Исследование концентрирования Cu (II) на анионите АВ-17, иммобилизованном 8-оксихинолином

Иммобилизированные веществами сорбенты - новый класс эффективных сорбентов. 8-оксихинолин и его аналитическое применение. Хелатообразующие сорбенты с 8-оксихинолиновыми группами. Исследование концентрирования Cu на анионите АВ-17 и его результаты.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 27.09.2010
Размер файла 54,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2.2 Хелатообразующие сорбенты с 8-оксихинолиновыми группами

Ионообменные смолы на основе 8-оксихинолина отличаются селективностью по отношению к ионам тяжелых металлов. Так как константы комплексообразования 8-оксихинолина с различными элементами существенно различаются, имеется возможность подбирать условия сорбции отдельных ионов с целью их разделения. Однако, как и у всех ионообменников, действующих на основе комплексообразования, скорость обмена у них очень мала, вследствие чего время разделения значительно удлиняется. С помощью таких ионообменных смол была разработана методика отделения урана от радиоактивных примесей.

Приведен синтез ионообменной смолы на основе 8-оксихинолина. Смола получается смешиванием в определенных соотношениях и в определенном порядке 8-оксихинолина, фурфурола, едкого натра и резорцина. По сравнению с обычными смолами их обменная емкость вдвое выше из-за наличия карбоксильных групп.

2.3 Условия осаждения металлов 8-оксихинолином

Во многих случаях осаждение сорбция оксихинолиновых комплексов металлов происходит в тех интервалах рН, которые соответствуют минимальной их растворимости.

В ацетатном растворе можно разделить некоторые металлы на том основании, что многие из них не осаждаются в присутствии органических карбоновых кислот, образующих с этими металлами комплексные соединения. Медь можно отделить в виде оксихинолината от кадмия в 10%-ном растворе уксусной кислоты в присутствии ацетата натрия, а в фильтрате определить кадмий, осаждая его 8-оксихинолином из нейтрального или очень слабоуксуснокислого раствора.

Оксихинолинаты Мп, Са и Mg растворимы в 0,3--0,5%-ной СН3СООН и могут быть отделены от всех других металлов, осаждающихся 8-оксихииолином при этой кислотности. Из фильтрата эти металлы можно выделить, нейтрализовав его аммиаком. При анализе сплавов, содержащих бериллий, оксихинолиновый метод «оказался весьма эффективным для отделения от алюминия, железа и меди, осаждаемых из уксуснокислого раствора 8-оксихинолином. В фильтрате осаждают бериллий аммиаком. В аммиачном растворе можно 8-оксихинолином отделить магний от лития и других щелочных металлов. В растворе едкого натра (в присутствии тартрата натрия) можно количественно отделить Си, Mg, Zn и Cd от многих металлов. В работе приведены условия разделения Со и Mo, Zn и Mo, Mg и Zn, основанные на добавлении различных количеств NaOH или ледяной уксусной кислоты и ацетата аммония к водному раствору соли металла перед осаждением 8-оксихинолином.

Однако, как уже указывалось, важнейшая особенность 8-оксихинолина как гидроксилсодержащего органического реагента состоит в том, что он взаимодействует с ионами элементов при тех же значениях рН, при которых эти ионы начинают гидролизоваться. Количественное осаждение 8-оксихинолином различных металлов происходит при определенных значениях рН. Область оптимальных значений рН для образования комплексов зависит от прочности оксихинолинатов.

В работе [59] приведены значения рН осаждения металлов 8-оксихинолином. Большинство металлов осаждаются в широких пределах значений рН начиная со слабокислых растворов (рН 3-5) и до щелочных растворов (рН 13 -- 14). Исключение составляют такие элементы, как In, Np, V(V), Mo, W, Tl осаждающийся только из слабокислых растворов. Для некоторых элементов точно не установлены рН полного осаждения, и в литературных источниках иногда такие данные противоречивы. Так, например, галлий, по одним данным осаждается при рН 7-8, по другим -- при рН 3,1 и 3,6 и выше. По-видимому, это связано с различными условиями, при которых исследовалось осаждение.

