Коллоидная химия

Химическая термодинамика. Основные понятия термодинамики. Первое начало термодинамики. Приложения первого начала термодинамики к химическим процессам. Зависимость теплового эффекта реакции от температуры. Закон Кирхгофа. Второе начало термодинамики.

Рубрика Химия
Вид лекция
Язык русский
Дата добавления 25.07.2008
Размер файла 994,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Системы принято классифицировать по числу компонентов (одно-, двухкомпонентные и т.д.), по числу фаз (одно-, двухфазные и т.д.) и числу степеней свободы (инвариантные, моно-, дивариантные и т.д.). Для систем с фазовыми переходами обычно рассматривают графическую зависимость состояния системы от внешних условий - т.н. диаграммы состояния.

Анализ диаграмм состояния позволяет определить число фаз в системе, границы их существования, характер взаимодействия компонентов. В основе анализа диаграмм состояния лежат два принципа: принцип непрерывности и принцип соответствия. Согласно принципу непрерывности, при непрерывном изменении параметров состояния все свойства отдельных фаз изменяются также непрерывно; свойства системы в целом изменяются непрерывно до тех пор, пока не изменится число или природа фаз в системе, что приводит к скачкообразному изменению свойств системы. Согласно принципу соответствия, на диаграмме состояния системы каждой фазе соответствует часть плоскости - поле фазы. Линии пересечения плоскостей отвечают равновесию между двумя фазами. Всякая точка на диаграмме состояния (т. н. фигуративная точка) отвечает некоторому состоянию системы с определенными значениями параметров состояния.

Рассмотрим и проанализируем диаграмму состояния воды (рис.1.4). Поскольку вода - единственное присутствующее в системе вещество, число независимых компонентов К = 1. В системе возможны три фазовых равновесия: между жидкостью и газом (линия ОА - зависимость давления насыщенного пара воды от температуры), твердым телом и газом (линия ОВ - зависимость давления насыщенного пара надо льдом от температуры), твердым телом и жидкостью (линия ОС - зависимость температуры плавления льда от давления). Три кривые имеют точку пересечения О, называемую тройной точкой воды; тройная точка отвечает равновесию между тремя фазами.

Рис. 1.4. Диаграмма состояния воды

 

 В тройной точке система трехфазна и число степеней свободы равно нулю; три фазы могут находиться в равновесии лишь при строго определенных значениях температуры и давления (для воды тройная точка отвечает состоянию с Р = 6.1 кПа и Т = 273.16 К).

Кривая ОВ теоретически продолжается до абсолютного нуля, а кривая давления насыщенного пара над жидкостью ОА заканчивается в критической точке воды (Tкр = 607.46 К, Ркр = 19.5 МПа); выше критической температуры газ и жидкость не могут существовать как отдельные фазы. Кривая ОС в верхней части (при высоких давлениях) изменяет свой наклон (появляются новые кристаллические фазы, плотность которых, в отличие от обычного льда, выше, чем у воды).

Внутри каждой из областей диаграммы (АОВ, ВОС, АОС) система однофазна; число степеней свободы системы равно двум (система дивариантна), т.е. можно одновременно изменять и температуру, и давление, не вызывая изменения числа фаз в системе:

С = 1 - 1 + 2 = 2

На каждой из линий число фаз в системе равно двум и, согласно правилу фаз, система моновариантна, т.е. для каждого значения температуры имеется только одно значение давления, при котором система двухфазна:

С = 1 - 2 + 2 = 1

Влияние давления на температуру фазового перехода описывает уравнение Клаузиуса - Клапейрона:

(I.109)

Здесь ДVфп = V2 - V1 есть изменение молярного объема вещества при фазовом переходе (причем V2 относится к состоянию, переход в которое сопровождается поглощением теплоты). Уравнение Клаузиуса - Клапейрона позволяет объяснить наклон кривых равновесия на диаграмме состояния однокомпонентной системы. Для переходов "жидкость - пар" и "твердое вещество - пар" ДV всегда больше нуля; поэтому кривые на диаграмме состояния, отвечающие этим равновесиям, всегда наклонены вправо (повышение температуры всегда увеличивает давление насыщенного пара). Поскольку молярный объем газа много больше молярного объема того же вещества в жидком или твердом агрегатном состояниях (Vг >> Vж, Vг >> Vт), уравнение (I.109) для частных случаев испарения и возгонки примет следующий вид:

(I.110)

Для многих веществ скрытая теплота парообразования или возгонки постоянна в большом интервале температур; в этом случае уравнение (I.110) можно проинтегрировать:

(I.111)

Кривая равновесия "твердое вещество - жидкость" на диаграммах состояния воды и висмута наклонена влево, а на диаграммах состояния остальных веществ - вправо. Это связано с тем, что плотность воды больше, чем плотность льда (и плотность жидкого висмута больше его плотности в твердом состоянии), т.е. плавление сопровождается уменьшением объема (ДV < 0). Как следует из выражения (I.111), в этом случае увеличение давления будет понижать температуру фазового перехода "твердое тело - жидкость" (воду и висмут относят поэтому к т.н. аномальным веществам). Для всех остальных веществ (т.н. нормальные вещества) ДVпл > 0 и, согласно уравнению Клаузиуса - Клапейрона, увеличение давления приводит к повышению температуры плавления.

2 ХИМИЧЕСКАЯ КИНЕТИКА

Законы химической термодинамики позволяют определить направление и предел протекания возможного при данных условиях химического процесса, а также его энергетический эффект. Однако термодинамика не может ответить на вопросы о том, как осуществляется данный процесс и с какой скоростью. Эти вопросы - механизм и скорость химической реакции - и являются предметом химической кинетики.

2.1 Скорость химической реакции

Дадим определение основному понятию химической кинетики - скорости химической реакции:

Скорость химической реакции есть число элементарных актов химической реакции, происходящих в единицу времени в единице объема (для гомогенных реакций) или на единице поверхности (для гетерогенных реакций).

