Гипотеза мира РНК
Репликация теломерных участков эукариотических хромосом. Механизм обратной транскрипции. Функциональные возможности рибонуклеиновых кислот, регуляция экспрессии эукариотических генов (интерференция РНК). Структура РНК-содержащих стрессовых гранул.
Рубрика | Биология и естествознание |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 09.06.2011 |
Размер файла | 2,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
В течение долгого времени не было предложено сколько-нибудь удовлетворительного решения этой проблемы. Около 10 лет назад А.Б. Четвериным и сотрудниками был разработан метод молекулярного клонирования РНК: из единичных молекул РНК, помещенных на поверхность геля, содержащего катализатор репликации (в данном случае вирусную РНК-зависимую РНК-полимеразу) и рибонуклеозидтрифосфаты, оказалось возможным выращивать колонии молекул РНК, идентичных исходной молекуле. Позднее метод был применен для регистрации единичных событий, происходящих внутри популяции РНК в растворе, и была впервые экспериментально показана способность молекул РНК к спонтанной перестройке их нуклеотидных последовательностей в отсутствие каких-либо ферментов и рибозимов. Открытая спонтанная реакция характеризовалась следующими особенностями. Во-первых, цепи РНК в растворе при температурах от 5 до 37°С время от времени обмениваются частями своих последовательностей; обмен может происходить как между разными молекулами (транс-перестройки), так и внутри одной и той же молекулы (цис-перестройки). Во-вторых, эти перестройки не специфичны по отношению к последовательности и могут происходить в любом месте цепей. В-третьих, в отличие от рибозимных и ферментативных реакций, а также реакций самокатализируемого сплайсинга, З'-гидроксилы не участвуют в этой спонтанной реакции, а молекулы или участки РНК реагируют друг с другом внутренними районами. Реакция зависит от присутствия Мg2+. Скорость спонтанных перестроек невелика - одно событие в час на миллиард нуклеотидов; это означает, что 0.002-0.02% цепей РНК с длиной 800-8000 нуклеотидных остатков спонтанно перестраиваются в популяции РНК в течение 24 ч. Реакция не требует никаких других компонентов, кроме самой РНК и Мg2+, и, таким образом, может рассматриваться как присущее РНК химическое свойство и должна происходить повсюду в живой и неживой природе.
Появление достаточно длинных полирибонуклеотидов и генерация вариантов за счет спонтанных цис- и транс-перестроек должны были привести к случайному появлению рибозимов, и критическим этапом должно было стать возникновение в популяции РНК рибозима, катализирующего процесс комплементарной репликации РНК. Это - принципиальное условие для того, чтобы размножить - амплифицировать - единичные молекулы случайно возникших в популяции вариантов и сохранить их для эволюции. Другими словами, появление механизмов РНК-катализируемой репликации РНК должно рассматриваться как первое и необходимое условие для начала эволюции мира РНК. С появлением таких рибозимов - хотя бы одной молекулы на популяцию молекул РНК в каком-то небольшом водоеме - мир РНК обрел свою сущность как самосохраняющаяся и развивающаяся материя на древней Земле.
Возникновение и существование мира РНК на Земле, естественно, могло иметь место только в жидкой водной среде с нейтральным рН и растворенными солями одновалентных металлов (в первую очередь К+ и Na+) и МgІ+. Скорее всего это были мелкие водоемы и лужи («Дарвиновские пруды»), где могли концентрироваться абиогенно возникающие органические вещества; океанские просторы вовсе не годились для этого. (Впрочем, как полагает большинство геологов и палеонтологов, в то время океаны на Земле, по-видимому, еще и не существовали.) Присутствие РНК-репликазной активности в водной среде РНК-содержащей лужи или пруда давало в результате эффект амплификации всех олиго- и полирибонуклсотидов этого водоема, т.е. рост общей популяции молекул РНК. Однако на этом этапе еще не могло быть никакого отбора «лучших» и, стало быть, никакой биологической эволюции.
Дело в том, что в таком случае эффективный РНК-реплицирующий рибозим, присутствующий в луже, одинаково хорошо должен был амплифицировать как редкие молекулы РНК, обладающие какими-либо полезными для популяции свойствами (например, свойством адсорбировать из среды различные субстраты или катализировать синтез нужных веществ), так и основную массу неактивных, балластных молекул РНК. Чтобы естественный отбор начал работать, необходима была какая-то форма компартментализации, обособления отдельных ансамблей РНК, в которых рибозимы и их продукты удерживались бы вместе. Только тогда естественный отбор мог отличить те РНК, чей продукт лучше, и те ансамбли, чьи РНК функционально лучше дополняют друг друга. Лучшие обособленные ансамбли РНК - первозданные особи - должны расти быстрее других, перерастать других, тем самым обеспечивая отбор лучших.
