Проблемы использования генетически модифицированных организмов

Хранение и передача генетической информации у живых организмов. Способы изменения генома, генная инженерия. Риски для здоровья человека и окружающей среды, связанные с генетически модифицированными организмами (ГМО), возможные неблагоприятные эффекты.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 27.04.2011
Размер файла 164,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Направления использования трансгенных растений могут быть совершенно неожиданными. Так, предлагается применять их для очистки почвы от загрязнений нефтью и тяжелыми металлами. Для этого в них встраивают соответствующие гены от микроорганизмов, способных утилизировать и деградировать эти вещества. В царстве микробов такие формы - не редкость. Самое удивительное, что растения табака с подобными свойствами уже получены. На очереди - создание генетически модифицированных растений, которые можно использовать непосредственно в практической деятельности, например различных древесных пород.

Как указывалось выше, растения - удобная система для производства съедобных вакцин. Оказалось, что аналогичный подход можно использовать для получения вакцин, обладающих контрацептивным (противозачаточным) действием. Для этого в их геном достаточно встроить гены, кодирующие антигены половых клеток (сперматозоидов) или половых гормонов, предлагается использовать их для относительно дешевого и гуманного регулирования численности популяций некоторых диких животных.

Ряд проектов имеет целью улучшение потребительских свойств продуктов, вырабатываемых животными или из животных. Речь, в частности, идет об улучшении качества шерсти овец, о выведении с помощью генетической инженерии пород крупного рогатого скота, в молоке которого снижена концентрация р-лактоглобулина, основного его аллергена, или изменено соотношение отдельных его белков.

Другой подход состоит в модификации отдельных генов для улучшения физико-химических свойств соответствующих протеинов молока с целью повышения содержания в нем кальция, изменения соотношения отдельных аминокислот, получения молока, сыр из которого созревает в более короткие сроки. Все это должно существенно улучшить потребительские и технологические свойства коровьего молока. Выиграют от этого и сами животные, поскольку улучшенное молоко - немаловажный фактор здоровья вскармливаемых им телят. Многие из этих подходов уже реализованы на модельных объектах (лабораторных мышах).

Свиньи с добавленным геном фитазы (один из ферментов переваривания пищи) эффективнее усваивают корма за счет лучшей усвояемости фосфора, что выражается в усилении их роста. К тому же это дает возможность в меньшей степени загрязнять окружающую среду фосфатами. Трансгенные свиноматки с добавленным им геном р-лактальбумина более эффективно вскармливают своих поросят.

В то же время конкретного практического выхода следует ожидать уже в ближайшее время в таком важном направлении генетической инженерии, как использование животных в качестве "биореакторов" для производства фармацевтических препаратов. Несмотря на то что и растения, и животные в отличие от микроорганизмов относятся к царству эукариот, тем не менее биология растительной и животной клеток все-таки существенно различается. Поэтому для производства некоторых животных рекомбинантных протеинов более целесообразно все-таки использовать животные организмы, нежели растительные. В настоящее время убедительно доказано, что с помощью молочных желез трансгенные животные способны производить всевозможные протеины, такие, как разные факторы крови, ферменты, моноклональные антитела, коллаген, фибриноген, шелк пауков и т.д.

Что может дать человечеству использование животных-биореакторов, можно проиллюстрировать на следующем примере. Совместным проектом российских и белорусских ученых предусмотрено создание системы производства двух лекарственных протеинов: проурокиназы и лактоферрина человека в молоке трансгенных коз. Проурокиназа - мощный тромболитический фермент, использование которого в первые часы после наступления инфаркта миокарда в 5 раз снижает смертность от этого заболевания. Стоимость одного курса лечения проурокиназой составляет в настоящее время около 1000 долларов США, что делает этот препарат малодоступным для большинства граждан. Между тем в таком лечении в России и Украине нуждаются более 400 тысяч кардиологических больных.

Примеров использования трасгенных организмов в разных сферах жизнеобеспечения очень много.

В приложении Б перечислены привнесенные признаки, продукты трансгенов (то есть протеины, ферменты, образующиеся в результате функционирования добавленных в растения генов), а также источники, откуда соответствующие гены были выделены.

Как видим, приведенные в примере, допущенные к использованию сорта растений, относящиеся к 16 видам, обладают 7 новыми признаками или их комбинацией. [11, 12, 13]

4. Биобезопасность генно-инженерной деятельности

4.1 Природа рисков для здоровья человека и окружающей среды связанных с ГМО

Любой трансгенный сорт растения отличается от исходного только тем, что в его генетическом материале к 25 - 30 тысячам существующих генов добавлен относительно небольшой фрагмент ДНК, в котором записана информация об одном-двух новых генах и их регуляторных элементах.

Активность этих добавленных генов в организме выражается в биосинтезе одного-двух новых для организма протеинов (ферментов или структурных белков). Поскольку генетическая инженерия может оперировать любыми генами, существующими в природе, а не только генами от организмов, состоящих в эволюционном родстве с отдельными видами культурных растений, как это делается в традиционной селекции, то продукты привнесенных генов (ферменты, протеины) могут выглядеть в генетически модифицированном организме как необычные, несвойственные, чужеродные для данного вида, которые в природе у него не встречаются.

Что касается рекомбинантных протеинов, то не во всех ГМО они являются абсолютно чужеродными, несвойственными для определенного вида соединениями.

Во-первых, существует достаточно большая группа трансгенных сортов растений, которые получены благодаря генетическим манипуляциям с их собственными генами (томаты с удлиненным периодом хранения, соя, рапс с улучшенным составом масла, картофель с улучшенным качеством крахмала, кофе без кофеина, табак без никотина и другие).

