Фотосинтез - проще простого

Теория водного питания растений Яна Баптиста Ван-Гельмонта, ее сильные и слабые стороны, обоснование. Этапы исследования механизма выделения растениями кислорода с поглощением углекислого газа. Опыты Тимирязева с хлорофиллом, связь с солнечным светом.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 16.01.2010
Размер файла 48,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Антоцианы, как и каротиноиды, более устойчивы к низким температурам, чем хлорофилл. Поэтому они и обнаруживаются в листьях осенью. Исследователи установили, что образованию антоцианов способствуют высокое содержание Сахаров в растительных тканях, сравнительно низкая температура и интенсивное освещение.

Увеличение содержания сахаров в осенних листьях происходит за счет гидролиза крахмала. Это имеет важное значение для транспортировки ценных питательных веществ из отмирающих листьев во внутренние части растений. Ведь сам крахмал нетранспортабелен в растении. Однако скорость оттока образующихся в результате его гидролиза Сахаров из листьев при низких температурах невелика. Кроме того, при падении температуры ослабляется дыхание растений и, следовательно, лишь незначительное количество Сахаров подвергается окислению. Все эти факторы благоприятствуют накоплению в растительных тканях Сахаров, которые начинают использоваться в синтезе других веществ, в частности антоцианов.

О превращении избытка сахаров в антоцианы свидетельствуют и другие факты. Если у виноградной лозы путем кольцевания (удаление части коры в виде кольца) затруднить отток продуктов фотосинтеза, то листья, расположенные выше кольца, через две-три недели приобретают красный цвет из-за накопления антоцианов. При этом их образуется так много, что зеленая окраска хлорофилла становится незаметной.

То же самое наблюдается не только при понижении температуры или кольцевании, но и при недостатке фосфора. Если, например, томаты выращивать на питательном растворе, лишенном этого элемента, то нижняя часть листьев, а также стебли приобретают синий цвет. Дело в том, что при отсутствии фосфора в растениях не может осуществляться процесс окисления Сахаров без соединения с остатком фосфорной кислоты молекула сахара остается неактивной. Поэтому в растительных тканях происходит накопление избыточных количеств Сахаров, которые используются на синтез антоцианов. Увеличение содержания этих веществ ведет к посинению стеблей и листьев растений, испытывающих нехватку фосфора.

Образование антоцианов зависит также от интенсивности света. Если осенью внимательно приглядеться к яркой окраске деревьев и кустарников, то можно заметить, что багряный цвет имеют в основном те листья, которые лучше всего освещены. Раздвиньте пылающий огненными красками куст бересклета, и вы увидите внутри желтые, бледно-желтые и даже зеленые листья. Во время дождливой и облачной осени листва дольше сохраняется на деревьях, однако она не так ярка из-за недостатка солнца. Преобладают желтые тона, обусловленные присутствием каротиноидов, а не антоцианов.

Низкая температура также способствует образованию антоцианов. Если стоит теплая погода, то лес изменяет свою окраску медленно, но едва ударит морозец, как сразу запылают осины и клены.

М.М. Пришвин в миниатюре «Светильники осени» писал: «В темных лесах загорелись светильники осени, иной лист на темном фоне так ярко горит, что даже больно смотреть. Липа стоит уже вся черная, но один яркий лист ее остался, висит, как фонарь, на невидимой нити и светит».

10. Радуга флоры

Уж коли мы заговорили о пигментах растений, следует рассказать и о причинах разнообразия окраски цветков.

Зачем цветкам их яркая, сочная окраска? В конечном счете для того, чтобы привлечь к себе насекомых-опылителей. Многие растения опыляются лишь определенными видами насекомых, поэтому окраска цветков часто зависит от того, для каких именно насекомых предназначены цветовые сигналы. Дело в том, что в отношении цвета насекомые бывают довольно капризны. Скажем, пчелы, шмели, осы предпочитают розовые, фиолетовые и синие цветки, а около желтых обычно толкутся мухи. Красный же цвет многие насекомые, наделенные не слишком совершенным зрением, путают с темно-серым. Поэтому в наших широтах чисто-красные цветки довольно редки. Исключение - мак, но и его лепестки имеют примесь желтого цвета; обычно именно этот оттенок и замечают пчелы. Лучше других насекомых красный цвет различают бабочки - они-то, как правило, и опыляют красные цветки наших широт, например гвоздики. А вот среди тропических растений красный цвет более распространен, и отчасти это связано с тем, что опыляют их цветки не насекомые, а птицы: колибри или нектарницы, у которых зрение более развито.