Скорость химической реакции есть изменение концентрации реагирующих веществ в единицу времени.

Первое определение является наиболее строгим; из него следует, что скорость химической реакции можно также выражать как изменение во времени любого параметра состояния системы, зависящего от числа частиц какого-либо реагирующего вещества, отнесенное к единице объема или поверхности - электропроводности, оптической плотности, диэлектрической проницаемости и т.д. и т.п. Однако наиболее часто в химии рассматривается зависимость концентрации реагентов от времени. В случае односторонних (необратимых) химических реакций (здесь и далее рассматриваются только односторонние реакции) очевидно, что концентрации исходных веществ во времени постоянно уменьшаются (ДСисх < 0), а концентрации продуктов реакции увеличиваются (ДСпрод > 0). Скорость реакции считается положительной, поэтому математически определение средней скорости реакции в интервале времени Дt записывается следующим образом:

(II.1)

В различных интервалах времени средняя скорость химической реакции имеет разные значения; истинная (мгновенная) скорость реакции определяется как производная от концентрации по времени:

(II.2)

Графическое изображение зависимости концентрации реагентов от времени есть кинетическая кривая (рисунок 2.1).
 

  

Рис. 2.1 Кинетические кривые для исходных веществ (А) и продуктов реакции (В).

 

Истинную скорость реакции можно определить графически, проведя касательную к кинетической кривой (рис. 2.2); истинная скорость реакции в данный момент времени равна по абсолютной величине тангенсу угла наклона касательной:

 

Рис. 2.2 Графическое определение Vист.

(II.3)

Необходимо отметить, что в том случае, если стехиометрические коэффициенты в уравнении химической реакции неодинаковы, величина скорости реакции будет зависеть от того, изменение концентрации какого реагента определялось. Очевидно, что в реакции

2 + О2 --> 2Н2О

концентрации водорода, кислорода и воды изменяются в различной степени:
ДС(Н2) = ДС(Н2О) = 2 ДС(О2).

Скорость химической реакции зависит от множества факторов: природы реагирующих веществ, их концентрации, температуры, природы растворителя и т.д.

2.1.1 Кинетическое уравнение химической реакции. Порядок реакции.

Одной из задач, стоящих перед химической кинетикой, является определение состава реакционной смеси (т.е. концентраций всех реагентов) в любой момент времени, для чего необходимо знать зависимость скорости реакции от концентраций. В общем случае, чем больше концентрации реагирующих веществ, тем больше скорость химической реакции. В основе химической кинетики лежит т. н. основной постулат химической кинетики:

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в некоторых степенях.

Т. е. для реакции

аА + bВ + dD + ... --> еЕ + ...

можно записать:

(II.4)

Коэффициент пропорциональности k есть константа скорости химической реакции. Константа скорости численно равна скорости реакции при концентрациях всех реагирующих веществ, равных 1 моль/л.

Зависимость скорости реакции от концентраций реагирующих веществ определяется экспериментально и называется кинетическим уравнением химической реакции. Очевидно, что для того, чтобы записать кинетическое уравнение, необходимо экспериментально определить величину константы скорости и показателей степени при концентрациях реагирующих веществ. Показатель степени при концентрации каждого из реагирующих веществ в кинетическом уравнении химической реакции (в уравнении (II.4) соответственно x, y и z) есть частный порядок реакции по данному компоненту. Сумма показателей степени в кинетическом уравнении химической реакции (x + y + z) представляет собой общий порядок реакции. Следует подчеркнуть, что порядок реакции определяется только из экспериментальных данных и не связан со стехиометрическими коэффициентами при реагентах в уравнении реакции. Стехиометрическое уравнение реакции представляет собой уравнение материального баланса и никоим образом не может определять характера протекания этой реакции во времени.

В химической кинетике принято классифицировать реакции по величине общего порядка реакции. Рассмотрим зависимость концентрации реагирующих веществ от времени для необратимых (односторонних) реакций нулевого, первого и второго порядков.

2.1.2 Реакции нулевого порядка

Для реакций нулевого порядка кинетическое уравнение имеет следующий вид:

 (II.5)

Скорость реакции нулевого порядка постоянна во времени и не зависит от концентраций реагирующих веществ; это характерно для многих гетерогенных (идущих на поверхности раздела фаз) реакций в том случае, когда скорость диффузии реагентов к поверхности меньше скорости их химического превращения.

2.1.3 Реакции первого порядка

Рассмотрим зависимость от времени концентрации исходного вещества А для случая реакции первого порядка А --> В. Реакции первого порядка характеризуются кинетическим уравнением вида (II.6). Подставим в него выражение (II.2):

(II.6)

(II.7)

После интегрирования выражения (II.7) получаем:

(II.8)

Константу интегрирования g определим из начальных условий: в момент времени t = 0 концентрация С равна начальной концентрации Со. Отсюда следует, что g = ln Со. Получаем:

(II.9)

Рис. 2.3 Зависимость логарифма концентрации от времени для реакций первого порядка 

Т.о., логарифм концентрации для реакции первого порядка линейно зависит от времени (рис. 2.3) и константа скорости численно равна тангенсу угла наклона прямой к оси времени.

(II.10)

Из уравнения (II.9) легко получить выражение для константы скорости односторонней реакции первого порядка:

(II.11)

Еще одной кинетической характеристикой реакции является период полупревращения t1/2 - время, за которое концентрация исходного вещества уменьшается вдвое по сравнению с исходной. Выразим t1/2 для реакции первого порядка, учитывая, что С = ЅСо:

(II.12)

Отсюда

(II.13)

Как видно из полученного выражения, период полупревращения реакции первого порядка не зависит от начальной концентрации исходного вещества.