Во-вторых, многие весьма отдаленные в эволюционном плане организмы имеют большое количество идентичных путей метаболизма, и соответственно состав и строение ферментов, которые обеспечивают их реализацию, также идентичны. В качестве примера можно привести фермент EPSPS, который является ключевым в биосинтезе ароматических аминокислот у всех растений, грибов, бактерий. Бактериальный EPSPS, образующийся у трансгенной сои, толерантной к гербициду Раундап, вполне успешно выполняет соответствующие функции в растительном организме после обработки растений гербицидом, когда свой, растительный EPSPS сои дезактивирован.

Однако при оценке безопасности таких близких по функциональной активности генов следует обращать внимание не столько на сам белок - продукт трансгена, сколько на возможное изменение отдельных путей метаболизма трансгенного растения из-за повышения концентрации одного из их компонентов. В случае с тем же EPSPS при оценке безопасности генетически модифицированной сои принималось во внимание, что этот фермент катализирует реакцию, не лимитирующую конечную скорость синтеза ароматических аминокислот, поэтому, как и ожидалось, показатели их синтеза у ГМО не отличались от таковых у исходных растений.

В-третьих, последние научные данные, полученные в результате изучения строения генетического материала человека, некоторых животных и растений, существенно расширили наши представления о сходстве и отличиях генов разных систематических групп и вероятности их переноса от одной отдаленной систематической группы к другой (горизонтальный перенос генов).

Оказалось, что в геноме растения арабидопсис присутствует около сотни генов человека, в том числе таких, как ген рака молочной железы. Почвенная бактерия Agrobacterium tumefaciens регулярно переносит часть своих генов в растения, вызывая у них образование опухоли - корончатый галл. Это абсолютно естественный процесс, который с успехом используют и генные инженеры. Подобных примеров можно привести очень много.

Таким образом, то, что делают генетики, ни в коей мере не противоречит законам природы. Обмен генетической информацией между отдаленными видами в ней происходит постоянно. В отдельных случаях для этого требуются миллионы лет, а в некоторых это может происходить ежедневно и ежечасно.

Вторая основная группа рисков связана с самим фактом вставки трансгенов в генетический материал организма. Есть основания полагать, что встраивание трансгенов происходит случайным образом, то есть они могут встроиться практически в любую область молекул ДНК, содержащихся в трансформируемой клетке: в любую хромосому, любую часть хромосомы, если речь идет о высших организмах.

Чем это чревато? Прежде всего, тем, что привнесенный ген может затронуть область ДНК, которая кодирует структуру или регуляторные элементы какого-либо гена модифицируемого организма. Вероятность этого события в целом не так велика, как может показаться на первый взгляд. Дело в том, что генетический материал высших организмов устроен таким образом, что собственно генами и их регуляторными элементами занято менее 10% длины молекулы ДНК, что, как полагают, повышает стабильность, устойчивость молекулы ДНК к внешним воздействиям. Это означает, что гены на молекуле ДНК расположены не плотно один за другим, как кадры на кинопленке, а через большие промежутки, занятые некодирующими последовательностями нуклеотидов. Более того, даже в пределах кодирующих последовательностей генов (то есть той области молекулы ДНК, в которой записана информация о последовательности аминокислот в белке - продукте гена) имеются области, так называемые интроны, которые также не несут никакой генетической информации. Они вырезаются в ходе "созревания" молекулы информационной РНК, образовавшейся при транскрипции гена. Тем не менее вероятность того, что трансген может встроиться в область ДНК, уже занятую другим геном, все же существует.

Если при этом будет затронута область, кодирующая структуру поврежденного гена, то в результате продукт данного гена образовываться не будет. Этот ген как бы распадается на две неполноценные части: одна, передняя, имеет элементы, необходимые для начала транскрипции (образования информационной РНК), но не имеет терминальной последовательности, другая, задняя, имеет только терминальные элементы. К тому же обе части кодирующей области являются неполными. Очевидно, что аналогичный результат будет иметь место и в случае повреждения промотора или терминальных последовательностей.

Если затронутый ген выполняет какую-то важную функцию в организме, то отсутствие его продукта может иметь весьма печальные для него последствия, вплоть до потери жизнеспособности. Понятно, что до уровня коммерческого сорта генотипы с поврежденными генами дойти не могут в принципе.

Если в процессе встраивания будут затронуты другие регуляторные элементы - энхансеры ("усилители" активности генов) или сайлэнсеры ("замедлители"), то это может привести к изменению активности затронутых вставкой генов. Сорта растений, образующие какие-либо токсичные соединения (например, соланины картофеля) в концентрациях, безвредных для здоровья человека, в результате генетической модификации способны усилить их синтез до уровня, превышающего предельно допустимые значения. Такие генотипы уже становятся опасными для здоровья.

Наконец, третья основная группа рисков, связанных с генно-инженерными организмами, основана на неблагоприятных эффектах, вызванных переносом трансгенов другим организмам: вертикальным переносом генов от ГМО диким сородичам культурного вида или горизонтальным переносом генов, например селективных генов устойчивости к антибиотикам от генетически модифицированного растения микроорганизмам пищеварительного тракта. Здесь все понятно: гены и их продукты, безобидные у ГМО, могут оказаться весьма опасными в другой генетической и экологической среде. Так, приобретение болезнетворными бактериями пищеварительного тракта устойчивости к антибиотикам может существенно затруднить лечение болезней, которые они способны вызывать. [14,15,16]

4.2 Возможные неблагоприятные эффекты ГМО на здоровье человека

Среди потенциальных рисков для здоровья человека, связанных с использованием генно-инженерных организмов, рассматриваются следующие:

синтез новых для реципиентного организма белков - продуктов трансгенов, которые могут быть токсичными и/или аллергенными;

изменение активности отдельных генов живых организмов под влиянием вставки чужеродной ДНК, в результате которого может произойти ухудшение потребительских свойств продуктов питания, получаемых из этих организмов.

