если рецессивный ген болезни сцеплен с х - хром-мой, то носителем явл-ся женщина, а болеют мужчины, т.к. у них этот ген наход-ся в одинарной дозе или гомозиготном состоянии. Доминантны х - сцепленных заболеваний известно мало, в том числе некоторые формы рахита, нарушение сегментации кожи. Считается, что мутация в х - хром-ме чаще происходит в сперматогенезе, т.е. у отца и эту х-хром-му получит дочка. Наследование, сцепленное с у - хром-мой: в у - хром-ме наход-ся около 35 генов, в том числе 7 вызывают болезни (гипертрикоз, нарушение сперматогенеза). Т.к. отец передает у - хром-му только сыну, такие болезни наследуются по мужской линии и наз-ся голондрическими. У животных известно только х - сцепленное рецессивное наследование, в том числе гемофилия у собак, бесшерстность у телят, отсутствие зубов, деформация передних ног у телят, карликовость у кур.

61. Наследование, ограниченное полом. Наследование, контролируемое полом

Признаки, ограниченные полом: гены их наход-ся в аутосомах, т.е. есть у обоих полов, но проявляются только у одного пола. 1) Молочная продуктивность. 2) Яичная продуктивность. 3) Икра у рыб (у женского пола). 4) Яркое оперение (у самцов). К числу нежелательных, ограниченных полом признаков, относятся: 1) триторхизм, 2) аномалия спермиев (у самцов), 3) недоразвитие частей половых органов (у самок). Признаки, контролируемые полом: гены в аутосомах, т.е. есть у обоих полов и проявляются также у обоих, только у одного пола чаще или интенсивнее, чем у другого. 1) Комолость доминирует у овец, рецессивно у баранов. 2) Заращение яйцеводов и семяпроводов у птиц доминантно у самок и рецессивно у самца. 3) Атаксия (расстройство координации движения) доминантно у самок и рецессивно у самца. 4) Искривление киля у птицы доминантно у самцов и рецессивно у самок. 5) Наследственное облысение доминантно у мужчин и рецессивно у женщин. 6) Указательный палец длиннее безымянного доминантно у мужчин и рецессивно у женщин.

62. Понятие популяции. Типы. Свойства

Популяция - совокупность особей данного вида, в течение длительного времени населяющая определённое пространство (ареал), состоящ из особей, кот свободно скрещиваются др с другом и отдалённая от других популяций. Свойства: 1) группа животных одного вида. 2) определённая численность. 3) ареал распространения. 4) свободно скрещиваются. 5) имеют определённый генофонд - совокупность аллелей, входящих в состав популяции. Типы: земноводные, наземные, почвенные.

63. Факторы, изменяющие структуру популяций

Популяция - совокупность особей данного вида, в течение длительного времени населяющая определённое пространство (ареал), состоящ. из особей, кот свободно скрещиваются др. с другом и отдалённая от других популяций. Основные Факторы: мутации, естественный и искусственный отбор, дрейф генов, миграции. Спонтанные мутации каждого гена происходят с низкой частотой. Мутации, возникающие в половых клетках родительского поколения, приводят к изменению генетической структуры потомства. Генетическая структура популяций изменяется под действием естественного и искусственного отбора. Действие естественного отбора сост в том, что преимущественное размножение имеют особи с высокой жизнеспособностью, плодовитостью, т.е. более приспособленные к условиям окружающей среды. При искусственном отборе значение имеют признаки продуктивности, и признаки приспособленности к условиям окруж среды. Распространение мутаций может произойти в результате миграций. Когда импортные производители популяций были носителями мутаций и распространяли генетические аномалии при использовании при воспроизводстве местных популяций. Генетич структура популяций может измениться в силу случайных генетикоа-втоматических проц-сов (дрейфа генов) - случайное ненаправленное изменение частот аллелей в популяции. В некоторых популяциях мутантный аллель полностью вытесняет нормальный - результат дрейфа генов.