2.1.4 Реакции второго порядка

Для реакций второго порядка кинетическое уравнение имеет следующий вид:

(II.14)

либо

(II.15)

Рассмотрим простейший случай, когда кинетическое уравнение имеет вид (II.14) или, что то же самое, в уравнении вида (II.15) концентрации исходных веществ одинаковы; уравнение (II.14) в этом случае можно переписать следующим образом:

(II.16)

После разделения переменных и интегрирования получаем:

(II.17)

Постоянную интегрирования g, как и в предыдущем случае, определим из начальных условий. Получим:

(II.18)

Т.о., для реакций второго порядка, имеющих кинетическое уравнение вида (II.14), характерна линейная зависимость обратной концентрации от времени (рис. 2.4) и константа скорости равна тангенсу угла наклона прямой к оси времени:

(II.19)

(II.20)

Рис. 2.4 Зависимость обратной концентрации от времени для реакций второго порядка 

Если начальные концентрации реагирующих веществ Cо,А и Cо,В различны, то константу скорости реакции находят интегрированием уравнения (II.21), в котором CА и CВ - концентрации реагирующих веществ в момент времени t от начала реакции:

(II.21)

В этом случае для константы скорости получаем выражение 

(II.22)

Порядок химической реакции есть формально-кинетическое понятие, физический смысл которого для элементарных (одностадийных) реакций заключается в следующем: порядок реакции равен числу одновременно изменяющихся концентраций. В случае элементарных реакций порядок реакции может быть равен сумме коэффициентов в стехиометрическом уравнении реакции; однако в общем случае порядок реакции определяется только из экспериментальных данных и зависит от условий проведения реакции. Рассмотрим в качестве примера элементарную реакцию гидролиза этилового эфира уксусной кислоты (этилацетата), кинетика которой изучается в лабораторном практикуме по физической химии:

СН3СООС2Н5 + Н2О --> СН3СООН + С2Н5ОН

Если проводить эту реакцию при близких концентрациях этилацетата и воды, то общий порядок реакции равен двум и кинетическое уравнение имеет следующий вид:

(II.23)

При проведении этой же реакции в условиях большого избытка одного из реагентов (воды или этилацетата) концентрация вещества, находящегося в избытке, практически не изменяется и может быть включена в константу скорости; кинетическое уравнение для двух возможных случаев принимает следующий вид:

1) Избыток воды:

 (II.24)

(II.25)

2) Избыток этилацетата:

(II.26)

(II.27)

В этих случаях мы имеем дело с т.н. реакцией псевдопервого порядка. Проведение реакции при большом избытке одного из исходных веществ используется для определения частных порядков реакции.

2.1.5 Методы определения порядка реакции

Проведение реакции в условиях, когда концентрация одного из реагентов много меньше концентрации другого (других) и скорость реакции зависит от концентрации только этого реагента, используется для определения частных порядков реакции - это т.н. метод избыточных концентраций или метод изолирования Оствальда. Порядок реакции по данному веществу определяется одним из перечисленных ниже методов.

Графический метод заключается в построении графика зависимости концентрации реагента от времени в различных координатах. Для различных частных порядков эти зависимости имеют следующий вид:
 

Порядок реакции

Зависимость концентрации от времени

1

2

3

 

Если построить графики этих зависимостей на основании опытных данных, то лишь одна из них будет являться прямой линией. Если, например, график, построенный по опытным данным, оказался прямолинейным к координатах lnC = f(t), то частный порядок реакции по данному веществу равен единице.

Метод подбора кинетического уравнения заключается в подстановке экспериментальных данных изучения зависимости концентрации вещества от времени в кинетические уравнения различных порядков. Подставляя в приведённые в таблице уравнения значения концентрации реагента в разные моменты времени, вычисляют значения константы скорости. Частный порядок реакции по данному веществу равен порядку того кинетического уравнения, для которого величина константы скорости остаётся постоянной во времени. 

Порядок реакции

Выражение для константы скорости

1

2

3

 

Метод определения времени полупревращения заключается в определении t1/2 для нескольких начальных концентраций. Как видно из приведённых в таблице уравнений, для реакции первого порядка время полупревращения не зависит от Co, для реакции второго порядка - обратно пропорционально Co, и для реакции третьего порядка - обратно пропорционально квадрату начальной концентрации.
 

Порядок реакции

Выражение для периода полупревращения

1

2

3

 

По характеру зависимости t1/2 от Co нетрудно сделать вывод о порядке реакции по данному веществу. Данный метод, в отличие от описанных выше, применим и для определения дробных порядков.

2.1.6 Молекулярность элементарных реакций

Элементарными (простыми) называют реакции, идущие в одну стадию. Их принято классифицировать по молекулярности:

Молекулярность элементарной реакции - число частиц, которые, согласно экспериментально установленному механизму реакции, участвуют в элементарном акте химического взаимодействия.

Мономолекулярные - реакции, в которых происходит химическое превращение одной молекулы (изомеризация, диссоциация и т. д.):

I2 --> I* + I*

Бимолекулярные - реакции, элементарный акт которых осуществляется при столкновении двух частиц (одинаковых или различных):

СН3Вr + КОН --> СН3ОН + КВr

Тримолекулярные - реакции, элементарный акт которых осуществляется при столкновении трех частиц:

О2 + NО + NО --> 2NО2

Реакции с молекулярностью более трёх неизвестны.

Для элементарных реакций, проводимых при близких концентрациях исходных веществ, величины молекулярности и порядка реакции совпадают. Тем не менее, никакой чётко определенной взаимосвязи между понятиями молекулярности и порядка реакции не существует, поскольку порядок реакции характеризует кинетическое уравнение реакции, а молекулярность - механизм реакции.