горизонтальная передача трансгенов другим организмам, в частности маркерных генов устойчивости к антибиотикам от ГМО микроорганизмам пищеварительного тракта.

Понятно, что когда говорят о рисках для здоровья человека, связанных с ГМО, имеют в виду прежде всего риски при потреблении продуктов, полученных из них или произведенных ими (например, молока от генетически модифицированных коров). Стратегия оценки безопасности генетически модифицированных продуктов питания основана на принципе "существенной эквивалентности", разработанном OECD (Организацией экономического сотрудничества и развития).

Для идентификации в новых продуктах и исходном сырье отличных от аналогов признаков, влияющих на уровень безопасности и питательную ценность пищевых продуктов, тщательному анализу подвергается информация, касающаяся характеристик исходного организма, от которого взят ген, предназначенный для трансгеноза, а также характера генетической модификации. Далее проводят сравнительный анализ генетически модифицированного организма и исходного (немодифицированного) организма. Для этого сопоставляют агрономические показатели, продукты встроенных генов, состав ключевых химических компонентов (в том числе питательных и антипитательных), профиль основных метаболитов, эффекты переработки исходного сырья.

Новый продукт (сорт растений) может быть:

эквивалентным по существенным признакам выбранному аналогу;

эквивалентным аналогу, за исключением одного (нескольких) существенного, хорошо определяемого признака;

не эквивалентным аналогу по существенным признакам.

Во 2-м и 3-м случаях проводится тщательная оценка безопасности отличных от исходного аналога признаков ГМО по таким показателям, как потенциальная токсичность, потенциальная аллергенность, возможность переноса генов устойчивости к антибиотикам микроорганизмам пищеварительного тракта, вероятность потенциального ухудшения пищевой ценности и усвоения питательных веществ.

Стратегия оценки потенциальной токсичности новых продуктов питания состоит в следующем. Если исследуемое, отличное от аналога, вещество является известным компонентом растительной пищи, имеющим длительную историю безопасного использования, исследования токсичности новых продуктов не являются обязательными.

В иных случаях осуществляются:

определение концентрации потенциальных токсинов в съедобных частях растений; установление удельного веса данного продукта в пищевом рационе определенных групп населения;

сравнение (для белков) их аминокислотной последовательности с таковой у известных токсинов и пищевых антагонистов (например, ингибиторов протеаз) по электронным базам данных;

оценка стабильности новых веществ к термической обработке;

определение скорости разрушения потенциальных токсинов в желудочно-кишечном тракте (в модельных системах);

анализ уровня токсичности новых веществ в модельных системах (культура клеток in vitro);

анализ токсичности в экспериментах по принудительному скармливанию лабораторным или домашним животным пищи, содержащей продукты, полученные из изучаемого генетически модифицированного организма, или ее новых компонентов в течение длительного времени (хронический эксперимент - продолжительность 1 - 2 года) либо в течение короткого времени, но с использованием высоких концентраций изучаемых продуктов (острый эксперимент - продолжительность около двух недель, концентрация изучаемого продукта трансгена до 5 граммов на килограмм веса животного).

Из всего многообразия трансгенных сортов можно выбрать фактически только единицы, у которых в результате генетической модификации образуются действительно новые, не характерные для обычных сортов данного вида соединения. Это ферменты фосфинотрицинацетилтрансфераза и неомицинфосфотрансфераза, которые обеспечивают дезактивацию соответственно гербицида глюфозината аммония (Либерти, Баста) и антибиотиков - аминогликозидов канамицина, неомицина, генетицина. Тем не менее и вещества, имеющие длительную историю безопасного использования, тоже проходят тщательную проверку.

В приложении В представлены некоторые из перечисленных выше характеристик белков - продуктов трансгенов, наиболее широко представленных в генно-инженерных растениях, допущенных для использования в хозяйственной деятельности.

Как видим, большинство белков - продуктов трансгенов относятся к нестойким соединениям: они легко денатурируют даже при относительно невысоких температурах (следовательно, разрушаются при переработке растительного сырья) и кислотности среды.

Все они быстро перевариваются в желудочном соке. Содержание их в растительных тканях очень низкое.

Это означает малую вероятность того, что перечисленные протеины могут вызывать аллергические реакции. Ведь для аллергенов характерны следующие признаки: устойчивость к перевариванию, к переработке, молекулярная масса 10-70 кдальтон, содержание в пище более чем 1%. Для того чтобы развилась аллергическая реакция, белок должен поступать в тонкий кишечник в практически неизмененном состоянии (там происходит его всасывание в кровь с последующим образованием антител).

Естественно, на практике обычно получают большое количество трансгенных форм, из которых в ходе последующей традиционной селекции отбирают образцы без видимых мутаций. Затем тщательнейшим образом изучают безопасность отобранных форм для здоровья человека и окружающей среды. В частности, анализируют содержание в растительном сырье как питательных так и потенциально опасных для здоровья веществ.

Так, результаты 1400 аналитических экспериментов, проведенных при изучении вышеупомянутой RR-сои (устойчивой к Раундаупу), подтвердили полную идентичность трансгенного и исходного сортов сои как по питательным, так и антипитательным свойствам.

