Концепции развития современных технологий и энергетики
Развитие и унификация технических средств информационных технологий. Современные средства накопления информации. Проблемы воспроизведения живого образа, голографическая память и нейронные сети, лазерные технологии. Истоки микроэлектронной технологии.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 13.12.2009 |
Размер файла | 77,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
6.2 Биокатализ
Способность рекомбинантной ДНК управлять синтезом ферментов расширяет область применений микроорганизмов в биотехнологии. Появляется возможность производить многие ферменты при сравнительно их невысокой себестоимости. Открываются пути совершенствования технологии получения биокатализаторов, не существующих в природе.
Успеху в биокатализе в значительной степени способствовал разработанный в недалеком прошлом метод иммобилизации ферментов, который заключается в удерживании фермента в неподвижном состоянии на твердой подложке. При иммобилизации фермент стабилизируется и в результате выход конечного продукта увеличивается. Упрощается при этом и операция очистки конечного продукта.
Технология иммоифера позволяет, например, улучшить качество пенициллина. Под воздействием ферментов кукурузный крахмал превращается в глюкозу. С помощью иммобилизации фермента изомеразы некоторая часть глюкозы преобразуется в более сладкую продукцию - фруктозу. Так, в США ежегодно производится более 2 млн т кукурузной патоки с высоким содержанием фруктозы. Иммобилизация не требует обязательного выделения определенного фермента. Клетка, содержащая нужный фермент, поддается операции иммобилизации. Иммобилизованные клетки дрожжей применяются при ферментации в массовом производстве этилового спирта.
Кукурузный и пшеничный крахмал и сахар вполне пригодны для ферментации. Они легко превращаются в глюкозу. Известны микроорганизмы, перерабатывающие глюкозу во многие полезные химические продукты. Однако такое растительное сырье потребляется преимущественно в качестве пищевых продуктов.
Для ферментации можно использовать относительно большой объем биомассы из отходов сельского и лесного хозяйств. Такая биомасса состоит в основном из лигноцеллюлозы (лигнин, целлюлоза и гемицеллюлоза). Лигнин - одеревеневшая часть растительных тканей сопротивляется биокаталитическому расщеплению и препятствует ферментации целлюлозных компонентов, поэтому природную биомассу необходимо предварительно освободить от лигнина, идущего в отходы. Осуществление рациональной биокаталитической переработки биомассы в виде отходов сельского и лесного хозяйств требует дальнейших исследований, направленных на разработку способов химической модификации исходных материалов.
7. Генные технологии
Генные технологии основаны на методах молекулярной биологии и генетики, связанные с целенаправленным конструированием новых, не существующих в природе сочетаний генов. Генные технологии, часто называемые генной инженерией, родились в начале 70-х годов XX в. под названием технологий рекомбинантных ДНК. Основная операция генной технологии заключается в извлечении из клеток организма гена (кодирующего нужный продукт) или группы генов и соединение их с молекулами ДНК, способными проникать в клетки другого организма и размножаться в них. На начальной стадии развития генных технологий получен ряд биологически активных соединений - инсулин, интерферон и др. Современные генные технологии объединяет химию нуклеиновых кислот и белков, микробиологию, генетику, биохимию и открывает новые пути решения многих проблем биотехнологии, медицины и сельского хозяйства.
Заданные операции с фрагментами ДНК позволяют производить два вида белков: фермент рестриктазу и ДНК - лигазу. Первый из них выполняет функцию катализатора при расщеплении ДНК на определенные фрагменты нуклеотидов, а другой катализирует объединение двух фрагментов ДНК. Например, рестриктаза Bam H1 распознает двухцепочную последовательность GGATCC и разрывает ее между двумя нуклеотидами G, т.е. производит разрыв цепи ДНК в определенном месте, в результате чего образуются два отдельных фрагмента ДНК. Данные фрагменты можно связать вместе с помощью ДНК-лигазы и получить таким образом первоначальную двухцепочную последовательность нуклеотидов. ДНК-лигаза может встроить в ДНК чужеродный фрагмент. Образовавшийся продукт называется рекомбинантной ДНК. Чужеродный фрагмент вырезается из донорной молекулы. ДНК, в которую встраивается чужеродный фрагмент, называется плазмидой. Если полученная таким образом конструкция работоспособна, то происходит синтез РНК и в конечном результате - белка.