2.1.7 Сложные реакции

Сложными называют химические реакции, протекающие более чем в одну стадию. Рассмотрим в качестве примера одну из сложных реакций, кинетика и механизм которой хорошо изучены:

2НI + Н2О2 --> I2 + 2Н2О

Данная реакция является реакцией второго порядка; её кинетическое уравнение имеет следующий вид:

(II.28)

Изучение механизма реакции показало, что она является двухстадийной (протекает в две стадии):

1) НI + Н2О2 --> НIО + Н2О

2) НIО + НI --> I2 + Н2О

Скорость первой стадии V1 много больше скорости второй стадии V2 и общая скорость реакции определяется скоростью более медленной стадии, называемой поэтому скоростьопределяющей или лимитирующей.

Сделать вывод о том, является реакция элементарной или сложной, можно на основании результатов изучения её кинетики. Реакция является сложной, если экспериментально определенные частные порядки реакции не совпадают с коэффициентами при исходных веществах в стехиометрическом уравнении реакции; частные порядки сложной реакции могут быть дробными либо отрицательными, в кинетическое уравнение сложной реакции могут входить концентрации не только исходных веществ, но и продуктов реакции.

2.1.8 Классификация сложных реакций

Последовательные реакции.

Последовательными называются сложные реакции, протекающие таким образом, что вещества, образующиеся в результате одной стадии (т.е. продукты этой стадии), являются исходными веществами для другой стадии. Схематически последовательную реакцию можно изобразить следующим образом:

А --> В --> С --> ...

Число стадий и веществ, принимающих участие в каждой из стадий, может быть различным.

Параллельные реакции.

Параллельными называют химические реакции, в которых одни и те же исходные вещества одновременно могут образовывать различные продукты реакции, например, два или более изомера:

 

Сопряжённые реакции.

Сопряжёнными принято называть сложные реакции, протекающие следующим образом:

1) А + В --> С 

2) А + D --> Е,

причём одна из реакций может протекать самостоятельно, а вторая возможна только при наличии первой. Вещество А, общее для обеих реакций, носит название актор, вещество В - индуктор, вещество D, взаимодействующее с А только при наличии первой реакции - акцептор. Например, бензол в водном растворе не окисляется пероксидом водорода, но при добавлении солей Fe(II) происходит превращение его в фенол и дифенил. Механизм реакции следующий. На первой стадии образуются свободные радикалы:

Fe2+ + H2O2 --> Fe3+ + OH- + OH*

которые реагируют с ионами Fe2+ и бензолом:

Fe2+ + OH* --> Fe3+ + OH-

C6H6 + OH* --> C6H5* + H2O

Происходит также рекомбинация радикалов:

C6H5* + OH* --> C6H5ОН

C6H5* + C6H5* --> C6H5-C6H5

Т.о., обе реакции протекают с участием общего промежуточного свободного радикала OH*. 

Цепные реакции.

Цепными называют реакции, состоящие из ряда взаимосвязанных стадий, когда частицы, образующиеся в результате каждой стадии, генерируют последующие стадии. Как правило, цепные реакции протекают с участием свободных радикалов. Для всех цепных реакций характерны три типичные стадии, которые мы рассмотрим на примере фотохимической реакции образования хлороводорода.

1. Зарождение цепи (инициация):

Сl2 + hн --> 2 Сl*

2. Развитие цепи:

Н2 + Сl* --> НСl + Н*

Н* + Сl2 --> НСl + Сl*

Стадия развития цепи характеризуется числом молекул продукта реакции, приходящихся на одну активную частицу - длиной цепи.

3. Обрыв цепи (рекомбинация):

Н* + Н* --> Н2

Сl* + Сl* --> Сl2

Н* + Сl* --> НСl

Обрыв цепи возможен также при взаимодействии активных частиц с материалом стенки сосуда, в котором проводится реакция, поэтому скорость цепных реакций может зависеть от материала и даже от формы реакционного сосуда.

Реакция образования хлороводорода является примером неразветвленной цепной реакции - реакции, в которой на одну прореагировавшую активную частицу приходится не более одной вновь возникающей. Разветвленными называют цепные реакции, в которых на каждую прореагировавшую активную частицу приходится более одной вновь возникающей, т.е. число активных частиц в ходе реакции постоянно возрастает. Примером разветвленной цепной реакции является реакция взаимодействия водорода с кислородом:

1. Инициация:

Н2 + О2 --> Н2О + О*

2. Развитие цепи:

О* + Н2 --> Н* + ОН*

Н* + О2 --> О* + ОН*

ОН* + Н2 --> Н2О + Н*

2.1.9 Влияние температуры на константу скорости реакции

Константа скорости реакции есть функция от температуры; повышение температуры, как правило, увеличивает константу скорости. Первая попытка учесть влияние температуры была сделана Вант-Гоффом, который сформулировал следующее эмпирическое правило:

При повышении температуры на каждые 10 градусов константа скорости элементарной химической реакции увеличивается в 2 - 4 раза.

Величина, показывающая, во сколько раз увеличивается константа скорости при повышении температуры на 10 градусов, есть температурный коэффициент константы скорости реакции г. Математически правило Вант-Гоффа можно записать следующим образом:

(II.29)

(II.30)

Однако правило Вант-Гоффа применимо лишь в узком температурном интервале, поскольку температурный коэффициент скорости реакции г сам является функцией от температуры; при очень высоких и очень низких температурах г становится равным единице (т.е. скорость химической реакции перестает зависеть от температуры).

2.1.10 Уравнение Аррениуса

Очевидно, что взаимодействие частиц осуществляется при их столкновениях; однако число столкновений молекул очень велико и, если бы каждое столкновение приводило к химическому взаимодействию частиц, все реакции протекали бы практически мгновенно. Аррениус постулировал, что столкновения молекул будут эффективны (т.е. будут приводить к реакции) только в том случае, если сталкивающиеся молекулы обладают некоторым запасом энергии - энергией активации.

Энергия активации есть минимальная энергия, которой должны обладать молекулы, чтобы их столкновение могло привести к химическому взаимодействию.