А.Б. Четвериным и сотрудниками экспериментально показана способность молекул РНК формировать молекулярные колонии на гелях или других влажных твердых средах, если на этих средах им предоставлены условия для репликации. Смешанные колонии РНК на твердых или полутвердых поверхностях и могли быть первыми эволюционирующими бесклеточными ансамблями, где одни молекулы выполняли генетические функции (репликацию молекул РНК всего ансамбля), а другие формировали структуры, необходимые для успешного существования (например, такие, которые адсорбировали нужные вещества из окружающей среды) или были рибозимами, ответственными за синтез и подготовку субстратов для синтеза РНК. Такая бесклеточная ситуация создавала условия для очень быстрой эволюции: колонии РНК не были отгорожены от внешней среды и могли легко обмениваться своими молекулами - своим генетическим материалом.
Эта альтернатива представляется наиболее вероятной потому, что образование колоний РНК легко себе представить в случае естественного подсыхания лужи, населенной молекулами РНК: на влажной поверхности глины, в тех местах, где оказывался РНК-реплицирующий рибозим, молекулы РНК, осевшие на поверхность, должны были амплифицироваться и образовывать коло_А_ - при условии, что необходимые органические вещества (предшественники пуринов, пиримидинов, рибозы, и т.д.) и высокоэнергетические фосфаты присутствовали на той же поверхности. Таким путем могли образовываться смешанные колонии РНК с различными функциональными активностями. Такой ансамбль молекул РНК в виде смешанной колонии мог успешно существовать и расти, если он включал в себя лиганд-связывающие РНК для избирательной адсорбции и аккумуляции необходимых веществ из окружающей среды, набор рибозимов, катализирующих метаболические реакции для синтеза нуклеотидов и их активированных (фосфорилированных) производных, и рибозим, катализирующий комплементарную репликацию всех РНК колонии.
Наиболее серьезным следствием компартментализации РНК в форме смешанных колоний было появление механизма естественного отбора: колонии с РНК, более активными и более подходящими друг другу (функционально дополняющими друг друга), могли расти быстрее и тем самым «перерастать» другие колонии, вытеснять их. Таким образом, образование компартментализованных ансамблей функционально дополняющих друг друга РНК в качестве особей, способных расти и конкурировать друг с другом, представляется вероятным, даже в отсутствие окружающих их мембран или оболочек другого типа, и даже без четкой границы раздела.
Заключение
Таким образом мог возникнуть «мир РНК», где РНК выступает как самодостаточная молекула, сочетающая в себе генотип и фенотип одновременно и способная к эволюционному развитию благодаря рекомбинации и каталитическим способностям. Ключевым ферментом этого мира должен быть фермент РНК-репликаза, способный осуществлять аутокаталитическую репликацию РНК.
Существует несколько аргументов в пользу того, что РНК представляет собой первичную молекулу -- носитель жизни. Известна способность РНК нести генетическую информацию. Это в полной мере свойственно ныне существующим РНК-содержащим вирусам. Доказано также, что вирусные РНК способны к рекомбинации, в которую могут вовлекаться как вирусные, так и клеточные РНК. Широко известны ставшие уже классическими результаты опытов Г. Урея и С. Миллера, воспроизводящих первичную (абиотическую) среду Земли. Так, из газообразных веществ (аммиака, углекислого газа, метана и водорода) при воздействии электрического разряда и УФ-облучения можно получить элементарные соединения (формальдегид, синильную кислоту, мочевину, отдельные аминокислоты и др.), из которых далее образуются пуриновые основания (А и G) -- исходные молекулы, необходимые для образования нуклеотидов. Сами нуклеотиды уже являются убиквистическими молекулами, способными существовать в виде различных жизненных форм (коферментов, энергоносителей и др.). В результате использования энергии, выделявшейся при нагрева_А_ сухих органических остатков или под действием каталитической активности неорганических полифосфатов, нуклеотиды могли взаимодействовать друг с другом с образованием полимерных молекул. Случайное объединение нуклеотидов в полимерные цепи имело решающее значение, ибо привело к возникновению матричных молекул, пригодных для комплементарного копирования. Дальнейшая эволюция этих молекул могла привести к отбору каталитически активных РНК.
В ходе дальнейшей биологической эволюции и особенно в связи с возникновением клеточных форм жизни часть функций РНК, вероятно, перешла к ДНК, а другая часть -- к белкам. Существующие РНК обладают высоким разнообразием жизненных форм (фенотипов), превосходя в этом отношении ДНК, и сохраняют способность к хранению и передаче генетических признаков, чем принципиально отличаются от белковых молекул, многие из которых они «приспособили» для обеспечения своего собственного существования.
Список литературы
1. Коничев А.С., Севастьянова Г.А. Молекулярная биология: Учеб. для студ. пед. вузов.- М.: Издательский центр «Академия», 2003. - 400 с.