Бывает, что у одного и того же растения окраска цветков с возрастом изменяется. Это хорошо заметно у ранневесеннего растения медуницы: розовый цвет ее молодых цветков сменяется по мере старения синим. Старые цветки медуницы пчелы уже не посещают: они, как правило, опылены и нектара не содержат. И в этом случае смена окраски служит сигналом для насекомых - не теряйте времени даром!

А вот у гилии (США) - красивого растения из семейства синюховых, родственницы флоксов, произрастающей в горах штата Аризона (США), цветки первоначально имеют алый цвет, который, как уже отметили, привлекает птиц. Но когда колибри покидают горы, гилия меняет окраску вновь появляющихся цветков: они становятся бледно-красными или даже белыми.

Окраска большинства цветков определяется присутствием различных пигментов. Самые распространенные - каротиноиды, растворимые в жирах соединения: каротин, его изомеры и производные. В растворе все они имеют бледно-желтую, оранжевую или светло-красную окраску. Названия каротиноидов, содержащихся только в цветках, столь же красивы, как и придаваемая ими окраска: эшшольксантин, пе-талоксантин, газанияксантин, ауроксантин, хризантемаксантин, рубихром.

Наряду с каротиноидами окраску цветков определяют и антоцианы. Оттенки этих пигментов очень разнообразны - от розового до черно-фиолетового. Несмотря на такое цветовое многообразие, все антоцианы устроены по одному типу - они представляют собой гликозиды, то есть соединения сахара с неуглеводной частью, так называемым агликоном. Примером может служить красящее вещество, содержащееся в цветках василька, - антоцианин. Его агликон - цианидин - один из самых распространенных, образуется в результате отщепления двух молекул глюкозы от антоциана.

Как уже говорилось, антоциановые пигменты могут изменять свою окраску в зависимости от кислотности среды. Вспомните два вида герани, распространенной в средней полосе: герань лесную и герань луговую. У лесной лепестки розовые или лиловые, а у луговой - синие. Различие в цвете обусловлено тем, что сок герани лесной более кислый. Если приготовить водную вытяжку из лепестков герани либо лесной, либо луговой - и изменить ее кислотность, то в кислой среде раствор станет розовым, а в щелочной - синим.

Такую же операцию можно проделать и над целым растением. Если цветущую фиалку поместить под стеклянный колпак рядом с блюдцем, куда налит нашатырный спирт (он при испарении выделяет аммиак), то ее лепестки станут зелеными; а если вместо нашатырного спирта в блюдце будет дымящаяся соляная кислота, они окрасятся в красный цвет.

Мы уже говорили, что одно и то же растение медуницы может иметь цветки разной окраски: розовые - молодые и синие - старые. Посинение лепестков по мере их старения можно объяснить индикаторными свойствами антоцианов. Клеточный сок растения, в котором растворен пигмент, имеет кислую реакцию, а цитоплазма - щелочную. Вакуоли с клеточным соком отделены от цитоплазмы мембраной, которая обычно непроницаема для антоцианов. Однако с возрастом в мембране возникают дефекты, и в результате пигмент начинает проникать из вакуолей в цитоплазму. А поскольку реакция здесь иная, меняется и окраска цветков.

Чтобы убедиться в справедливости этой точки зрения, возьмите ярко-красный лепесток какого-то растения, например герани, розы, и раздавите его между пальцами. При этом также произойдет смешение содержимого цитоплазмы и вакуоли, в результате лепесток в месте повреждения посинеет.

Впрочем, было бы неправильно связывать окраску антоцианов лишь с их индикаторными свойствами. Исследования последних лет показали, что она определяется и некоторыми другими факторами. Цвет антоциановых пигментов может меняться, например, в зависимости от того, с какими ионами они находятся в комплексе. При взаимодействии с ионами калия комплекс приобретает пурпурную окраску, а с ионами кальция или магния - синюю. Если срезать цветущий колокольчик и поместить его в раствор, содержащий ионы алюминия, то лепестки посинеют. То же самое наблюдается, если соединить растворы антоцианина и соли алюминия.