Рассмотрим путь некоторой элементарной реакции

А + В --> С

Поскольку химическое взаимодействие частиц связано с разрывом старых химических связей и образованием новых, считается, что всякая элементарная реакция проходит через образование некоторого неустойчивого промежуточного соединения, называемого активированным комплексом:

А --> K# --> B

Образование активированного комплекса всегда требует затраты некоторого количества энергии, что вызвано, во-первых, отталкиванием электронных оболочек и атомных ядер при сближении частиц и, во-вторых, необходимостью построения определенной пространственной конфигурации атомов в активированном комплексе и перераспределения электронной плотности. Таким образом, по пути из начального состояния в конечное система должна преодолеть своего рода энергетический барьер. Энергия активации реакции приближённо равна превышению средней энергии активированного комплекса над средним уровнем энергии реагентов. Очевидно, что если прямая реакция является экзотермической, то энергия активации обратной реакции Е'А выше, нежели энергия активации прямой реакции EA. Энергии активации прямой и обратной реакции связаны друг с другом через изменение внутренней энергии в ходе реакции. Вышесказанное можно проиллюстрировать с помощью энергетической диаграммы химической реакции (рис. 2.5). 

 

Рис. 2.5 Энергетическая диаграмма химической реакции.

Eисх - средняя энергия частиц исходных веществ,

Eпрод - средняя энергия частиц продуктов реакции 

Поскольку температура есть мера средней кинетической энергии частиц, повышение температуры приводит к увеличению доли частиц, энергия которых равна или больше энергии активации, что приводит к увеличению константы скорости реакции (рис.2.6): 

 

Рис. 2.6 Распределение частиц по энергии Здесь nЕ/N - доля частиц, обладающих энергией E; Ei - средняя энергия частиц при температуре Ti (T1 < T2 < T3)
 

Рассмотрим термодинамический вывод выражения, описывающего зависимость константы скорости реакции от температуры и величины энергии активации - уравнения Аррениуса. Согласно уравнению изобары Вант-Гоффа,

(II.31)

Поскольку константа равновесия есть отношение констант скоростей прямой и обратной реакции, можно переписать выражение (II.31) следующим образом:

(II.32)

Представив изменение энтальпии реакции ДHє в виде разности двух величин E1 и E2, получаем:

(II.33)

(II.34)

Здесь С - некоторая константа. Постулировав, что С = 0, получаем уравнение Аррениуса, где EA - энергия активации:

(II.35)

После неопределенного интегрирования выражения (II.35) получим уравнение Аррениуса в интегральной форме:

(II.36)

(II.37)

 

Рис. 2.7 Зависимость логарифма константы скорости химической реакции от обратной температуры.  

Здесь A - постоянная интегрирования. Из уравнения (II.37) нетрудно показать физический смысл предэкспоненциального множителя A, который равен константе скорости реакции при температуре, стремящейся к бесконечности. Как видно из выражения (II.36), логарифм константы скорости линейно зависит от обратной температуры (рис.2.7); величину энергии активации EA и логарифм предэкспоненциального множителя A можно определить графически (тангенс угла наклона прямой к оси абсцисс и отрезок, отсекаемый прямой на оси ординат).

(II.38)

Зная энергию активации реакции и константу скорости при какой-либо температуре T1, по уравнению Аррениуса можно рассчитать величину константы скорости при любой температуре T2:

(II.39)

2.1.11 Кинетика двусторонних (обратимых) реакций

Химические реакции часто являются двусторонними (обратимыми), т.е. могут протекать при данных условиях в двух противоположных направлениях (понятие обратимая реакция следует отличать от термодинамического понятия обратимый процесс; двусторонняя реакция обратима в термодинамическом смысле лишь в состоянии химического равновесия). Рассмотрим элементарную двустороннюю реакцию

А + В <--> D + E

Скорость уменьшения концентрации вещества А при протекании прямой реакции определяется уравнением (II.40):

, (II.40)

а скорость возрастания концентрации вещества А в результате протекания обратной реакции - уравнением (II.41):

(II.41)

Общая скорость двусторонней реакции в любой момент времени равна разности скоростей прямой и обратной реакции:

(II.42)

По мере протекания двусторонней реакции скорость прямой реакции уменьшается, скорость обратной реакции - увеличивается; в некоторый момент времени скорости прямой и обратной реакции становятся равными и концентрации реагентов перестают изменяться. Таким образом, в результате протекания в закрытой системе двусторонней реакции система достигает состояния химического равновесия; при этом константа равновесия будет равна отношению констант скоростей прямой и обратной реакции:

(II.43)

2.1.12 Кинетика гетерогенных химических реакций

Когда реакция совершается между веществами, находящимися в разных фазах гетерогенной системы, основной постулат химической кинетики становится неприменимым. В гетерогенных реакциях роль промежуточных продуктов обычно играют молекулы, связанные химическими силами с поверхностью раздела фаз (химически адсорбированные на поверхности). Во всяком гетерогенном химическом процессе можно выделить следующие стадии:

1. Диффузия реагентов к реакционной зоне, находящейся на поверхности раздела фаз.

2. Активированная адсорбция частиц реагентов на поверхности.

3. Химическое превращение адсорбированных частиц.

4. Десорбция образовавшихся продуктов реакции.

5. Диффузия продуктов реакции из реакционной зоны.

Стадии 1 и 5 называются диффузионными, стадии 2, 3 и 4 - кинетическими. Универсального выражения для скорости гетерогенных химических реакций не существует, поскольку каждая из выделенных стадий может являться лимитирующей. Как правило, при низких температурах скорость гетерогенной реакции определяют кинетические стадии (т.н. кинетическая область гетерогенного процесса; скорость реакции в этом случае сильно зависит от температуры и величины площади поверхности раздела фаз; порядок реакции при этом может быть любым). При высоких температурах скорость процесса будет определяться скоростью диффузии (диффузионная область гетерогенной реакции, характеризующаяся, как правило, первым порядком реакции и слабой зависимостью скорости процесса от температуры и площади поверхности раздела фаз).