Глава 3 Экспериментальная часть

3.1 Аппаратура, исходные вещества, методы исследования. Колориметр фотоэлектрический концентрационный КФК-2

Назначение. Технические характеристики

Однолучевой фотоколориметр КФК-2 предназначен для измерения пропускания оптической плотности и концентрации окрашенных растворов, рассеивающих взвесей, эмульсий и коллоидных растворов в области спектра 315-980 нм. Пределы измерения пропускания 100-5 % (А = О-т-1,3). Основная абсолютная погрешность измерения пропускания составляет 1 процент.

Оптическая схема и общий вид прибора

Свет от галогенной малогабаритной лампы (КГМ6,3-15) проходит последовательно через систему линз, теплозащитный, нейтральный, выбранный цветной светофильтры, кювету с раствором сравнения или с исследуемым раствором, попадает на пластинку, которая делит световой поток на два: 10 % света направляется на фотокатод (ФД-7К) и 90 % - на фотоэлемент (Ф-26).

Иономер универсальный ЭВ-74

Прибор для измерения активности одно- и двухвалентных ионов в растворах, используется электродная система с ионоселективными измерительными электродами и преобразователь.

Значение рХ контролируемого раствора определяется измерением э.д.с. электродной системы с помощью преобразователя, шкала которого програ-дуирована в единицах рХ.

Работа иономера основана на преобразовании э.д.с. электродной системы в постоянный ток, пропорциональный измеряемой величине. Преобразование э.д.с. электродной системы в постоянный ток осуществляется высоко-омным преобразователем автокомпенсационного типа.

Иономер ЭВ-74 использовали для измерения рН растворов.

Растворы и реактивы Раствор тетрабората натрия. 0,05М . 19,069 г десятиводного тетрабората натрия Na2B4O7*10H2O растворяли в воде и доводили до метки в мерной колбе объемом 1 л.

Раствор соляной кислоты 0,1 М. Раствор приготовлен из фиксанала. Буферный раствор с рН 9,18. Раствор приготовлен в соответствии с рекомендациями Ю.Ю. Лурье Справочник по аналитической химии М.: Химия. 1979, с. 310. 96,9 мл 0,05М раствора тетрабората натрия доводили до 100 мл 0,1 М раствором соляной кислоты.

0,025% - раствор ПАР. 0,025г органического реагента растворяли в небольшом количестве горячей воды и после охлаждения доводили до метки водой в мерной колбе 100 мл.

Стандартный раствор меди(И). Исходный раствор меди готовили согласно руководству (Коростелев П.П. Приготовление растворов для химико- аналитических работ. М., 1964): 5,43 г кристаллогидрата нитрата меди(П) растворили в воде, подкисленным 1 мл конц. HN03 в мерной колбе объемом 1 л. Концентрацию меди уточняли комплексометрическим способом. Рабочие растворы для построения градуировочного графика на медь и сорбции получали разбавлением стандартного раствора 0,05 М раствором азотной кислоты.

Ход анализа. Распределение ионов меди между сорбентом и раствором контролировали фотометрическим методом. В мерную колбу емкостью 25 мл к анализируемому раствору прибавляли 5 мл 0,025%-го раствора ПАР, 5 мл боратного буферного раствора (9,18), разбавляли водой до метки и измеряли оптическую плотность при 540 нм (/=1 см). Для построения градуировочного графика готовили серию стандартных растворов, содержащих от 5 до 40 мкг соли меди. Оптическую плотность измеряли относительно контрольного раствора. Результаты построения градуировочного графика представлены в табл. 1 и на рис.1. Методом наименьших квадратов данные обработаны и описываются следующим уравнением регрессии:

D= 0,0133С + 0,0067 где D -оптическая плотность, а С - содержание меди в объеме колбы, мкг.

Методика иммобилизации анионообменника АВ-17.

Помещали смолу массой 10 г в коническую колбу, заливали хлороформным раствором 8-оксихинолина, оставляли на сутки в темноте при комнатной температуре, накрыв горло колбы бумагой с отверстиями для испарения органического растворителя.

