Принципы работы химических источников тока

История открытия химических источников тока, создания первых аккумуляторов. Принцип работы кислотной и щелочной аккумуляторной батареи. Устройство современных источников тока на основе NiCd, NiMH и Li-Ion технологий, перспективы их совершенствования.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 26.06.2014
Размер файла 309,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Из преимуществ современных Li-Ion-аккумуляторов по сравнению с другими технологиями можно отметить следующие:

· самый высокий уровень удельной емкости и плотности разрядного тока;

· минимальный саморазряд (для некоторых типов литий-ионных батарей при 20 °С - не более 3% в год);

· длительный срок службы (до 10 лет);

· большое количество циклов зарядки-разрядки (гарантируется свыше 1000 циклов);

· работоспособность в широком диапазоне температур;

· высокая сохранность запасенной энергии и постоянная готовность к работе.

Следует иметь в виду, что стандартные элементы обеспечивают более высокую емкость при средних токах и высокое напряжение разряда в широком диапазоне рабочих температур, а элементы повышенной емкости гарантируют более длительный срок службы при малых токах.

За последние годы общая картина производства литий-ионных источников претерпела существенные изменения. Производители непрерывно совершенствуют технологию, находят более современные материалы электродов и состав электролита. Параллельно прилагаются усилия для повышения безопасности эксплуатации аккумуляторов на основе лития на уровне как отдельных источников тока, так и управляющих электрических схем.

Что касается главного недостатка Li-Ion-аккумуляторов - высокой цены, то сегодня решается задача замены оксида кобальта батарей на менее дорогие материалы, что приведет к снижению их стоимости в течение ближайших лет примерно в два раза. Дополнительные резервы в плане удешевления Li-Ion-аккумуляторов при использовании новых материалов кроются в повышении безопасности этой технологии в источниках питания.

Однако Li-Ion-технология, помимо высокой цены, имеет и другие недостатки. Известно, что стандартные литий-ионные аккумуляторы лучше всего функционируют при комнатной температуре, а работа при повышенной температуре сокращает срок их службы, поскольку это приводит к ускоренному старению, сопровождаемому увеличением внутреннего сопротивления. Плохо реагируют Li-Ion-аккумуляторы и на отрицательные температуры.

Однако ученые из Американской национальной лаборатории (INEEL) в штате Айдахо объявили о разработке новой конструкции литиевой батареи, в которой значительно расширены функциональные возможности этого традиционного устройства и преодолены имеющие недостатки.

Основное изменение в конструкции заключается в использовании смеси гелеобразного полимера и керамического порошка, которые образуют прозрачную мембрану, выполняющую роль электролита при контакте с двумя электродами. Такая конструкция по сравнению с традиционными, где в качестве электролита используются жидкости и гели, обладает рядом преимуществ. Прежде всего в новой конструкции исключена возможность утечки электролита (поскольку электролит там твердый) и нет осаждения изолирующего слоя на поверхности электродов, что приводит к сокращению времени работы батареи, а в конце концов - к потере ее работоспособности. Отсутствие жидкого электролита, который к тому же потенциально пожароопасен и в некоторых случаях приводит к взрывам в процессе зарядки батарей, значительно повышает безопасность использования. Сами исследователи видят наибольшее преимущество твердого электролита в том, что батареи теперь можно будет применять в более широком диапазоне температур - электролит не расплавится при высоких температурах и не замерзнет при отрицательных, сохраняя свою работоспособность даже при "минус" 73 °С.

Из других недостатков технологий на основе лития можно отметить следующие: Li-Ion-аккумулятор не любит глубокого разряда, очень требователен к температурному диапазону (при переохлаждении устройства с литиевым аккумулятором повышается внутреннее сопротивление батарей, что может проявляться в самопроизвольном отключении устройства), боится перезаряда, взрывоопасен при нарушении герметичности и со временем понемногу теряет емкость (то есть стареет даже при отключенной нагрузке). Одним словом, до идеального источника энергии ему еще далеко, хотя все недостатки компенсируются высокой удельной энергоемкостью.

В последнее время в области технологий на основе лития наметился переход на литий-полимерные аккумуляторы (Lithium-Polimer battery). Собственно, принципиальных различий в указанных технологиях нет, однако при почти такой же плотности энергии, что у литий-ионных аккумуляторов, литий-полимерные батареи могут изготовляться в различных пластичных геометрических формах, что особенно актуально для миниатюрных устройств. Нетрадиционные для обычных аккумуляторов формы литий-полимерных батарей позволяют заполнять все свободное пространство внутри портативного устройства и не требуют специального отсека, как прежде. Таким образом, при применении литий-полимерной батареи той же удельной емкости, что у традиционной цилиндрической батареи, за счет выбора оптимальной формы и заполнения всех неиспользуемых объемов можно, не меняя формы самого портативного устройства, сохранять на 20-30% больше энергии.