2.2 ФОТОХИМИЧЕСКИЕ РЕАКЦИИ

Передача энергии для активации вступающих во взаимодействие молекул может осуществляться либо в форме теплоты (т. н. темновые реакции), либо в виде квантов электромагнитного излучения. Реакции, в которых активация частиц является результатом их взаимодействия с квантами электромагнитного излучения видимой области спектра, называют фотохимическими реакциями. При всех фотохимических процессах выполняется закон Гротгуса:

Химическое превращение вещества может вызвать только то излучение, которое поглощается этим веществом.

Излучение, отражённое веществом, а также прошедшее сквозь него, не вызывают никаких химических превращений. Иногда фотохимические процессы происходят под действием излучения, которое не поглощается реагирующими веществами; однако в таких случаях реакционная смесь должна содержать т.н. сенсибилизаторы. Механизм действия сенсибилизаторов заключается в том, что они поглощают свет, переходя в возбуждённое состояние, а затем при столкновении с молекулами реагентов передают им избыток своей энергии. Сенсибилизатором фотохимических реакций является, например, хлорофилл (см. ниже).

Взаимодействие света с веществом может идти по трём возможным направлениям:

1. Возбуждение частиц (переход электронов на вышележащие орбитали):

A + hн --> A*

2. Ионизация частиц за счет отрыва электронов:

A + hн --> A+ + e-

3. Диссоциация молекул с образованием свободных радикалов (гомолитическая) либо ионов (гетеролитическая):

AB + hн --> A* + B*

AB + hн --> A+ + B-

Между количеством лучистой энергии, поглощенной молекулами вещества, и количеством фотохимически прореагировавших молекул существует соотношение, выражаемое законом фотохимической эквивалентности Штарка - Эйнштейна:

Число молекул, подвергшихся первичному фотохимическому превращению, равно числу поглощенных веществом квантов электромагнитного излучения.

Поскольку фотохимическая реакция, как правило, включает в себя и т.н. вторичные процессы (например, в случае цепного механизма), для описания реакции вводится понятие квантовый выход фотохимической реакции:

Квантовый выход фотохимической реакции г есть отношение числа частиц, претерпевших превращение, к числу поглощенных веществом квантов света.

Квантовый выход реакции может варьироваться в очень широких пределах: от 10-3 (фотохимическое разложение метилбромида) до 106 (цепная реакция водорода с хлором); в общем случае, чем более долгоживущей является активная частица, тем с большим квантовым выходом протекает фотохимическая реакция.

Важнейшими фотохимическими реакциями являются реакции фотосинтеза, протекающие в растениях с участием хлорофилла:

Процесс фотосинтеза составляют две стадии: световая, связанная с поглощением фотонов, и значительно более медленная темновая, представляющая собой ряд химических превращений, осуществляемых в отсутствие света. Суммарный процесс фотосинтеза заключается в окислении воды до кислорода и восстановлении диоксида углерода до углеводов:

СО2 + Н2О + hн --> (СН2О) + О2, ДG° = 477.0 кДж/моль

Протекание данного окислительно-восстановительного процесса (связанного с переносом электронов) возможно благодаря наличию в реакционном центре хлорофилла Сhl донора D и акцептора A электронов; перенос электронов происходит в результате фотовозбуждения молекулы хлорофилла:

DChlA + hн --> DChl*A --> DChl+A- --> D+ChlA-

Возникающие в данном процессе заряженные частицы D+ и A- принимают участие в дальнейших окислительно-восстановительных реакциях темновой стадии фотосинтеза.

2.3 КАТАЛИТИЧЕСКИЕ ПРОЦЕССЫ

Скорость химической реакции при данной температуре определяется скоростью образования активированного комплекса, которая, в свою очередь, зависит от величины энергии активации. Во многих химических реакциях в структуру активированного комплекса могут входить вещества, стехиометрически не являющиеся реагентами; очевидно, что в этом случае изменяется и величина энергии активации процесса. В случае наличия нескольких переходных состояний реакция будет идти в основном по пути с наименьшим активационным барьером.

Катализ - явление изменения скорости химической реакции в присутствии веществ, состояние и количество которых после реакции остаются неизменными.

Различают положительный и отрицательный катализ (соответственно увеличение и уменьшение скорости реакции), хотя часто под термином "катализ" подразумевают только положительный катализ; отрицательный катализ называют ингибированием.

Вещество, входящее в структуру активированного комплекса, но стехиометрически не являющееся реагентом, называется катализатором. Для всех катализаторов характерны такие общие свойства, как специфичность и селективность действия.

Специфичность катализатора заключается в его способности ускорять только одну реакцию или группу однотипных реакций и не влиять на скорость других реакций. Так, например, многие переходные металлы (платина, медь, никель, железо и т.д.) являются катализаторами для процессов гидрирования; оксид алюминия катализирует реакции гидратации и т.д.

Селективность катализатора - способность ускорять одну из возможных при данных условиях параллельных реакций. Благодаря этому можно, применяя различные катализаторы, из одних и тех же исходных веществ получать различные продукты:

[Cu]:СО + Н2 --> СН3ОН

[Al2О3]: С2Н5ОН --> С2Н4 + Н2О

[Ni]: СО + Н2 --> СН4 + Н2О

[Cu]:  С2Н5ОН --> СН3СНО + Н2

Причиной увеличения скорости реакции при положительном катализе является уменьшение энергии активации при протекании реакции через активированный комплекс с участием катализатора (рис. 2.8).