Многим читателям, возможно, знаком роман Александра Дюма «Черный тюльпан», в котором в остросюжетной форме рассказывается о выведении сорта тюльпана необычного черного цвета. Вот как описывает его автор романа: «Тюльпан был прекрасен, чудесен, великолепен; стебель его восемнадцати дюймов вышины. Он стройно вытягивался кверху между четырьмя зелеными гладкими, ровными, как стрела, листьями. Цветок его был сплошь черным и блестел, как янтарь».

Почти пять веков преследовали неудачи садоводов, пытавшихся вывести черный тюльпан. И вот, Фризский институт цветоводства в Гааге сделал официальное заявление о том, что в Голландии черный тюльпан получен в результате последовательного скрещивания двух сортов - «Царица ночи» и «Венский вальс». В работе принимали участие шесть голландских исследовательских центров. Полученный цветок идеален по своим классическим размерам.

Садоводы стремятся создать также черные розы. Выведены такие сорта, которые при неярком освещении действительно кажутся черными (на самом деле они темно-красного цвета). На Гавайских островах растут дикие черные розы.

В честь бессмертного произведения Гете «Фауст» садоводы создали сорт анютиных глазок черного цвета под названием «Доктор Фауст». Анютины глазки, как известно, были любимыми цветами - великого немецкого поэта и ботаника.

Черная или почти черная окраска цветков обусловлена присутствием в околоцветнике антоцианов. Кроме каротиноидов и антоцианов, лепесткам могут придавать окраску и другие вещества, в том числе флавоны и флавонолы. А какой пигмент окрашивает в молочный цвет вишневые сады, превращает в снежно-белые сугробы кусты черемухи? Оказывается, никаких белых пигментов в их лепестках нет. Белый цвет придает им. воздух. Если рассмотреть под микроскопом лепесток черемухи или любого другого белого цветка, то можно увидеть множество прозрачных и бесцветных клеток, разделенных обширными пустыми промежутками. Именно благодаря этим заполненным воздухом межклетникам лепестки сильно отражают свет и потому кажутся белыми. А если раздавить такой лепесток между пальцами, то на месте сдав-ливания появится прозрачное пятно: здесь воздух будет вытеснен из межклетников.

И все же в природе есть белая краска, например, ею окрашена в нарядный белый цвет кора нашей любимой березы. Это красящее вещество так и называется - бетулин, от латинского названия березы - Betula.

Заблуждаются те, кто считает, что береза - единственное растение с белой корой. Это не так. В Австралии произрастает эвкалипт затопляемый. Он назван так потому, что растет в руслах пересыхающих рек и в сезон дождей оказывается стоящим в воде. Стволы этих эвкалиптов имеют чисто-белый цвет, эффектно выделяющийся на фоне окружающих зеленых зарослей.

У треххвойной сосны Бунге также белая кора. Это редкий вид, встречающийся в природе в основном в горах Центрального Китая. Растение разводится по всей стране возле дворцов и храмов. Белоствольные сосны производят неизгладимое впечатление.

Еще много интересного можно было бы рассказать об окраске растений и о растительных пигментах, которые давно привлекают внимание исследователей всего мира. Более 30 лет назад известный индийский ученый Т.Р. Сешадри, много занимавшийся изучением природных красящих веществ, писал: «Музыка красок более сложна и изменчива по своей природе, нежели музыка звуков. Возможно даже, что в действительности она еще более утонченна, чем мы предполагаем».

11. Зеленые животные - реальность или фантазия!

В произведениях фантастического жанра нередко можно прочитать о человекоподобных существах зеленого цвета. Зеленая окраска этих организмов, обусловленная хлорофиллом, позволяет им самостоятельно синтезировать органические вещества из неорганических за счет энергии света. Возможно ли такое в природе?

Прежде всего следует заметить, что на Земле имеются животные, питающиеся подобным образом. Например, хорошо известная всем биологам эвглена зеленая, часто встречающаяся в застоявшихся лужах. Ботаники считают эвглену водорослью, а зоологи до сих пор по традиции относят ее к животным. В чем дело?

Эвглена свободно передвигается в воде при помощи жгутика. Такой способ передвижения характерен как для ряда простейших животных, так и для некоторых ботанических объектов, например зооспор отдельных видов водорослей. Эвглена содержит хлорофилл, поэтому при интенсивном ее размножении вода в лужах приобретает изумрудно-зеленую окраску. Наличие хлорофилла позволяет ей питаться углекислым газом подобно всем зеленым растениям. Однако, если водоросль перенести в воду, содержащую некоторые органические вещества, то она теряет зеленую окраску и начинает, подобно животным, питаться готовыми органическими веществами.