В качестве первых фигурировали: содержание белка, жира, волокон, зольных элементов, углеводов, калорийность, влажность зерна, "питательные" свойства переработанного зерна - сухой муки, обезжиренной муки, белкового изолята, концентрата, лецитина, очищенного масла, дезодорированного масла и т.п. Не выявлено различий по специфическим жирным кислотам, аминокислотам, в частности ароматическим аминокислотам. Естественно, особое внимание было уделено "антипитательным" компонентам соевого зерна: ингибитору трипсина, лектинам, фитоэстрогенам, стахиозе и фитату. По содержанию этих веществ генетически модифицированный организм и исходная линия также не различались. Анализ "существенной эквивалентности" ГМО и исходной линии наиболее актуален для видов растений, которые в принципе могут быть опасными для здоровья человека: картофель, томаты (из-за токсичных гликоалкалоидов), хлопок (из-за токсичного госсипола) и некоторые другие.

Следующим фактором, который рассматривается в качестве потенциального неблагоприятного эффекта генетически модифицированных организмов на здоровье человека, является горизонтальный перенос трансгенов (прежде всего генов устойчивости к антибиотикам) от ГМО микрофлоре пищеварительного тракта человека и животных.

В состав любой трансгенной конструкции, как правило, входит помимо собственно трансгена и его регуляторных элементов и так называемый селективный (или маркерный) ген, необходимый для отбора трансформированных клеток. В качестве селективных генов обычно используют гены устойчивости к антибиотикам, которые уже утратили свое значение как антимикробные препараты из-за широко распространенной устойчивости микроорганизмов к этим антибиотикам.

Кроме того, вероятность переноса селективных генов из ДНК продуктов питания, полученных из генетически модифицированных организмов, к микроорганизмам пищеварительного тракта крайне низкая (она оценивается как приблизительно 10~17). Для этого требуется несколько крайне маловероятных событий: участок ДНК, содержащий селективный ген, не должен быть поврежден в процессе пищеварения, необходима гомология селективного гена или прилегающих к нему районов ДНК с ДНК хромосомы или плазмиды болезнетворной бактерии пищеварительного тракта, а для того, чтобы селективный ген экспрессировался в ней после переноса, он должен встроиться под подходящим прокариотическим промотором.

Если умножить вероятность горизонтального переноса селективного гена на возможные последствия такого переноса (появление одной новой бактерии с устойчивостью к антибиотику в придачу к тысячам уже существующих с такой же устойчивостью), то серьезно обсуждать подобные риски можно, пожалуй, только перед непросвещенной публикой в пропагандистских целях. Еще более несерьезным выглядит рассмотрение последствий переноса трансгенов или селективных генов в ДНК клеток человека: продолжительность жизни клеток эпителия пищеварительного тракта около 7 дней, никакого контакта пищи с половыми клетками человека не может быть в принципе.

Следовательно, наличие в трансгенных конструкциях селективных генов антибиотикоустойчивости не является опасным для здоровья человека и окружающей среды, но, учитывая озабоченность, а часто и неприятие общественностью этого факта, ученые прилагают усилия по разработке альтернативных селективных систем.

Так, все чаще в качестве селективных генов используют гены устойчивости к гербицидам (правда, экологи опасаются, что это приведет к росту гербицидоустойчивости сорняков), нетоксичным сахарам (типа ксилозы, маннозы, 2-деоксиглюкозы), гены индуцированной экспрессии фитогормонов и другие. Разработаны методы удаления селективных генов у трансформантов после проведения селективной процедуры или получения безмаркерных трансгенных линий с помощью котрансформации с последующим негативным отбором по селективным генам в беккроссных поколениях. [17,18, 19]

4.3 Неблагоприятные последствия высвобождения ГМО в окружающую среду

В представлении обывателя генетически модифицированные организмы ассоциируются прежде всего с якобы страшной опасностью, угрожающей здоровью населения. По мнению же специалистов, намного более существенными представляются риски для окружающей среды. Ведь первую группу рисков (для здоровья человека) можно оценить достаточно точно, чтобы их предупредить и практически полностью исключить.

В случае же с рисками для окружающей среды ситуация намного сложнее. Необходимо учитывать различные сложные взаимодействия организма и среды, многие из которых с трудом поддаются точной оценке или даже непредсказуемы. Особенно сложно бывает спрогнозировать отдаленные последствия, различные каскадные эффекты: ведь в дикой природе все взаимосвязано. Да и устранить возможные неблагоприятные последствия бывает очень сложно: если ГМО попали в окружающую среду, размножились и, что самое неприятное, передали свою генетическую информацию другим видам, то практически невозможно вернуть все в исходное состояние в случае обнаружения каких-либо неблагоприятных эффектов.

Возможны следующие неблагоприятные эффекты ГМО на окружающую среду:

разрушительное воздействие на биологические сообщества и утрата ценных биологических ресурсов в результате засорения местных видов генами, перенесенными от генетически модифицированных организмов;

создание новых паразитов, прежде всего сорняков, и усиление вредоносности уже существующих на основе самих ГМО или в результате переноса трансгенов другим видам;

выработка веществ - продуктов трансгенов, которые могут быть токсичными для организмов, живущих или питающихся на генетически модифицированных организмах и не являющихся мишенями трансгенных признаков (например, пчел, других полезных или охраняемых видов);

неблагоприятное воздействие на экосистемы токсичных веществ, производных неполного разрушения опасных химикатов, например гербицидов (значительное количество создаваемых в настоящее время ГМО - формы, устойчивые к гербицидам).