Поскольку, согласно уравнению Аррениуса, константа скорости химической реакции находится в экспоненциальной зависимости от величины энергии активации, уменьшение последней вызывает значительное увеличение константы скорости. Действительно, если предположить, что предэкспоненциальные множители в уравнении Аррениуса (II.32) для каталитической и некаталитической реакций близки, то для отношения констант скорости можно записать:

(II.44)

Если ДEA = -50 кДж/моль, то отношение констант скоростей составит 2,7·106 раз (действительно, на практике такое уменьшение EA увеличивает скорость реакции приблизительно в 105 раз).

Необходимо отметить, что наличие катализатора не влияет на величину изменения термодинамического потенциала в результате процесса и, следовательно, никакой катализатор не может сделать возможным самопроизвольное протекание термодинамически невозможного процесса (процесса, ДG (ДF) которого больше нуля). Катализатор не изменяет величину константы равновесия для обратимых реакций; влияние катализатора в этом случае заключается только в ускорении достижения равновесного состояния.

В зависимости от фазового состояния реагентов и катализатора различают гомогенный и гетерогенный катализ.
 

 

Рис. 2.8 Энергетическая диаграмма химической реакции без катализатора (1) и в присутствии катализатора (2). 

2.3.1 Гомогенный катализ.

Гомогенный катализ - каталитические реакции, в которых реагенты и катализатор находятся в одной фазе. В случае гомогенно-каталитических процессов катализатор образует с реагентами промежуточные реакционноспособные продукты. Рассмотрим некоторую реакцию

А + В --> С

В присутствии катализатора осуществляются две быстро протекающие стадии, в результате которых образуются частицы промежуточного соединения АК и затем (через активированный комплекс АВК#) конечный продукт реакции с регенерацией катализатора:

А + К --> АК

АК + В --> С + К

Примером такого процесса может служить реакция разложения ацетальдегида, энергия активации которой EA = 190 кДж/моль:

СН3СНО --> СН4 + СО

В присутствии паров йода этот процесс протекает в две стадии:

СН3СНО + I2 --> СН3I + НI + СО

СН3I + НI --> СН4 + I2

Уменьшение энергии активации этой реакции в присутствии катализатора составляет 54 кДж/моль; константа скорости реакции при этом увеличивается приблизительно в 105 раз. Наиболее распространенным типом гомогенного катализа является кислотный катализ, при котором в роли катализатора выступают ионы водорода Н+.

2.3.2Автокатализ.

Автокатализ - процесс каталитического ускорения химической реакции одним из её продуктов. В качестве примера можно привести катализируемую ионами водорода реакцию гидролиза сложных эфиров. Образующаяся при гидролизе кислота диссоциирует с образованием протонов, которые ускоряют реакцию гидролиза. Особенность автокаталитической реакции состоит в том, что данная реакция протекает с постоянным возрастанием концентрации катализатора. Поэтому в начальный период реакции скорость её возрастает, а на последующих стадиях в результате убыли концентрации реагентов скорость начинает уменьшаться; кинетическая кривая продукта автокаталитической реакции имеет характерный S-образный вид (рис. 2.9).
 

Рис. 2.9 Кинетическая кривая продукта автокаталитической реакции
 

2.3.3 Гетерогенный катализ.

Гетерогенный катализ - каталитические реакции, идущие на поверхности раздела фаз, образуемых катализатором и реагирующими веществами. Механизм гетерогенно-каталитических процессов значительно более сложен, чем в случае гомогенного катализа. В каждой гетерогенно-каталитической реакции можно выделить как минимум шесть стадий:

1. Диффузия исходных веществ к поверхности катализатора.

2. Адсорбция исходных веществ на поверхности с образованием некоторого промежуточного соединения:

А + В + К --> АВК

3. Активация адсорбированного состояния (необходимая для этого энергия есть истинная энергия активации процесса):

АВК --> АВК#

4. Распад активированного комплекса с образованием адсорбированных продуктов реакции:

АВК# --> СDК

5. Десорбция продуктов реакции с поверхности катализатора.

СDК --> С + D + К

6. Диффузия продуктов реакции от поверхности катализатора.

Специфической особенностью гетерокаталитических процессов является способность катализатора к промотированию и отравлению. 

Промотирование - увеличение активности катализатора в присутствии веществ, которые сами не являются катализаторами данного процесса (промоторов). Например, для катализируемой металлическим никелем реакции

СО + Н2 --> СН4 + Н2О

введение в никелевый катализатор небольшой примеси церия приводит к резкому возрастанию активности катализатора.

Отравление - резкое снижение активности катализатора в присутствии некоторых веществ (т. н. каталитических ядов). Например, для реакции синтеза аммиака (катализатор - губчатое железо), присутствие в реакционной смеси соединений кислорода или серы вызывает резкое снижение активности железного катализатора; в то же время способность катализатора адсорбировать исходные вещества снижается очень незначительно.

Для объяснения этих особенностей гетерогенно-каталитических процессов Г. Тэйлором было высказано следующее предположение: каталитически активной является не вся поверхность катализатора, а лишь некоторые её участки - т.н. активные центры, которыми могут являться различные дефекты кристаллической структуры катализатора (например, выступы либо впадины на поверхности катализатора). В настоящее время нет единой теории гетерогенного катализа. Для металлических катализаторов была разработана теория мультиплетов. Основные положения мультиплетной теории состоят в следующем:

1. Активный центр катализатора представляет собой совокупность определенного числа адсорбционных центров, расположенных на поверхности катализатора в геометрическом соответствии со строением молекулы, претерпевающей превращение.

2. При адсорбции реагирующих молекул на активном центре образуется мультиплетный комплекс, в результате чего происходит перераспределение связей, приводящее к образованию продуктов реакции.

Теорию мультиплетов называют иногда теорией геометрического подобия активного центра и реагирующих молекул. Для различных реакций число адсорбционных центров (каждый из которых отождествляется с атомом металла) в активном центре различно - 2, 3, 4 и т.д. Подобные активные центры называются соответственно дублет, триплет, квадруплет и т.д. (в общем случае мультиплет, чему и обязана теория своим названием).