Эвглену все-таки нельзя назвать типичным животным, поэтому поищем других представителей. питающихся, подобно растениям, при помощи хлорофилла.

Еще в середине XIX века немецкий зоолог Т. Зибольд обнаружил в телах пресноводной гидры и некоторых червей хлорофилл. Позднее он был найден в организмах и других животных: гидроидных полипов, медуз, кораллов, губок. коловраток, моллюсков. Выяснено, что некоторые морские брюхоногие моллюски, питающиеся сифоновыми водорослями, не переваривают хлоропласты этих растений, а длительное время содержат их в организме в функционально-активном состоянии. Хлоропласты сифоновых водорослей кодиума хрупкого и кодиума паутинистого, попадая в организм моллюсков, не перевариваются, а остаются в нем.

Попытки освободить моллюсков от хлоропластов, поместив их в темноту на полтора месяца, оказались безуспешными, равно как и выведение их из яиц. Бесхлоропластные личинки моллюсков погибали на ранней стадии развития.

Внутри животной клетки хлоропласты плотно упакованы и занимают значительный объем. Благодаря им моллюски, не имеющие раковины, оказываются окрашенными в интенсивно зеленый цвет.

Почему же сифоновые водоросли «полюбились» моллюскам? Дело в том. что в отличие от других зеленых водорослей они не имеют клеточного строения. Их крупное, часто причудливое по форме тела представляет собой одну гигантскую «клетку». Слово «клетка» я взял в кавычки не случайно. Хотя клеточные стенки в теле сифоновых водорослей отсутствуют, вряд ли можно назвать их одноклеточными организмами, скорее это конгломерат не вполне разделившихся клеток. Подтверждением тому служит наличие не одного, а множества клеточных ядер. Такое строение назвали сифонным, а сами водоросли - сифоновыми. Отсутствие клеточных стенок, безусловно, облегчает процесс поглощения водоросли животными клетками.

Ну а каковы хлоропласты этого растения? В теле водоросли содержатся один или несколько хлоропластов. Если их много, они имеют дисковидную или веретеновидную форму. Одиночные обладают сетчатым строением. Ученые считают, что сетчатая структура создается в результате соединения мелких хлоропластов друг с другом.

Многие ученые наблюдали усвоение углекислого газа хлоропластами, находящимися в животных клетках. У свежесобранных моллюсков, элизии зеленой интенсивность фотосинтетического усвоения углекислого газа составляла 55-67% величины, определенной для неповрежденной водоросли кодиума хрупкого, из которого моллюсками были «приобретены» хлоропласты. Любопытно, что и содержание хлорофилла на 1 грамм сырой массы ткани у водоросли и животного было сходным.

Благодаря фотосинтезу моллюски фиксировали углекислый газ на протяжении всех 93 дней опыта. Правда, скорость фотосинтеза постепенно ослабевала и к концу эксперимента составляла 20-40% от первоначальной.

В 1971 году ученые наблюдали выделение кислорода в ходе фотосинтеза хлоропластов, налюдящихся в клетках тридакны. Тридакны-типичные обитатели тропических морей. Особенно широко они распространены на коралловых рифах Индийского и Тихого океанов. Великаном среди моллюсков выглядит тридакна гигантская, достигающая иногда длины 1,4 метра и общей массы 200 килограммов. Тридакны интересны для нас своим симбиозом с одноклеточными водорослями. Обычно они так располагаются на дне, чтобы их полупрозрачная мантия, выступающая между створками раковины, была обращена вверх и сильно освещалась солнцем. В ее межклеточном пространстве в большом количестве поселяются зеленые водоросли. Несмотря на значительные размеры, моллюск питается только теми веществами, которые вырабатывают водоросли-симбионты.

В Средиземном море и у берегов Франции в Атлантике встречается червь конволюта, у которого под кожным покровом также обитают зеленые водоросли, осуществляющие синтез органических веществ из неорганических. Благодаря активности своих «квартирантов» червь не нуждается в дополнительных источниках пиши, поэтому желудочно-кишечный тракт у него атрофировался.