3.2 Результаты эксперимента и их обсуждение

3.2.1 Подбор оптимального значения сорбции ионов меди (II) в

зависимости от рН

Результаты влияния рН растворов на степень сорбции меди на анионите АВ-17, импрегнированном 8-оксихинолином, приведены на рис.2 и табл. 2. При низких значениях рН (в кислой среде) ионы меди(И) находятся в гидратированной форме. Это обеспечивает высокую скорость сорбции, но низкую степень извлечения на немодифицированных носителях. На модифицированных носителях процесс сорбции меди (II) протекает следующим спосо бом. При повышении значения рН в растворе протекает образование гидроксида меди (II). В таком случае скорость сорбции увеличивается. По видимому, при этих условиях облегчается зародышеобразование, например гидроксида меди(П), что приводит к образованию более мелкой дисперсной системы. Глобулярный механизм сорбции становится более эффективным, что доказано максимальной степенью извлечения ионов меди в более щелочной среде на немодифицированных носителях.

Сорбент, полученный иммобилизацией 8-оксихинолина на анионит АВ-17, после контакта с раствором меди приобретает лимонно-зеленую окраску. Фильтрат прозрачен. Однако, начиная с рН 8,5, окраска фильтрата становится слабожелтой. При этом интенсивность окраски сорбента значительно уменьшается.

3.2.2 Динамика изменения сорбции ионов меди на анионите АВ-17, иммобилизированном 8-оксихинолином

Скорость сорбции ионов меди исследовали методом ограниченного объема раствора. Для этого в серию пробирок с навесками сорбента массой 0,1 г вводили 10 мл модельного раствора с определенной концентрацией и выдерживали от 3 мин до 1-го часа при постоянном помешивании. Через определенные промежутки времени жидкие фазы подвергались анализу фотометрическим способом, как это описано ранее. Кинетику сорбции изучали при выбранном оптимальном значении рН. Значение рН в растворах устанавливали 0,1 н раствором соляной кислоты, уксусной кислотой и разбавленным раствором аммиака.

Результаты экспериментов показали (табл. 3-4), что для достижения максимального извлечения меди при оптимальном значении рН, необходимо 20- 30 мин, независимо от исходной концентрации ионов меди в жидкой фазе. При большем времени контакта степень извлечения остается постоянной, что свидетельствует об установлении сорбционного равновесия.

Установлено в отдельных экспериментах, повышение температуры до 40 °С уменьшает время установления равновесия до 5 мин, при этом извлечение меди сорбентом из жидкой фазы остается практически количественным.

3.2.3 Сорбционная емкость сорбента по меди (II)

Сорбционную емкость определяли при комнатной температуре. Для этого готовили серию растворов с одинаковым содержанием сорбента (0,1 г) и различным содержанием меди (II) и при оптимальном значении рН. После встряхивания в течение 2 часов контролировали количество сорбированного металла в каждом опыте. По данным эксперимента строили зависимость степени извлечения от массы введенной меди. Предельную емкость находили по точке перегиба кривой. Было установлено, что предельная емкость сорбента по отношению к ионам меди составляет 658 мкг/г. 3.2.4 Оптимальное количество модификатора. В ходе проведенных экспериментов было установлено, что повышение концентрации реагента (8-оксихинолина) до 289 мкмоль/г, приводит к незначительному увеличению степени извлечения меди. Дальнейшее повышение количества модификатора на 1 г носителя нецелесообразно, т.к. степень сорбции меди на модифицированном носителе заметно падает (рис.4). По-видимому, это связано с резким уменьшением активной поверхности носителя за счет уменьшения числа пор в носителе.

3.2.5 Исследование полноты сорбции меди от концентрации фоновых электролитов

Речные, морские, минеральные воды, рассолы, сточные воды представляют собой многокомпонентные системы, в которых макрокомпонентами являются ионы калия и натрия, а анионный состав макрокомпонентов - хлориды, сульфаты и в меньшей степени нитраты. Поэтому важно знать влияние матрицы анализируемого объекта на характер сорбции микрограммовых количеств меди.

Нами изучалось влияние хлорида натрия, нитрата натрия, сульфата натрия. Методика определения распределения меди была такая же, что и во всех проведенных ранее экспериментах. Результаты исследования представлены в таблицах 7-9 и на рис.6-8.

Показано, что хлорид натрия практически не влияет на сорбцию меди до концентрации 7 г/л.