Основная цель генных технологий - видоизменить ДНК, закодировав ее для производства белка с заданными свойствами. Современные экспериментальные методы позволяют анализировать и идентифицировать фрагменты ДНК и генетически видоизмененной клетки, в которую введена нужная ДНК. С их помощью целенаправленно осуществляются химические операции над биологическими объектами, что и составляет основу генных технологий.
Генные технологии привели к разработке мощных методов анализа генов и геномов, а они, в свою очередь, - к синтезу, т.е. к конструированию новых, генетически модифицированных микроорганизмов. К 1996 году установлены нуклеотидные последовательности 11 разных микроорганизмов, начиная от самой маленькой автономно размножающейся микроплазмы, содержащей всего 580 тыс. нуклеотидных пар. Среди них - и промышленные штаммы, и те, геном которых особо интересен для науки, в частности для обнаружения ранее неизвестных принципов организации геномов и для понимания механизмов эволюции микробов. Промышленные микробиологи в свою очередь убеждены, что знание нуклеотидных последовательностей геномов промышленных штаммов позволит "программировать" их на то, чтобы они приносили большой доход.
Клонирование эукариотных, т.е. ядерных, генов в микробах и есть тот принципиальный метод, который привел к бурному развитию микробиологии, фрагменты геномов животных и растений для их анализа клонируют именно в микроорганизмах. Для этого в качестве молекулярных векторов - переносчиков генов - используют искусственно созданные плазмиды, а также множество других молекулярных образований для выделения и клонирования.
С помощью так называемых молекулярных проб (фрагментов ДНК с определенной последовательностью нуклеотидов) можно быстро определять, скажем, заражена ли донорская кровь вирусом СПИДа. А генные технологии, с помощью которых можно идентифицировать некоторых конкретных микробов, позволяют пристально следить за их распространением, например внутри больницы или при эпидемиях.
Генные технологии производства вакцин развиваются в двух основных направлениях. Первое - улучшение уже существующих вакцин. Вакцины должны стать более эффективными, работать в меньших дозах и не давать побочных эффектов. Идеал - это так называемая комбинированная вакцина; сразу несколько вакцин в одной дозе. Второе направление - генные технологии получения вакцин против тех болезней, при которых сам метод вакцинации еще не использовался; это - СПИД, малярия, даже язвенная болезнь желудка и некоторые другие.
За последние годы генные технологии не только значительно улучшили эффективность традиционных, природных штаммов - продуцентов, но и создали принципиально новые. Например, у грибного штамма - продуцента антибиотика цефалоспорина увеличили число генов, кодирующих экспандазу, активность которой задает скорость синтеза цефалоспорина. В итоге выработка антибиотика возросла на 15-40% по сравнению с исходным штаммом.
Проводится целенаправленная работа по генетической модификации свойств микробов, традиционно используемых в производстве хлеба, сыроварении, молочной промышленности, пивоварении и виноделии. Цели этой работы: увеличение устойчивости производственных штаммов, повышение их конкурентоспособности по отношению к вредным бактериям и улучшение качества продукта (аромата, питательной ценности, крепости и т.д.).
Генетически модифицированные микробы могут принести большую пользу при взаимодействии с сельскохозяйственными растениями и животными, с их патогенными вирусами и микробами; с вредными насекомыми, с почвой. Вот примеры. Можно модифицировать те или иные растения, сделать их более устойчивыми к инфекционным болезным, внеся в них гены, которые блокируют развитие вирусных или грибковых заболеваний. Так, в Китае устойчивые к вирусам табак, томаты и сладкий перец выращивают уже на больших площадях. Известны трансгенные томаты, устойчивые к бактериальной инфекции, картофель и кукуруза, устойчивые к грибкам.
Одно из самых тревожных опасений: не приведет ли широкое внедрение в практику генных технологий к появлению покуда не известных эпидемиологам заболеваний и других нежелательных последствий. Практика показывает, что широкомасштабная генная инженерия микроорганизмов, продолжающаяся вот уже около 30 лет, до сих пор не дала ни одного примера отрицательных последствий. Более того, оказалось, что все рекомбинантные микроорганизмы, как правило, менее вирулентны, т.е. менее болезнетворны, чем их исходные формы.
Однако биологические феномены таковы, что о них никогда нельзя с уверенностью сказать: этого никогда не случится. Надо говорить так: вероятность того, что это случится, очень мала. И тут - как безусловно положительное - важно отметить, что все виды работ с микроорганизмами строго регламентированы, и цель такой регламентации - уменьшить вероятность распространения инфекционных агентов.
Трансгенные штаммы не должны содержать генов, которые после их переноса в другие бактерии смогут дать опасный эффект.