Во время отлива множество конволют покидает свои норы для того, чтобы принять солнечные ванны. В это время водоросли под их кожей интенсивно фотосинтезируют. Некоторые виды этих червей находятся в полной зависимости от своих поселенцев. Так, если молодой червь не «заразится» водорослями, то погибнет от голода. В свою очередь водоросли, поселившиеся в теле конволюты, теряют способность к существованию вне его организма. «Заражение» происходит с помощью «свежих», не живших еще в симбиозе с червями водорослей в момент, когда личинки червя выходят из яиц. Эти водоросли, по всей вероятности, привлекаются какими-то веществами, выделяемыми яйцами червей.

В связи с рассмотрением вопроса функционирования хлоропластов в клетках животных чрезвычайно большой интерес представляют опыты американского биохимика М. Насса, в которых было показано, что хлоропласты сифоновой водоросли каулерпы, харовой водоросли нителлы, шпината и африканской фиалки захватываются клетками соединительной ткани (так называемыми фибробластами) мышей. Обычно в фибробластах, заглотавших инородное тело (этот процесс ученые называют фагоцитозом), вокруг поглощенной частицы образуется вакуоль. Постепенно чужеродное тело переваривается и рассасывается - исчезает. Когда же в клетки ввели хлоропласты, вакуоли не возникали, а фибробласты даже не пытались их переварить.

Пластиды сохраняли свою структуру и способность к фотосинтезу на протяжении трех недель. Клетки, ставшие из-за их присутствия зелеными, нормально делились. При этом хлоропласты стихийно распределялись по дочерним клеткам. Пластиды, находившиеся в фибропластах около двух дней, а затем вновь выделенные, оставались неповрежденными. Они усваивали углекислый газ с такой же скоростью, с какой фотосинтезировали свежие хлоропласты, выделенные из растений.

Предположим, что в ходе эволюции возникнут такие существа или их обнаружат на других планетах. Какими они должны быть? Ученые полагают, что в таком животном хлорофилл будет сосредоточен в коже, куда свободно проникает свет, необходимый как для синтеза зеленого пигмента, так и для образования органических веществ. «Зеленый человек» должен делать кое-что наоборот: днем, подобно сказочному королю, ходить в невидимой для всех одежде, а ночью, напротив, одеваться, чтобы согреться.

Проблема заключается в том, сможет ли такой организм получать с помощью фотосинтеза достаточно пищи. Исходя из максимально возможной интенсивности фотосинтеза растений в самых благоприятных условиях существования, можно подсчитать, сколько органического вещества сможет образовать зеленая кожа этого человека. Если принять, что 1 квадратный дециметр зеленого растения за 1 час синтезирует 20 миллиграммов Сахаров, то 170 квадратных дециметров человеческой кожи, доступной солнечным лучам, смогут образовать за это время 3,4 грамма. За 12-часовой день количество органического вещества составит 40,8 грамма. В этой массе будет концентрироваться около 153 калорий энергии. Такого количества явно недостаточно для удовлетворения энергетических потребностей человеческого организма, которые составляют 2000-4000 калорий в сутки.

Примем во внимание, что «зеленому человеку» не нужно думать о пропитании и быть слишком деятельным, поскольку пища сама поступает в его организм из хлоропластов кожи. Нетрудно прийти к заключению, что отсутствие физической нагрузки и малоподвижный образ жизни сделают его похожим на обычное растение. Иначе говоря, «зеленого человека» весьма трудно будет отличить от опунции.

Расчеты исследователей показывают: для того, чтобы образовать достаточное количество органического вещества, «зеленый человек» в ходе эволюции должен в 20 раз увеличить поверхность своей кожи. Это может произойти за счет возрастания числа складок и отростков. Для этого ему необходимо будет обзавестись подобием листьев. Если это произойдет, то он станет совсем малоподвижным и еще более похожим на растение.

Таким образом, существование крупных фотосинтезирующих животных и человека на Земле и в космосе едва ли возможно. Ученые полагают, что в любой биологической системе, хотя бы отдаленно напоминающей биосферу Земли, обязательно должны существовать растительноподобные организмы, обеспечивающие пищей и энергией как самих себя, так и животных.

Заключение

Во второй половине XIX столетия было установлено, что энергия солнечного света усваивается и трансформируется при помощи зеленого пигмента хлорофилла.

На основе проведенных опытов можно сказать что, зеленая окраска хлорофилла определяется наличием в нем атома металла вне зависимости от того, будет ли это магний, медь или цинк.