Установлено, что заметное снижение степени сорбции меди наблюдается при концентрациях NaN03 превышающих более 6,5 г/л. Для Na2S04 снижение степени сорбции меди наблюдается уже при концентрациях 4 г/л. Такое поведение может быть объяснено возможностью образования ионом меди в среде сульфатов анионных сульфатных комплексов.

3.2.7 Селективность сорбента по отношению к меди в присутствии ионов Са+2 и Mg2+

Избирательная сорбция одних химических элементов в присутствии других основано на различии прочности и растворимости комплексов, селективностью фотометрической реакции.

8-оксихинолиновая группировка не отличается большой избирательностью. Об этом можно судить по химической активности самого 8-оксихинолина. Согласно литературным данным, 8-оксихинолин вступает во взаимодействие с 42 химическими элементами.

Влияние хлорида натрия на степень сорбции меди (V=l0,0мл; масса сорбента 0,2 г; рН=5,8-8,2; время контакта 30 мин.)

3.2.8 Методика фотометрического определения меди в природных и сточных водах

Аликвотную часть природной или сточной воды (табл. 12) отфильтровали от механических примесей (по мере необходимости), помещали в коническую колбу, добавляли 1 мл конц. азотной кислоты и 0,5 г персульфата аммония для разрушения органической матрицы. Раствор нагревали до кипения и оставляли на 1 час. После охлаждения пробу переносили в коническую колбу, растворами аммиака и уксусной кислоты создавали рН 5,8-8,2 и добавляли 0,3 г модифицированного сорбента. Сорбцию проводили в течение 30 мин при постоянном перемешивании. Затем сорбент отфильтровывали через фильтр средней пористости, количественно переносили в стакан, промывали дистиллированной водой, вводили горячий 10%-й раствор соляной кислоты и встряхивали в течение 30 мин. Охлажденный элюат отделяли от сорбента и переносили в мерную колбу емкостью 25 мл. В полученном растворе меди определяли фотометрическим методом с помощью ПАР .

ВЫВОДЫ

Осуществлено модифицирование анионита АВ-17 8 - оксихинолином.

Определены оптимальные условия сорбции и десорбции ионов меди на сорбенте.

Предложена аналитическая методика определения общего содержания меди в природных и сточных водах

Методом добавок «введено-найдено» установлено, что методика не имеет систематической ошибки, и относительное стандартное отклонение не превышает 0,1.

ЛИТЕРАТУРА

Золотов Ю.А. //Журнал аналитической химии. - 1995. - Т. 50. - С. 1333.

Золотов Ю.А. //Журнал аналитической химии. - 1995. - Т. 50. - С. 1237.

Кузьмин Н.М., Золотов Ю.А. Концентрирование следов элементов. -Наука: Москва, 1988.

Рунов В.К., Качин С.В.// Заводская лаборатория. - 1993. - Т. 59. - № 1.

Брыкина Г.Д., Марченко Д.О., Шпигун О.А. // Журнал аналитической химии. - 1995. - Т. 50. - С.484

Рунов В.К., Тропина В.В.. //Журнал аналитической химии.- 1996.-Т.51. -С. 71

Veack S. V. //Anal. Chim. Acta. - 1954.- v.l0.-p.48

Ермоленко И.H., Логнин М.Л., Гаврилов М.3.. //Журнал аналитической химии.- 1962- Т. 17-С.1035

9. Саввин С.Б., Михайлова А.В.. //Журнал аналитической химии. - 1962 -Т.17-С. 1035

10. Брыкина Г.Д., Крысина Л.С, Иванов В. М. //Журнал аналитической химии. - 1988. - Т. 43. - С. 1547.

П.Семенова А.А., Моросанова Е. И., Плетнев И. В., Золотов Ю.А. //-Журнал аналитической химии. - 1992 - Т. 47 - С. 1596

12.Иванов В.М, Морозко С.А., Золотов Ю.А.. // Журнал аналитической химии. - 1993. - Т.48 - С. 1389

И.Сухан В.В., Наджафова О.Ю., Запорожец О.А., Савранский И. В. // Химия и технология воды. - 1994. - Т. 16 - С. 139

14.Моросанова Е.И., Плетнев И.В., Соловьев В.Ю., Семенова Н.В., Золотов Ю.А. //Журнал аналитической химии. - 1994. - Т. 49 - С. 676