64. Отбор в популяциях и чисой линии. Закон Харди-Вайнберга и его использование для определения генетич структуры популяции

Популяция - совокупность особей данного вида, в течение длительного времени населяющая определённое пространство (ареал), состоящ. из особей, кот свободно скрещиваются др. с другом и отдалённая от других популяций. Генетическая структура популяций изменяется под действием естественного и искусственного отбора. Действие естественного отбора сост. в том, что преимущественное размножение имеют особи с высокой жизнеспособностью, плодовитостью, т.е. более приспособленные к условиям окружающей среды. При искусственном отборе значение имеют признаки продуктивности, и признаки приспособленности к условиям окруж среды. Чистые линии - потомство, полученное только от одного родителя, и имеющ с ним полное сходство по генотипу. В отличие от популяций они хар-ся полной гомозиготностью. В чистой линии отбор невозможен, т.к. все особи, входящие в неё имеют идентичный набор генов. Закон Харди-Вайнберга: при отсутствии факторов, изменяющих частоты генов популяции при любом соотношении аллелей от поколения к поколению, сохраняют эти частоты аллелей постоянными. Харди и Вайнберг провели математич. анализ распределения генов в больших популяциях, где нет отбора, мутаций и смешивания популяций. Они установили. Что такая популяция находится в состоянии равновесия по соотношению генотипов, что определяется формулой: p?AA + 2pqAa + q?aa = 1. где р. - частота доминантного гена А, q - частота его рецессивного аллеля а. Пользуясь формулой, можно рассчитать частоту гетерозиготных носителей некоторых форм рецессивно обусловленных аномалий в стадии КРС, проанализировать сдвиги в генных частотах по конкретным признакам в результате отбора, мутаций и других факторов.

65. Генетический груз и методы его оценки

Генетический груз - совокупность вредных генных и хромосомных мутаций. Различают мутационный (формируется вследствие новых мутаций) и сегрегационный (в результате расщепления и перекомбинирования аллелей при скрещивания гетерозиготных носителей «старых» мутаций). Частота летальных, полулетальных и субвитальных мутантных генов, передающихся из поколения в поколение в форме мутационного генетического груза, из-за трудности идентификации носителей не поддается точному учету. Величина генетического груза по формуле Мортона log еS = А + ВF, где S- часть потомства, оставшаяся в живых; А - смертность, В - ожидаемое увеличение смертности, F - коэффициент инбридинга. Уровень генетического груза можно определять на основании фенотипического проявления мутаций (уродства), анализа типа их наследования, частоты в популяции. Определяют генетический груз популяции путем сравнения частот мертворожденных в родственных и неродственных подборах родительских пар. Хромосомные мутации являются составной частью генетического груза. Учет их ведется прямым цитологическим методом.

66. Использование инбридинга в животноводстве

Спаривание животных, находящихся в родственных отношениях, назыв инбридингом. Виды: 1) смешивание родства (брат х сестра, бабка х внук, внучка х дед). 2) близкий инбридинг (степень родства: II x III, III x II, IV x I, I x IV, III x III). 3) умеренный (III x IV, IV x III, IV x IV), 4) отдалённый (спариваются родственники в пятом поколении и далее). Чем ближе родство, тем быстрее рецессивные летальные и полулетальные гены перейдут в гомозиготное состояние и проявятся инбредная депрессия. Поэтому инбридингом разрешают пользоваться только в племенных заводах в определённых целях: 1) для выявления производителей, носителей летальных и полулетальных генов; а) если ген полулетальный, то используется анализирующее скрещивание аа х Аа (носитель) - аа (урод), б) если ген летальный, то используется кровосмешение, обычно отец-дочь Аа х Аа - аа (урод). 2) Кровосмешение используется для закрепления наследственности выдающегося животного у его потомков. В каждом поколении инбридных потомков ведут строгий отбор по жизнеспособности. 3) Кровосмешение и близкий инбридинг используют при выведении новых пород. Потомство от скрещивания разных пород - помесь. Оно имеет богатую, но высокую гетерозиготность. Для закрепления наследственности помесей их скрещивают сначала с отцом, потом с дедом. 4) Умеренный и отдалённый инбридинг применяют при разведении животных по линиям.