Современная наука подтвердила правильность взглядов К.А. Тимирязева относительно исключительной важности для фотосинтеза именно красных лучей солнечного спектра. Оказалось, что коэффициент использования красного света в ходе фотосинтеза выше, чем синих лучей, которые также поглощаются хлорофиллом. Красные лучи, по представлениям К.А. Тимирязева, играют основополагающую роль в процессе мироздания и созидания жизни.

Как известно растения поглащают углекислый газ, который присоединяется к пятиуглеродному веществу под названием рибулезодифосфат, где потом он в дальнешем участвует во многих других реакциях.

Изучение особенностей фотосинтеза у разных растений, безусловно, будет способствовать расширению возможностей человека в управлении их фотосинтетической деятельностью, продуктивностью и урожаем. В целом фотосинтез это один из основополагающих процессов жизни, на котором основана большая часть современной растительной фауны на поверхности земли.

Список использованных источников

1. Б. Дижур «Зеленая лаборатория» - М.: Детгиз, 1954.

2. Артамонов В.И. «Занимательная физиология растений». - М.: Агропромиздат, 1991

3. Сергеев И.И. «История фотосинтеза». - М.: Наука, 1989

4. Пчелов А.М. «Природа и ее жизнь». - Л.: Жизнь, 1990


Подобные документы

  • Процесс превращения углекислого газа и воды в углеводы и кислород под действием энергии солнечного света. История открытия фотосинтеза и его уравнение. Связывание углекислого газа с пятиуглеродным сахаром рибулезодифосфатом. Значение фотосинтеза.

    презентация [206,5 K], добавлен 08.12.2013

  • История открытия фотосинтеза. Образование в листьях растений веществ, выделение кислорода и поглощение углекислого газа на свету и в присутствии воды. Роль хлоропластов в образовании органических веществ. Значение фотосинтеза в природе и жизни человека.

    презентация [1,4 M], добавлен 23.10.2010

  • Определение, общее уравнение, основные этапы становления учения о фотосинтезе. Историческое значение работ К.А. Тимирязева. Роль фотосинтеза в процессах энергетического и пластического обмена растительного организма. Космическая роль фотосинтеза.

    реферат [10,9 M], добавлен 07.01.2011

  • Исследование процесса образования органических веществ из углекислого газа и воды за счет энергии света. Особенности световой и темновой фаз фотосинтеза. Реакции пластического и энергетического обменов. Фотоавтотрофный и хемоавтотрофный типы питания.

    презентация [1,9 M], добавлен 16.04.2015

  • Основные формы фитохрома, характеристика их свойств. Физиологические процессы, которые регулируются в растениях светом с помощью фитохромной системы. Принципы фоторегулирования метаболизма растений и регуляторное действие красного цвета на фотосинтез.

    контрольная работа [586,9 K], добавлен 28.06.2015

  • Работа Тимирязева по фотосинтезу. Образование и функции проводящих тканей. Зелёные водоросли: одноклеточные, колониальные и многоклеточные. Базидиальные грибы и сфагновые мхи. Роль голосеменных растений в растительном покрове, их использование и охрана.

    контрольная работа [443,0 K], добавлен 06.06.2009

  • Понятие питания растений. Важнейшие элементы, используемые в питательных растворах, принцип их действия на растение. Фотосинтез как основной процесс, приводящий к образованию органических веществ. Корневое питание, роль удобрений в развитии растений.

    реферат [30,9 K], добавлен 05.06.2010

  • Фотосинтез как уникальный процесс, протекающий на Земле в листьях зеленых растений и в клетках некоторых бактерий, схема и этапы реализации данного процесса, физическое и биологическое обоснование. Оценка роли фотосинтеза в биосферных процессах.

    презентация [231,1 K], добавлен 17.12.2013

  • Сущность процесса фотосинтеза – процесса превращения углекислого газа и воды в углеводы и кислород под действием энергии солнечного света. Зелёный пигмент – хлорофилл, и органы растений его содержащие – хлоропласты. Световая и темновая фазы фотосинтеза.

    презентация [298,6 K], добавлен 30.03.2011

  • Закономерности жизнедеятельности растительных организмов. Рациональное размещение растений в почвенно-климатических условиях. Механизмы онкопрофилактического действия фитостеринов. Физические и химические компоненты физиологии растений, фотосинтез.

    реферат [42,6 K], добавлен 15.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.