15. Швоева О.П., Дедкова В.П.,. Гитлиц Л.Г., Саввин СБ.. //Журнал аналитической химии. - 1997 - Т. 52 - С 89

16.Морозко С.А., Иванов В.М.. //Журнал аналитической химии. -1995. - Т. 50-С. 629

17.Шеховцова Т.Н., Чернецкая СВ., Белкова Н.В., Долманова И.Ф. // Журнал аналитической химии. - 1994 - Т.49 -С. 789

18.Бусев А.И., Типцова Е.Г., Иванов В.М. Руководство по аналитической химии элементов М.: Химия, 1978 - 421с.

19.Шеховцова Т.Н., Чернецкая СВ., Никольская Е.Б., Долманова И.Ф.. //Журнал аналитической химии.- 1994 - Т. 49 - С. 862

20. Шеховцова Т.Н., Чернецкая С. В., Белкова Н.В., Долманова И.Ф. //Журнал аналитической химии. - 1995 - Т.50 - С. 538

21..Тертых В.А., Белякова Л.А. Химические реакции с участием поверхности кремнезема. Киев: Наукова думка. 1991 С.564

22.Островская В.М..// Журнал аналитической химии. - 1977.- Т. 32.- С.1820

23. Назаренко В.А., Антонович В.П., Невская Е.М. Гидролиз ионов металлов в разбавленных растворах М.: Атомиздат, 1979.192с.

24.Сухан В.В., Запорожец О.А., Липковская Н.А., Погасни Л.Б., Чуйко А.А.. // Журнал аналитической химии -1994. - Т.49 - С. 700

Максимова И.М., Е.И.Моросанова Е.И., Кухто А.А., Кузьмин Н.М., Золотев Ю.А.. //Журнал аналитической химии . - 1994. - Т. 49 - С. 1210

Херинг Р. Хелатообразующие ионообменники/Пер. с нем. Барабанова В. А.; под ред. Картина В.А. и Давыдовой С.Л.. М.: Мир, 1971. 263 с.

27.Цыганкова Я.Я., Крагмалева В.Я., Синявский В.Г.-- В кн.: Химически активные полимеры и их применение. Л.: Химия, 1969. с. 345

28.Синявский В.Г. Селективные иониты. Киев: Техника.- 1967.- 168 с.

29.Корреляции и прогнозирование аналитических свойств органических реагентов и хелатных сорбентов. Отв. Ред. Н.Н. Басаргин, Э.И. Исаев Москва: Наука, 1986- 195с.

ЗО.Сенявин М.М. Ионный обмен в технологии и анализе неорганических веществ. М.: Химия, - 1980. - 272с.

З1. Салдадзе К.М., Копылова-Валова В.Д. Комплексообразующие иониты (комплекситы). М.: Химия, 1980. 336 с.

32.Перрин Д. Органические аналитические реагенты/Пер. с англ. Ю.М.

33. Дедкова; под ред. Ю.А. Золотова. М.: Мир, 1967. 408 с. ЗЗ.Роговин 3.А. Химические превращения и модификация целлюлозы. М.: Химия, 1967, 175 с.

34.Морошкина Т.М., Сербиний А.М.-- В кн.: Проблемы современной аналитической химии. Л.: Изд-во ЛГУ, 1977, выи. 2, с. 88-94.

35.Саввин С.Б. Органические реагенты группы арсеназо III. М.: Атомиздат, 1971.352 с.

Кубракова И.В., Антокольская И.И., Варшал Г.М., Мясоедоева Г.В.- В кн.: Методы выделения и определения благородных элементов. М..ТЕОХИ АН СССР, 1981, с. 14--17.

Дятлова Н.М., Темкина В.Я, Колпакова И.Д. Комплексоны. М.: Химия, 1970.417 с.

Ергожин Е.Е., Уткелов Б.А., Мухитдинова Б.А.-- В кн.: Химия мономеров и полимеров. Алма-Ата: Фан, 1980, с. 72--89.

39.. Басаргин Н.Н., Розовский Ю.Г., Жарова В.М. и др.-- В кн.: Органические реагенты и хелатные сорбенты в анализе минеральных объектов. М.: Наука, 1980, 254с.