67. Группы. Системы крови и их номенклатура. Получение реагентов для определения групп крови

Группа крови - молекулы белка на поверхности эритроцитов. В течении жизни группы крови не меняются, т.е.зависит от генотипа. Совокупность групп крови, которая определяется одним геном наз. системой крови. В разных системах имеется разное число групп крови. Гены, кот влияют на сист крови, расположены в аутосомах и наследуются независимо друг от друга. Эти гены образуют серию множественных аллелей. Благодаря огромному кол-ву аллелей группы крови у разных особей не совпадают, за исключением однояйцевых близнецов. Совокупность всех групп крови у особи - тип крови, а в популяции - кровяной тип. Аллели в паре взаимодействуют по типу кадоминирования. Реже по типу полного доминирования. Группы и сист крови обозначают заглавными буквами лат алфавита с подстрочными и надстрочными индексами. Генотип В (а/в). Фенотип В (а+в+)=Вав. Генотип - ген В, гетерозигота, а\в аллели. Фенотип - система крови В, группа крови а и в. Для получения реагентов проводят серологические реакции, взаимодействия между эритроцитарным антигеном (группа крови) и специфич антителом по принципу агглютинации (склеивание эритроцитов), преципитации (осаждение эритроцитов), гемолиза (разрушен эритроцитов). В образец крови вносят моноспецифическую сыворотку с антителами на конкретный эритроцитарный антиген. Получение моноспецифической сыворотки: Кровь от животного - донора, имеющего антигены Ас, Ва и Са, вводят реципиенту с антигеном Ас, но не имеющему антигенов Ва и Са. У реципиента вырабатываются антитела к антигенам Ва и Са. Антитела против антигена Ас не образуется, т.к. у реципиента есть этот фактор. В сырой сыворотке абсорбируют ненужные антитела, в данном случаи Са, эритроцитами третьего животного, имеющего антиген Са. Потом из сыворотки путём центрифугирования удаляют эритроциты с абсорбированными на них антителами Са. Полученную моноспецифическую сыворотку можно использовать для выявления антигена Ва в эритроцитах других животных.


Подобные документы

  • Исследование основных видов размножения: воспроизведения себе подобных, обеспечивающего непрерывность жизни. Понятие митоза – такого деления клеточного ядра, при котором образуется два дочерних ядра с набором хромосом, идентичных родительской клетки.

    презентация [2,5 M], добавлен 19.01.2011

  • Хромосома как постоянный компонент ядра, отличающийся особой структурой, индивидуальностью. Схема строения хромосомы в поздней подфазе - метафазе митоза. Эухроматин, гетерохроматин, кариотип. Распределение хромосом согласно денверской номенклатуре.

    презентация [1,0 M], добавлен 25.05.2015

  • Значение роста и развития клеток. Жизненный и митотический циклы клеток. Продолжительность жизни разных типов клеток в многоклеточном организме. Рассмотрение митоза как универсального способа размножения, сохраняющего постоянство числа хромосом в клетках.

    презентация [4,1 M], добавлен 05.12.2014

  • Химический состав и уровни организации хроматина. Варианты гистонов и их действие на хроматин. Понятие и примеры кариотипов. Эволюция хромосом млекопитающих. Теломерные районы хромосом и схема работы теломеразы. Y-хромосома и карта Х-хромосомы человека.

    контрольная работа [1,4 M], добавлен 14.02.2016

  • Митотическое деление клетки, особенности ее строения. Митоз как универсальный способ деления клеток растений и животных. Постоянство количества и индивидуальность хромосом. Продолжительность жизни, старение и смерть клеток. Формы размножения организмов.

    реферат [22,8 K], добавлен 07.10.2009

  • Сущность и значение митоза - процесса распределения скопированных хромосом между дочерними клетками. Общая характеристика основных стадий митоза – профазы, метафазы, анафазы и телофазы, а также описание особенностей разделения клеточных хромосом в них.

    презентация [321,9 K], добавлен 04.12.2010

  • Хромосомная теория наследственности. Генетический механизм определения пола. Поведение хромосом в митозе и мейозе. Классификация хромосом, составление идиограммы. Методы дифференциальной окраски хромосом. Структура хромосом и хромосомные мутации.

    реферат [32,7 K], добавлен 23.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.