Как известно, в природе нет ничего лишнего: существует определенный баланс между отдельными видами в пределах любого биологического сообщества. Живые организмы находятся между собой в тесном контакте и взаимозависимости. Вероятность изменения биологического многообразия без вмешательства человека ничтожна. Увеличение численности популяции какого-либо вида в отдельные промежутки времени, например из-за колебаний климатических факторов, немедленно включает механизм, ограничивающий этот рост, и баланс между видами восстанавливается. Поэтому, говоря о первой группе риска из числа приведенных выше (разрушительное воздействие трансгенов на биологические сообщества), имеют в виду следующее. При переносе отдельных трансгенных признаков, прежде всего имеющих адаптивное значение в окружающей среде (устойчивость к холоду, жаре, засухе, засолению), от культурных сортов к их диким сородичам возможна ситуация, при которой последние могут приобрести дополнительные преимущества в борьбе за существование. А это чревато изменением того самого баланса между видами, существующего в природе. Последствия могут быть печальны: увеличение численности одних видов может сопровождаться снижением численности других и даже их утратой.

Проблема появления суперсорняков и супервредителей также фигурирует среди основных, когда рассматривают экологические риски, связанные с ГМО. Сорняки - это группа растений с определенным набором адаптивных признаков, которые помогают им существовать в окружающей среде, в том числе среди посевов культурных растений, несмотря на жесткую конкуренцию со стороны других организмов, а также постоянное воздействие со стороны человека, который пытается их искоренить.

Применение трансгенных сортов с инсектицидными свойствами (благодаря Bt-гену) сразу же породило вопрос: а не повлияют ли отрицательно эти сорта на биологическое разнообразие, воздействуя на насекомых, которые не являются "мишенью" трансгенного признака? Имеются в виду прежде всего такие полезные насекомые, как пчелы, божьи коровки, златоглазки. К счастью для природы, Bt-протеины отличаются высокой избирательностью своего действия. Тем не менее возможные негативные эффекты, связанные с нецелевым воздействием ГМО на другие организмы, обязательно тщательно взвешиваются при проведении оценки их биобезопасности.

Еще одним фактором риска считают возможное увеличение объемов применения гербицидов. В связи с тем, что первые ГМО обладали в основном признаками толерантности к гербицидам, возникло опасение, что их использование может привести к неблагоприятному воздействию на экосистемы токсичных веществ, производных неполного разрушения опасных химикатов, например гербицидов. Однако практика использования гербицидоустойчивых генетически модифицированных сортов показала противоположную тенденцию. Поскольку эффективность контроля над сорняками с помощью комбинации ГМО и соответствующего гербицида выше, чем в обычной практике применения химикатов, то общий объем гербицидов, внесенных на поля с генетически модифицированными сортами, оказывается ниже обычного. [20, 21, 22]

4.4 Государственное и международное регулирование безопасности генно-инженерной деятельности

До тех пор пока имеется элемент научной неопределенности относительно возможных неблагоприятных последствий генно-инженерной деятельности для здоровья человека и окружающей среды, она, в соответствии с принципом предосторожности, должна регулироваться на государственном уровне.

Задача эффективного государственного регулирования состоит обеспечении, с одной стороны, максимально благоприятные условия для развития генетической инженерии как одного из приоритетных научных направлений и, с другой стороны, гарантировать безопасность при осуществлении и использовании результатов и продуктов генно-инженерной деятельности.

Основными принципами государственной политики в области генетически-инженерной деятельности и обращения с ГМО должны является:

приоритетность сохранения здоровья человека и охраны окружающей среды по сравнению с получением экономических преимуществ от применения ГМО;

обеспечение мероприятий по соблюдению биологической и генетической безопасности при создании, исследовании и практическом использовании ГМО в хозяйственных целях;

контроль за ввозом на таможенную территорию Украины ГМО и продукции, полученной с их использованием, их регистрацией и обращением;

общедоступность информации о потенциальных рисках от применения ГМО, которые предполагается использовать в открытой системе и мерах по соблюдению биологической и генетической безопасности;

государственная поддержка генетически-инженерных исследований и научных и практических разработок в области биологической и генетической безопасности при создании, исследовании и практическом использовании ГМО в хозяйственных целях.

В большинстве развитых стран мира принято и эффективно функционирует специальное законодательство, касающееся биобезопасности, а также созданы соответствующие компетентные органы, которые претворяют его в жизнь.

В Украине в настоящее время система биобезопасности находится на начальных этапах формирования.

Первый шаг к ней осуществлён в ноябре 2008 года - в Украине был принят государственный стандарт, в соответствии с которым все продукты питания, содержащие генетически модифицированные организмы (ГМО), должны маркироваться. Также был принят закон "О государственной системе биобезопасности при создании, испытании, транспортировке и использовании генетически модифицированных организмов".

Задачами данного Закона являются:

охрана здоровья человека и окружающей среды при осуществлении генно-инженерной деятельности и обращении с ГМО;

обеспечения права граждан на безопасное использование ГМО;

создание условий для безопасного практического использования ГМО в хозяйственных целях;

определения прав и обязанностей субъектов рения при обращении с ГМО и установление их ответственности за нарушение законодательства;

защита граждан в случае причинения вреда их здоровью в результате потребления ГМО;

установление правовых основ международного сотрудничества в области генно-инженерной деятельности и обращения с ГМО.

Регулированию данным Законом подлежат: генетически-инженерная деятельность, осуществляемая в замкнутой системе; генетически-инженерная деятельность, осуществляемая в открытой системе; государственная регистрация ГМО и продукции, произведенной с их использованием; введение в обращение ГМО и продукции, произведенной с их использованием; экспорт, импорт и транзит ГМО.

Использования ГМО запрещается в промышленном производстве и введение в оборот ГМО, а также продукции, произведенной с применением ГМО, до их государственной регистрации.

Ввоз и транзит ГМО:

Запрещается ввоз на таможенную территорию Украины ГМО, а также продукции, произведенной с применением ГМО, до их государственной регистрации, за исключением таких, которые предназначены для научно-исследовательских целей или подержанных апробаций (испытаний).