8. Проблемы клонирования
Родился ягненок, генетически неотличимый от особи, давшей соматическую клетку. Может быть каждая клетка нашего организма способна породить новый полноценный организм. Клонирование человека - это шанс иметь детей для тех, кто страдает тяжелыми формами бесплодия; это банки клеток и тканей, запасные органы взамен тех, что приходит в негодность; наконец, это возможность передать потомству не половину своих генов, а весь геном -воспроизвести ребенка, который будет копией одного из родителей. Вместе с тем остается открытым вопрос о правовом и нравственном аспекте данных возможностей. Подобного рода доводами в 1997-1998 годах были переполнены различные источники массовой информации во многих странах. В последнее время пресса и телевидение все больше уделяют внимание проблеме так называемого клонирования животных и человека, давая информацию зачастую неверную и предоставленную достаточно некомпетентными людьми.
По принятому в науке определению, клонирование - это точное воспроизведение того или иного живого объекта в каком-то количестве копий. Вполне естественно, что все воспроизведенные копии должны обладать идентичной наследственной информацией, т.е. нести одинаковый набор генов.
В ряде случаев получение клона животных не вызывает особого удивления и относится к рутинной процедуре, хотя не такой уж и простой. Генетики получают подобные клоны, когда используемые ими объекты размножаются посредством партеногенеза - бесполым путем, без предшествующего оплодотворения. Естественно, те особи, которые развиваются из той или иной исходной половой клетки, будут в генетическом отношении одинаковыми и могут составить клон. У нас в стране, например, блестящие работы по клонированию такого рода выполняют на шелкопряде. Выведенные клоны шелкопряда замечательны своей высокой продуктивностью по выработке шелка и славятся на весь мир.
Однако нынче речь идет о клонировании другого рода - скажем, о получении ряда точных копий того или иного животного, "прославившегося" какими-то своими выдающимися качествами (рекордными надоями молока или высоким настригом шерсти), а кроме того, о возможности клонирования некоего ученого мужа, или политика, или артиста, особо ценного для человечества в силу его несомненной гениальности. Вот тут-то и возникают весьма и весьма большие сложности.
Еще в далекие 40-е годы российский эмбриолог Г.В. Лопашов разработал метод пересадки (трансплантации) ядер в яйцеклетку лягушки. В июне 1948г. он отправил в "Журнал общей биологии" статью, написанную по материалам своих экспериментов. Однако на его беду в августе 1948 г. состоялась печально известная сессия ВАСХНИЛ, по воле партии утвердившая беспредельное господство в биологии малограмотного агронома Трофима Лысенко, и набор статьи Лопашова, принятой к печати, был рассыпан, поскольку она доказывала ведущую роль ядра и содержащихся в нем хромосом в индивидуальном развитии организмов. Работу Лопашова забыли, а в 50-е годы американские эмбриологи Бриггс и Кинг выполнили сходные опыты, и приоритет достался им, как часто случалось в истории российской науки.
В феврале 1997 г. появилось сообщение о том, что в лаборатории Яна Вильмута в Рослинском институте (Эдинбург) разработан эффективный метод клонирования млекопитающих и на его основе получена овечка Долли. Посмотрим, как это было. Прежде всего, естественно, необходимо было выделить ооциты, то есть яйцеклетки. Их извлекли из овец породы Шотландская черномордая, затем поместили в искусственную питательную среду с добавлением эмбриональной телячьей сыворотки при температуре 37° С и провели операцию энуклеации - удаления собственных ядер. Следующая задача: обеспечить яйцеклетку генетической информацией от организма, который надлежало клонировать. Для этой цели использовали разные клетки донора, но наиболее удобными оказались диплоидные, то есть несущие полный генетический набор, клетки молочной железы взрослой беременной овцы породы Финский дорсет. Эти клетки выводили из стадии роста клеточного цикла и через пять дней сливали с энуклеированным ооцитом. Последний затем активировали к развитию посредством электрического удара. Потом развивающийся зародыш в течение шести дней культивировали в искусственной химической среде или в яйцеводе овцы, перетянутом лигатурой ближе к рогу матки. И наконец, после этого эмбрионы (от одного до трех) трансплантировали в матку приемной матери, где они могли развиваться до рождения.
Из 236 опытов успешным оказался лишь один, в результате которого и родилась овечка Долли, несущая генетический материал той самой взрослой овцы. После этого Вильмут заявил, что технически можно осуществить и клонирование человека, хотя в этом случае, как уже отмечалось, возникают моральные, этические и юридические проблемы, связанные с манипуляциями над эмбрионами человека.