Например, согласно теории мультиплетов, дегидрирование предельных одноатомных спиртов происходит на дублете, а дегидрирование циклогексана - на секстете (рис. 2.10 - 2.11); теория мультиплетов позволила связать каталитическую активность металлов с величиной их атомного радиуса.

 Рис. 2.10 Дегидрирование спиртов на дублете

Рис. 2.11 Дегидрирование циклогексана на секстете

2.3.4 Ферментативный катализ.

Ферментативный катализ - каталитические реакции, протекающие с участием ферментов - биологических катализаторов белковой природы. Ферментативный катализ имеет две характерные особенности:

1. Высокая активность, на несколько порядков превышающая активность неорганических катализаторов, что объясняется очень значительным снижением энергии активации процесса ферментами. Так, константа скорости реакции разложения перекиси водорода, катализируемой ионами Fе2+, составляет 56 с-1; константа скорости этой же реакции, катализируемой ферментом каталазой, равна 3.5·107, т.е. реакция в присутствии фермента протекает в миллион раз быстрее (энергии активации процессов составляют соответственно 42 и 7.1 кДж/моль). Константы скорости гидролиза мочевины в присутствии кислоты и уреазы различаются на тринадцать порядков, составляя 7.4·10-7 и 5·106 с-1 (величина энергии активации составляет соответственно 103 и 28 кДж/моль).

2. Высокая специфичность. Например, амилаза катализирует процесс расщепления крахмала, представляющего собой цепь одинаковых глюкозных звеньев, но не катализирует гидролиз сахарозы, молекула которой составлена из глюкозного и фруктозного фрагментов.

Согласно общепринятым представлениям о механизме ферментативного катализа, субстрат S и фермент F находятся в равновесии с очень быстро образующимся фермент-субстратным комплексом FS, который сравнительно медленно распадается на продукт реакции P с выделением свободного фермента; т.о., стадия распада фермент-субстратного комплекса на продукты реакции является скоростьопределяющей (лимитирующей).

F + S <--> FS --> F + P

Исследование зависимости скорости ферментативной реакции от концентрации субстрата при неизменной концентрации фермента показали, что с увеличением концентрации субстрата скорость реакции сначала увеличивается, а затем перестает изменяться (рис. 2.12) и зависимость скорости реакции от концентрации субстрата описывается следующим уравнением:

(II.45)

Здесь Кm - константа Михаэлиса, численно равная концентрации субстрата при V = ЅVmax. Константа Михаэлиса служит мерой сродства между субстратом и ферментом: чем меньше Кm, тем больше их способность к образованию фермент-субстратного комплекса.

Характерной особенностью действия ферментов является также высокая чувствительность активности ферментов к внешним условиям - рН среды и температуре. Ферменты активны лишь в достаточно узком интервале рН и температуры, причем для ферментов характерно наличие в этом интервале максимума активности при некотором оптимальном значении рН или температуры; по обе стороны от этого значения активность ферментов быстро снижается.


Подобные документы

  • Первый закон термодинамики, вопросы и упражнения, примеры решения задач. Вычисление работы газа, совершенной им при изобарическом расширении и работы изотермического расширения системы. Приложение первого и второго законов термодинамики к химии.

    курсовая работа [64,8 K], добавлен 15.11.2009

  • Термодинамика как явление преобразования тепла в механическую энергию, сферы его применения. Физическая, химическая и техническая термодинамика. Характеристика первого принципа термодинамики. Работа на идеальном газе в различных технических процессах.

    презентация [3,4 M], добавлен 12.02.2012

  • Основные положения и законы общей термодинамики. Внутренняя энергия, теплота и работа. Состояние термодинамической системы. Изменение внутренней энергии. Работа расширения идеального газа в разных процессах. Тепловой эффект эндотермической реакции.

    реферат [176,1 K], добавлен 09.03.2011

  • Температура. I закон термодинамики. Термохимия. Второй закон. Равновесие в однокомпонентных гетерогенных системах. Термодинамические свойства многокомпонентных систем. Растворы. Химический потенциал. Термодинамика смесей идеальных газов.

    лекция [203,3 K], добавлен 04.01.2004

  • Основные понятия химической термодинамики. Стандартная энтальпия сгорания вещества. Следствия из закона Гесса. Роль химии в развитии медицинской науки и практического здравоохранения. Элементы химической термодинамики и биоэнергетики. Термохимия.

    презентация [96,9 K], добавлен 07.01.2014

  • Основные понятия раздела "химическая термодинамика". Основные виды термодинамических химических систем. Термодинамические процессы и их классификация. Первый закон термодинамики. Затраты энергии химической системы на преодоление силы, действующей извне.

    реферат [1,4 M], добавлен 07.02.2013

  • Влияние температуры на скорость химических процессов. Второй закон термодинамики, самопроизвольные процессы, свободная и связанная энергия. Зависимость скорости химической реакции от концентрации веществ. Пищевые пены: понятия, виды, состав и строение.

    контрольная работа [298,6 K], добавлен 16.05.2011

  • Основные понятия и законы химической термодинамики. Основы термохимических расчётов. Закон Гесса, следствия из него и значение. Расчёты изменения термодинамических функций химических реакций. Сущность химического равновесия, его константа и смещение.

    реферат [35,3 K], добавлен 14.11.2009

  • Метод статистической термодинамики как сумма вкладов для различных видов движения молекул. Вычисление энтропийных вкладов с помощью программы Entropy, разработанной на кафедре ТО СамГТУ. Расчет вклада в энтропию, обусловленный смешением конформеров.

    реферат [236,1 K], добавлен 17.01.2009

  • Определение термодинамической системы, ее параметры и виды. Начала термодинамики. Функции состояния системы: внутренняя энергия, энтальпия, энтропия, химический потенциал. Изобарный, изохорный и изотермический процессы. Тепловой эффект реакции.

    реферат [87,7 K], добавлен 20.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.