Разрешение на ввоз ГМО, предназначенных для научно-исследовательских целей или подержанных апробаций (испытаний), предоставляется центральным органом исполнительной власти по вопросам образования и науки в порядке, установленном Кабинетом Министров Украины.

Разрешение на ввоз продукции, полученной с использованием ГМО, предназначенной для научно-исследовательских целей, предоставляется центральными органами исполнительной власти в соответствии с их полномочий, предусмотренных статьями 8-11 настоящего Закона, в порядке, установленном Кабинетом Министров Украины.

Ввоз пищевых продуктов, косметических средств, лекарственных средств, кормовых добавок и ветеринарных препаратов, содержащих ГМО или получены с их использованием, для непосредственного употребления по назначению возможно только при условии государственной регистрации соответствующих ГМО источников и включенной в этой части продукции. Порядок такого ввоза устанавливается Кабинетом Министров Украины. Разрешение на транзитное перемещение незарегистрированных в Украине ГМО предоставляется центральным органом исполнительной власти по вопросам экологии и природных ресурсов в порядке, установленном Кабинетом Министров Украины.

Транспортировка, хранение и утилизация ГМО

Транспортировка и хранение ГМО должно предусматривать осуществление комплекса мероприятий, предупреждающих неконтролируемое высвобождение ГМО в окружающую среду.

Учетная материал ГМО, полученный при испытаниях, непригодные или запрещенные к использованию ГМО, а также тара от них, подлежащих утилизации, уничтожению и обезвреживанию в порядке, который устанавливается центральным органом исполнительной власти по вопросам образования и науки и центральным органом исполнительной власти по вопросам экологии и природных ресурсов.

В системе международных отношений вопросы биобезопасности также вышли на первый план.

В 2000 году странами - Сторонами Конвенции о биологическом разнообразии принят Картахенский протокол по биобезопасности, основная цель которого - "содействие обеспечению надлежащего уровня защиты в области безопасной передачи, обращения и использования живых измененных организмов, являющихся результатом современной биотехнологии, способных оказывать неблагоприятное воздействие на сохранение и устойчивое использование биологического разнообразия, с учетом также рисков для здоровья человека и с уделением особого внимания трансграничному перемещению"

Основное положение Протокола состоит в требовании использовать процедуру заблаговременного обоснованного согласия до первого трансграничного перемещения ГМО, предназначенных для преднамеренного высвобождения в окружающую среду страны импорта. Это означает, что любое юридическое или физическое лицо, имеющее намерение ввезти в страну генетически модифицированный организм (например, семена сельскохозяйственных культур, предназначенные для посева), должно заблаговременно информировать об этом компетентные органы страны импорта, предоставив соответствующую информацию о ГМО, месте и времени его высвобождения. Ввоз ГМО осуществляется только в случае получения экспортером разрешения страны импорта, которое выдается после тщательного анализа рисков возможных неблагоприятных последствий высвобождения ГМО для здоровья человека и окружающей среды.

Живые организмы, попавшие в окружающую среду, не признают границ между государствами. Поэтому имеется возможность для непреднамеренного трансграничного перемещения ГМО. В связи с этим Стороны Протокола берут на себя обязательство принятия мер по регулированию рисков возможных неблагоприятных последствий высвобождения ГМО в окружающую среду. В число таких мер входит прежде всего выдвижение требования относительно проведения оценок рисков до первого высвобождения в окружающую среду ГМО, созданных в стране. Кроме того, в Протоколе подробно описаны действия Сторон в случае непреднамеренного высвобождения ГМО, которые могут оказать значительные неблагоприятные воздействия на здоровье человека и окружающую среду как в самой стране, так и в соседних странах при перемещении в них таких ГМО.

Каждая Сторона принимает необходимые правовые, административные и другие меры для выполнения своих обязательств, предусмотренных в рамках Протокола. Таким образом, присоединение к Картахенскому протоколу какой-либо страны не только обеспечивает возможность урегулирования вопросов, связанных с экспортом и импортом ГМО, но и создает предпосылки для создания национальной системы биобезопасности, которая является важнейшим атрибутом эффективного и безопасного использования достижений современных биотехнологий, развития генетической инженерии как одного из наиболее перспективных научных направлений. [23,24]

Вывод

Ситуация, которая сложилась с отношением к использованию ГМО, не является исключением в истории человечества. Так было всегда: любые новые продукты (кофе, томаты, картофель, кукуруза) европейцы вначале встречали, мягко говоря, с недоверием. Научные данные и уже имеющийся немалый опыт использования ГМО свидетельствуют о том, что большинство рисков, которые с ними связывают, являются скорее гипотетическими, чем реальными.

Основной принцип биобезопасности - принцип принятия мер предосторожности. Суть его не в том, что все, без исключения, созданное с помощью генетической инженерии опасно для здоровья человека и окружающей среды, а в том, что мы не можем пока с полной уверенностью говорить о совершенной безопасности любого трансгенного растения.

Нельзя сказать, что продукты, содержащие ГМО, абсолютно безопасны. Когда человек спешит пользоваться не до конца изученными законами, ничего хорошего не получается. А если к тому же подключается человеческие страсти, жадность, агрессия и другие "милые" черты человечества, то случается не маленькая катастрофа.

Из реальных опасностей можно выделить две.

Первая: не контролируемые эксперименты с генетикой могут нарушить биологическое разнообразие и даже изменить до неузнаваемости фауну и флору.

Вторая: недобросовестный исследователь или дилетант создает генную конструкцию с непредсказуемыми побочными эффектами. Учитывая помешанность человечества на прибыли и деньгах, существует большая вероятность того, что новый вид безо всяких испытаний попадет в широкое использование.