Некоторые ученые считают, что фактически невозможно возвратить изменившиеся ядра соматических клеток в исходное состояние, чтобы они могли обеспечить нормальное развитие той яйцеклетки, в которую их трансплантировали, и на выходе дать точную копию донора. Но даже если все проблемы удастся решить и все трудности преодолеть (хотя это мало вероятно), клонирование человека нельзя считать научно обоснованным. Действительно, допустим, что трансплантировали развивающиеся яйцеклетки с чужеродными, донорскими, ядрами нескольким тысячам приемных матерей. Именно нескольким тысячам: процент выхода низкий, а повысить его, скорее всего, не удастся. И все это для того, чтобы получить хотя бы одну единственную рожденную живую копию какого-то человека, пусть даже гения. А что будет с остальными зародышами? Ведь большая их часть погибнет в утробе матери или разовьется в уродов. Представляете себе: тысячи искусственно полученных уродов! Это было бы преступлением, а потому вполне естественно ожидать принятие закона, запрещающего такого рода исследования как в высшей степени аморальные. Что касается млекопитающих, то в этой области едва ли целесообразно тратить бешеные деньги на опыты, которые ни теории, ни тем более практике ничего не дадут. Гораздо лучше поддержать работы по трансгенным животным, генотерапии, генным технологиям.
Список используемой литературы
1. Концепции современного естествознания: Учебник для вузов. - М.: Академический Проект, 2000. Изд.2-е, испр. и доп.
2. Горелов А.А. Концепция современного естествознания. - М.: Центр, 1997 г.
3. Концепции современного естествознания: учеб. Пособие / А.П. Садохин. - 3-е изд., стер. - М.: Издательство "Омега", 2008 г.
Подобные документы
Естественнонаучные основы современных технологий. Научно-технический прогресс как единое, взаимообусловленное развитие науки и техники, производства и сферы потребления. Современные биотехнологии. Интеграция биологического и социо-гуманитарного знания.
реферат [32,5 K], добавлен 11.02.2011Биотехнология в основных направлениях медицины: сущность, подвиды. Проблема использования стволовых клеток. Значение и основные направления развития медицинской генетики. Новые технологии в биофармацевтике. Развитие биокаталитических технологий.
реферат [20,1 K], добавлен 25.04.2009Естествознание как основа научно-технического прогресса, направления и сферы использования его современных достижений. Принципы биотехнологии, генной инженерии. Использование информационных и навигационных технологий, математического моделирования.
реферат [43,0 K], добавлен 16.12.2015Память как свойство человеческого мозга, позволяющее записывать, хранить и при необходимости воспроизводить информацию. Факторы, влияющие на память, значение правильного питания для ее улучшения. Процесс перехода сенсорной информации в первичную память.
реферат [31,6 K], добавлен 07.06.2010Биология как комплекс наук, которые непосредственно связаны с изучением живого. Уровни развития биологических знаний. Сущность жизни, особенности ее понимания в биологии. Возникновение теории происхождения видов. Современные проблемы теории селектогенеза.
реферат [48,8 K], добавлен 27.12.2016Воздействие синергетики на современные высокие социальные технологии. Синергетика как междисциплинарное направление научных исследований. Основные понятия синергетики. Синергетический подход в биофизике. Основные принципы синергетики в естествознании.
реферат [18,8 K], добавлен 25.06.2010Специфика живого вещества и проблемы изучения живой природы в естествознании. Концепции происхождения жизни на планете и эволюции живых организмов. Зарождение и развитие Солнечной системы. Теория структурных уровней организации биотической материи.
контрольная работа [49,2 K], добавлен 06.10.2012Воздействие концепций этногенеза на технологии виртуальной реальности. Объекты виртуальной реальности. Использование технологий виртуальной реальности в различных областях человеческой деятельности. Взаимодействие этногенеза с виртуальной реальностью.
реферат [17,0 K], добавлен 25.06.2010Значение изучения анализаторов человека с точки зрения информационных технологий. Виды анализаторов человека, их характеристика. Физиология слухового анализатора как средства восприятия звуковой информации. Чувствительность слухового анализатора.
реферат [1,0 M], добавлен 27.05.2014Цитология как раздел биологии, наука о клетках, структурных единицах всех живых организмов, предмет и методы ее изучения, история становления и развития. Этапы исследований клетки как элементарной единицы живого организма. Роль клетки в эволюции живого.
контрольная работа [378,6 K], добавлен 13.08.2010