Рис. Разрядные характеристики Li-Ion-аккумуляторов при различных токах разряда при температуре окружающей среды 15-25 °С

Рис. Разрядные характеристики Li-Ion-аккумуляторов при токе разряда 0,2 Сн при различных температурах окружающей среды

Основное отличие литий-полимерных (Li-Pol, Li-Polymer) аккумуляторов от литий-ионных заложено в самом их названии и заключается в типе применяемого электролита. Сухой твердый полимерный электролит (или электролит в виде полимерного геля) похож на пластиковую пленку и не проводит электрический ток, но допускает обмен ионами. В результате становится возможным упрощение конструкции элемента, поскольку полимерному электролиту не грозит утечка, а значит, нет необходимости обеспечивать герметичность. Полимерный электролит фактически заменяет традиционный пористый сепаратор, пропитанный электролитом. Такая конструкция элементов более безопасна, делает процесс их изготовления менее сложным и позволяет производить тонкие аккумуляторы произвольной формы, но пока, к сожалению, сухие полимерные электролиты обладают недостаточной электропроводностью даже при комнатной температуре. Внутреннее сопротивление их слишком высоко и не может обеспечить величину тока, необходимую современным портативным устройствам. Кроме того, вследствие недостаточной отработанности технологии изготовления Li-Pol-аккумуляторы еще слишком дороги и недолговечны - гарантированное число полных циклов зарядки-разрядки для них по крайне мере в 2 раза меньше, чем для Li-Ion. Правда, промежуточные решения - с жидким гелевым электролитом - уже весьма надежны и широко применяются. [5]

Заключение

В работы, были рассмотрены принципы работы, классификация и значение химических источников тока. Химические источники тока имеют огромное значение для развития науки, для освоения космоса, и развития общества. Наиболее перспективным типом ХИТ являются элементы с литиевым анодом. Значение химических источников тока очевидно, потому как мы используем их в повседневной жизни, трудно представить себе фотоаппараты, мобильные телефоны, карманные персональные компьютеры и т.п. подключенные к электросети, ограничивающие свободу человека. Современная наука стремится к созданию компактных и надежных приборов, сопровождающих человека в его жизни, химические источники тока играют в это немаловажную роль.

Источники и литература

1. http://ru.wikipedia.org/wiki/Химический_источник_тока История создания.

2. http://www.aktex.ru/qa/36.html История изобретения и усовершенствования аккумулятора.

3. http://leg.co.ua/knigi/oborudovanie/akkumulyatornye-batarei-3.html 1.4 Принцип действия аккумулятора

4. http://akbplus.ru/AKB-Spravka/ustroistvo-avto-akkumulatora.html Назначение и устройство автомобильных аккумуляторов и аккумуляторных батарей

5. http://compress.ru/article.aspx?id=16846 Современные аккумуляторы

6. Шеханов Р.Ф., Ершова Т.В. Химические источники тока: лабораторный практикум/ Иван. гос. хим.-технол. ун-т. Иваново, 2008

Размещено на Allbest.ru


Подобные документы

  • Рассмотрение особенностей литий-ионных аккумуляторов как относительно нового вида химических источников тока. Материалы положительного электрода. Твёрдые материалы с подвижными ионами для электродов и электролитов - основной объект ионики твёрдого тела.

    курсовая работа [532,5 K], добавлен 16.08.2015

  • Разработка и исследование нетрадиционных химических источников тока с твердыми электролитами. Твердо-электролитные химические источники тока с натриевым и литиевым анодами. Проблемы, возникающие при разработке и эксплуатации электрохимических систем.

    автореферат [1,7 M], добавлен 22.03.2009

  • Гальванический элемент Даниэль-Якоби. Стандартный водородный потенциал. Распространенные типы гальванических элементов. Никель-металлогидридные аккумуляторные батареи и свинцовые аккумуляторы. Сравнительная характеристика литиевых источников тока.

    курсовая работа [2,8 M], добавлен 27.11.2010

  • Литиевые источники тока как новые, нетрадиционные химические источники тока. Актуальность, цель, научная новизна исследования процесса формования электродов. Практическая ценность непрерывного формования ленточных электродов, практические рекомендации.

    автореферат [25,0 K], добавлен 14.10.2009

  • Литиевые источники тока (ЛИТ). Теоретическая основа процессов гранулирования активных масс и формования ленточных положительных электродов ЛИТ. Требования к положительным электродам в виде тонких лент, пластин и дисков, состояние производства сегодня.

    автореферат [2,4 M], добавлен 22.03.2009

  • Периодическая система химических элементов. История открытия Арфведсоном лития, Дэвием натрия и калия, Бунзеном и Кирхгоффом рубидия и цезия, Маргаритой Пере франция. Методы качественного определения щелочных металлов. Описание областей их применения.

    презентация [906,5 K], добавлен 28.10.2011

  • Общее представление о веществах, объединяемых под названием "сахара", молекулярная интерпретация их химических аналитически значимых свойств. Изучение химических методов определения сахаров, основанных на их способности окисляться в щелочной среде.

    контрольная работа [2,7 M], добавлен 10.06.2010

  • Сущность электролитической диссоциации. Основные законы электролиза как процессов, протекающих в растворе или расплаве электролита, при пропускании через него электрического тока. Проводимость электролитов и закон Ома для них. Химические источники тока.

    курсовая работа [911,2 K], добавлен 14.03.2012

  • Исследования Михаила Васильевича Ломоносова. Атомно-молекулярная концепция. Варианты работы "О действии химических растворителей вообще". Исследования растворимости гидрата окиси железа и уксуснокислой меди в азотной кислоте. Пропаганда химических знаний.

    презентация [112,6 K], добавлен 13.02.2012

  • Описание интересных фактов открытия ряда элементов таблицы Менделеева. Свойства химических элементов, происхождение их названий. История открытия, в отдельных случаях получения элементов, их значение в народном хозяйстве, сфера применения, безопасность.

    реферат [37,8 K], добавлен 10.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.