Поэтому, человечеству, конечно же, нужно быть аккуратными и основательными, но в тоже время не поддаваться на провокации о генных мутациях, которые не имеют под собой научных оснований.

Список использованных источников

1. А.П. Ермишин Генетически Модифицированные Организмы. Мифы и реальность. Минск: Тэхналогія, 2004. с.116

2. Ли А., Тинланд Б. Интеграция т-ДНК в геном растений: прототип и реальность. Физиология растений. 2000, том 47, № 3. с.354-359

3. Б. Глик, Дж. Пастернак. Молекулярная биотехнология - М.: Мир, 2002. с.117 - 139, с.156-167.

4. Н.А. Лемеза Л., В., Камлюк Н.Д. Лисов "Пособие по биологии", с.74-82, с.95-110, с.145-156.

5. Сингер М., Берг П. Гены и геномы. - Москва, 1998, с.13-18, с.54-59, с.78-93.

6. Зверева С.Д., Романов Г.А. Репортерные гены для генетической инженерии растений: характеристика и методы тестирования // Физиология растений. 2000. Т.47, № 3. с.479-488.

7. Стент Г., Кэлиндар Р. Молекулярная генетика. - Москва, 1981, с.31-40, с.46-48, с.95-99.

8. Сельскохозяйственная биотехнология: Учеб. / В.С. Шевелуха, Е.А. Калашникова, С.В. Дегтярев и др.: Под ред. В.С. Шевелухи. М.: Высш. школа, 1998. с.359, с.416.

9. Сердобинекий Л.А., Лаврова Н.В., Кукушкина Л.Н. "Применение генной инженерии в сельском хозяйстве". с.12-17, с.35, с.40

10. Патрушев Л.И. Искусственные генетические системы. - М.: Наука, 2004, с.28-36, с.66-73.

11. Щелкунов С.Н. Генетическая инженерия. - Новосибирск, 2008, с.92-96.

12. Лещинская И.Б. Генетическая инженерия - Москва, 2005, с.42-44,13. Пирузян Э.С. Основы генетической инженерии растений. М.: Наука, 1988.304 с.

14. Романов Г.А. Генетическая инженерия растении и пути решения проблемы биобезопасности, 2000. Том 47, № 3. с.343-353

15. Ангурец А.В. Классификация рисков при использовании ГМО. "Физиология трансгенных растений и проблемы биобезопасности". с.36-48, с.69, с.84-89.

16. Барановов В.С. Генная терапия - медицина XXI века // Соросовский образовательный журнал. № 3.1999. с.3 - 68.

17. Пуштаи А., Бардоч С. Ивен С. Генетически модифицированные продукты питания: потенциальное воздействие на здоровье человека. М., МСоЭС, 2004, с.27-44, С.90-103.

18. Фаворова О.О. Лечение генами - фантастика или реальность? Соросовский образовательный журнал. № 2.1997. с.21 - 27.

19. Егоров Н.С., Самуилов В.Д. Современные методы создания промышленных штаммов микроорганизмов Кн.2.1988.208 с

20. Лутова Л.А., Проворов Н.А., Тиходеев О.Н. и др. Генетика развития растений. СПб.: Наука, 200.539 с.

21. Кузнецов В.В. Возможные биологические риски при использовании генетически модифицированных сельскохозяйственных культур. "Вестник ДВО РАН" № 3, 2005, с.40-54.

22. Томилин Н.В., Глебов О.К. Генетическая трансформация клеток млекопитающих, 1986, С.62 - 82.

23. Албертс Б., Брей Д., Льюис Дж. И др. Молекулярная биология клетки.

Т.1 - 3. М.: Мир, 1994. с.23-27.

24. Розпорядження Каб. Мін. Укр. від 17 жовтня 2007 р. "Про схвалення Концепції національної екологічної політики України до 2020 р. "

25. Стратегія економічного і соціального розвитку України (2004-2015 роки)"Шляхи європейської інтеграції"2004, С.63-64, С.67, С.68.

Приложение А

Схема 1 - иллюстрирующая механизм репликации ДНК: А - аденин, Г - гуанин, Ц - цитозин, Т - тимин.

Схема 2 - иллюстрирующая механизм транскрипции.

А - аденин, Г - гуанин, Ц - цитозин, Т - тимин.

Схема 3. - Механизм репрессии фермента, который катализирует синтез аминокислоты триптофана: ген-регулятор синтезирует неактивную молекулу белка-репрессора; если аминокислота триптофан в излишке, то она присоединяется к репрессору и активизирует его; активная молекула репрессора блокирует оператор; оператор прекращает синтез и-РНК и транскрипция не происходит; прекращается трансляция и фермент не синтезируется; прекращается синтез триптофана.

Приложение Б

Признак

Генетический элемент

Источник

Удлинение сроков хранения плодов

Полигалактуроназа

Томаты Licopersicon esculentum

Задержка созревания

Синтаза 1-аминоцикло-

пропан-1-углекислой кислоты

Гвоздика Dianthus caryophyllus L.