2. Спирин А.С. Мир РНК и его эволюция Молекулярная биология, 2005, том 39, № 4, с. 550-556.
3. Спирин А.С. Биосинтез белков, мир РНК и происхождение жизни // Вестник РАН, 2001, № 4, с.320-328.
4. Копылов А.М. Еще один шаг к «Миру РНК» // Биохимия, 1995, том 60, вып. 1, с. 159-161.
5. Вильгельм А.Э., Чумаков С.П., Прасолов В.С. Интерференция РНК: биология и перспективы применения в биомедицине и биотехнологии // Молекулярная биология, 2006, том 40, №3, с. 387-403.
6. Чуриков Н.А. Молекулярные механизмы эпигенетики // Биохимия, 2005, том 70, вып. 4, с. 493-513.
7. Иванов П.А., Надеждина Е.С. Стрессовые гранулы: РНП-содержащие цитоплазматические тельца, возникающие в ответ на стресс. Состав и механизмы формирования // Молекулярная биология, 2006, том 40, № 6, с. 937-944.
8. Зверева М.Э., Шпанченко О.В., Донцова О. А., Богданов А.А. Структура и функции тмРНК (10Sa РНК) // Молекулярная биология, 2000, том 34, № 6, с. 1081-1089.
9. Рис Э. Стернберг М. От клеток к клеткам: Иллюстрированное введение в молекулярную биологию: Пер. с англ. - М.: Мир, 1988. - 144с.
10. Кузнецов В.В. РНК-интерференция. Использование метода для создания нокаутных организмов и клеточных линий (обзор) Биохимия, 2003, том 68.
11. Darnell J., et.al. Molecular Cell Biology. - N. Y.: Scientific Amer. Books, 1986. - P. 1052
Размещено на Allbest.ru
Подобные документы
Регуляция на уровне транскрипции у прокариот. Этапы процессинга РНК у эукариот. Энхансеры, сайленсеры, инсуляторы. РНК-интерференция. Упаковка генетического материала. Роль эпигенетических модификаций. Гистоновый код, его структура и принципы построения.
презентация [1,7 M], добавлен 14.04.2014Механизмы регуляции экспрессии генов у прокариот и эукариот. Регуляция содержания РНК в процессе биосинтеза. Согласованная регуляция экспрессии прокариотических родственных генов. Репрессия триптофанового оперона. Суммарный эффект аттенуации и репрессии.
лекция [24,2 K], добавлен 21.07.2009Транскрипция и основные ферменты, которые осуществляют транскрипцию, ДНК-зависимые РНК-полимеразы. Структурные и функциональные домены больших субъединиц эукариотической РНК-полимеразы. Регуляция экспрессии генов на уровне транскрипции у прокариот.
реферат [373,5 K], добавлен 29.09.2009Дифференциальная экспрессия генов и ее значение в жизнедеятельности организмов. Особенности регуляции активности генов у эукариот и их характеристики. Индуцибельные и репрессибельные опероны. Уровни и механизмы регуляции экспрессии генов у прокариот.
лекция [2,8 M], добавлен 31.10.2016История открытия основных свойств генетических систем: репликации, рекомбинации и репарации. Биохимические исследования экспрессии и регуляции эукариотических генов. Введение новой генетической информации в клетки. Основные принципы клонирования.
реферат [22,1 K], добавлен 27.07.2009Репликация одноцепочечной ДНК у вирусов и у прокариот. Основные этапы редупликации. Репликация кольцевых дуплексов. Центомеры и теломеры – наиболее четко выраженные морфологические структуры хромосом. Терминация и расхождение в кольцевых геномах.
лекция [179,7 K], добавлен 21.07.2009Регуляция метаболизма как управление скоростью биохимических процессов. Регуляция биосинтеза белков и особенности процесса репликации. Транскрипция генетической информации, механизм катаболитной репрессии, регуляция на этапе терминации транскрипции.
контрольная работа [816,0 K], добавлен 26.07.2009Регуляция экспрессии у генетически модифицированных растений. Исследование функционирования промоторов бактериального и вирусного происхождения в трансгенных растениях. Регуляторные последовательности, используемые в генетической инженерии растений.
курсовая работа [39,4 K], добавлен 03.11.2016Изучение регуляции экспрессии генов как одна из актуальных проблем современной генетики. Строение генома Drosophila melanogaster. Характеристика перекрывающихся генов leg-arista-wing complex и TBP-related factor 2. Подбор рациональной системы экспрессии.
дипломная работа [2,0 M], добавлен 02.02.2018Процесс самовоспроизведения ДНК, удвоение молекул нуклеиновых кислот. Механизм и принципы репликации (редупликации). Строение репликативной вилки и ферменты; ДНК-полимераза. Образование репликационного глазка с одной или двумя репликационными вилками.
презентация [2,9 M], добавлен 24.11.2014