Задержка созревания

Синтаза аминоциклопро-пан циклазы

Томаты Licopersicon esculentum

Мужская стерильность

ДНК аденин метилаза

E. coli

Мужская стерильность

Рибонуклеаза барназа

Bacillus amyloliquefaciens

Восстановление фертильности

“barstar" - ингибитор рибонуклеазы барназа

Bacillus amyloliquefaciens

Устойчивость к гербицидам

5-энолпирувилшики-мат-3-фосфат синтаза

Кукуруза Zea mays

Устойчивость к гербицидам

Ацетолактат синтаза

Линия арабидопсиса Arabidopsis thaliana, устойчивая к хлорсульфурону

Устойчивость к гербицидам

Ацетолактат синтаза

Линия табака Nicotiana tabacum, устойчивая к сульфурону

Устойчивость к гербицидам

Ацетолактат синтаза

Химера 2 устойчивых генов AHAS (S4-Hr4)

Устойчивость к насекомым

cry IF дельта-эндотоксин

Bacillus thuringiensis var. aizawai

Устойчивость к насекомым

сгуЭС дельта-эндотоксин

Bacillus thuringiensis subsp. Tolworthi

Устойчивость к насекомым

сгуЗА дельта-эндотоксин

Bacillus thuringiensis subsp. Tenebrionis

Устойчивость к насекомым

Ингибитор протеазы

Картофель Solanum tuberosum

Измененный цвет

Дигидрофлавонол редуктаза

Петуния Petunia hybrida

Измененный цвет

Флавоноид Зр, 5р гидролаза

Фиалка Viola sp.

Измененный состав масла (жирных кислот)

Дельта-12 десатураза

Соя Glycine max

Измененный состав масла (жирных кислот)

Тиоэстераза

Калифорнийское лавровое дерево Umbellularia californica

Устойчивость к вирусу

Протеин оболочки вируса PRSV

Вирус кольцевой пятнистости папайи (PRSV)

Устойчивость к вирусу

Протеин оболочки вируса ZYMV

Вирус желтой мозаики цуккини (ZYMV)

Генетические элементы, привнесенные в допущенные к использованию трансгенные сорта сельскохозяйственных растений, и источники их происхождения

Приложение В

Белок

Концентрация

в тканях

Время переваривания

в желудочном соке

в дуоденальном соке

NPTII

Картофель (клубни) - 2,7 мкг/г Хлопок (семена) - 7 мкг/г

Половина - s 10 сек; полностью - 20 мин

Половина - 2-5 мин

EPSPS

Хлопок (семена) - 60-70 мкг/г

Половина - 15 сек

Половина - 0 мин

PAT

1 мин; при рН 4 - 10 мин

CPPVY

s2 мкг/г (в 12-244 раза ниже естественного уровня)

CRY

IA (b)

Кукуруза во время цветения 8-16 г/га; в конце вегетации

sO,8 г/га; в зерне и силосе не обнаружен

Разведение: 1: 1000-10 мин; 1: 100-5 мин 90% в течение 2 мин

Не переваривается

CRY IIIA

Картофель: листья - 20-63 мкг/г; клубни - 0,1-0,6 мкг/г

Аналогично CRY IA (b)

Аналогично CRY I А (Ь)

Характеристики белков-продуктов некоторых трансгенов

Размещено на Allbest.ru


Подобные документы

  • Суть и задачи генной инженерии, история ее развития. Цели создания генетически модифицированных организмов. Химическое загрязнение как следствие ГМО. Получение человеческого инсулина как важнейшее достижение в сфере генно-модифицированных организмов.

    реферат [69,1 K], добавлен 18.04.2013

  • Понятие генетически модифицированных организмов (ГМО) как живых организмов с искусственно измененным генотипом. Основные виды генетической модификации. Цели и методы создания ГМО, их использование в научных целях: исследование закономерности заболеваний.

    презентация [15,9 M], добавлен 19.10.2011

  • Последовательность приемов генетической инженерии, используемая при создании генетически модифицированных организмов. Классификация основных типов рестриктаз, используемых для фрагментации ДНК. Ферменты, синтезирующие ДНК на матрице ДНК или РНК.

    презентация [97,3 K], добавлен 27.04.2014

  • Оснвные способы получения генетически модифицированных растений и животных. Трансгенные микроорганизмы в медицине, химической промышленности, сельском хозяйстве. Неблагоприятные эффекты генно-инженерных организмов: токсичность, аллергия, онкология.

    курсовая работа [1,0 M], добавлен 11.11.2014

  • Понятие генетически модифицированных организмов. Применение биобаллистической пушки и кольцевой ДНК как основные способы встраивания генов. Экспериментальное создание ГМО в Китае и США. Компании, использующие генетически модифицированные ингредиенты.

    презентация [1,2 M], добавлен 20.02.2014

  • Сущность и виды генетически модифицированных организмов; их преимущества и опасности. Последствия распространения товаров с ГМ-компонентами для здоровья человека и экологии Земли. Исследование проникновения на рынки России трансгенной продукции.

    реферат [35,0 K], добавлен 16.02.2011

  • Сущность генетической инженерии, методы идентификации трансгенных организмов; получение и технология ГМО, отличие от традиционной селекции, преимущества и недостатки. Состояние и перспективны развития рынка генетически модифицированных товаров в мире.

    курсовая работа [1,1 M], добавлен 20.11.2010

  • Краткая история возникновения генетически модифицированных организмов, их положительные и отрицательные стороны, законодательная база. Методы исследования и способы получения трансгенных животных и растений. Способы выявления таких ингридиентов в колбасе.

    курсовая работа [129,0 K], добавлен 25.11.2010

  • Использование генной инженерии как инструмента биотехнологии с целью управления наследственностью живых организмов. Особенности основных методов и достижений генной инженерии в медицине и сельском хозяйстве, связанные с ней опасности и перспективы.

    доклад [15,1 K], добавлен 10.05.2011

  • Понятие и сущность генно-модифицированных и трансгенных организмов, их влияние на организм человека и на окружающую среду. Анализ современного положения генно-модифицированных продуктов в России, а также анализ их положительных и отрицательных сторон.

    презентация [924,1 K], добавлен 19.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.