Ионообменные методы очистки веществ Под ред. к.х.н. Г.А. Чикина и О.Н. Мягкова. Воронеж: Издательство Воронежского госуниверситета, 1984.- 268с.

Булатов М.И., Калинкин И.П., Практическое руководство по фотометрическим методам анализа. Л.: Химия, 1986, 432с.

Басаргин Н.Н. - В кн.: Теоретические и практические вопросы применения органических реагентов в анализе минеральных объектов. М.: Наука, 1976-27с.

43.Банковский Ю.А. 8-меркаптохинолин и его производные: Химия хелатных соединений. М.Наука, 1973-488с. 44.Инцеди Я. Применение комплексов в аналитической химии. М.: Мир,1979- 300с.

45. Пилипенко А.П. Органические реактивы в неорганическом анализе Киев: Высшая школа, 1970-216с.

46.Руддит Г.П. Органические аналитические реагенты. Рига: РГУ, 1971 150с.

47.Полянский Н.Г., Горбунов Г.В., Полянская М.Л. - В кн. Методы исследования ионитов. М.: Химия, 1976, с. 163-166.

48.3убанова Л.Б., Тевлина А.С., Даванков А.Б. Синтетические ионообменные материалы. М.Химия, 1978- 184с.

Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1979.

Мясоедова Г.В., Савин СБ. Хелатообразующие сорбенты. М.: Наука, 1986г. - 324с.

51.Роговин 3.А. Химические превращения и модификация целлюлозы.М.: Химия, 1967, 175 с.

52.Тананаев О.А., Багдасаров Н.Н., Применение органических реагентов в электрофотометрии (часть вторая) - Махачкала , 1972 - 133с.

53.Пилипенко А.Т., Пятницкий И.В. Аналитическая химия М.: Химия, 1990.-480с.

54. Аналитическая химия редких элементов. Сборник научных трудов. Москва: Наука», 1988г.

55.3олотов Ю.А., Кузьмин Н.М. Концентрирование микроэлементов М.: Химия, 1982.- 288с.

56. Зырин Н.Г., Звонарева В.А. - В кн.: методы определения микроэлементов в природных объектах. Проблемы аналитической химии. ТЛИ. М., Наука, 1976-с.З-б.

57.Разнолигандные и разнометальные комплексы и их применение в аналитической химии М.: Химия- 1983- 254с.

58.Бек М. Химия равновесий реакций комплексообразования. М.: Мир, 1973-359с.

59.Бургер К. Органические реактивы в неорганическом анализе. М.: Мир, 1975с. 272с.


Подобные документы

  • Магнитные сорбенты. Изотермы адсорбции. Синтез магнитного материала. Синтез магнитного сорбента. Определение содержания Fe(II) при помощи количественного анализа. Эктронномикроскопическое исследование. Рентгенофазовое исследование.

    дипломная работа [5,5 M], добавлен 22.08.2007

  • Понятие и структура полимерных сорбентов, история их создания и развития, значение в процессе распределительной хроматографии. Виды полимерных сорбентов, возможности их использования в эксклюзионной хроматографии. Особенности применения жестких гелей.

    реферат [29,6 K], добавлен 07.01.2010

  • Адсорбционные свойства природных минеральных сорбентов. Исследование свойств новых нефтей. Природные минеральные сорбенты в очистке нефтяных масел. Адсорбция паров воды бентонитом, влияние температурной активации на свойства Навбахорского бентонита.

    диссертация [293,9 K], добавлен 25.06.2015

  • Сущность хроматографических методов анализа вещества и применение сорбентов для исследований. Сравнение эксплуатационных свойств хелатсодержащих, карбоксильных, полимерных сорбентов для хроматофокусирования, роль силикагелей в газовой хроматографии.

    курсовая работа [897,5 K], добавлен 22.09.2009

  • Физико-химическая характеристика кобальта. Комплексные соединения цинка. Изучение сорбционного концентрирования Co в присутствии цинка из хлоридных растворов в наряде ионитов. Технический результат, который достигнут при осуществлении изобретения.

    реферат [34,9 K], добавлен 14.10.2014

  • Понятие сорбентов, их назначение и роль в процессе нормально-фазной и обращенно-фазной хроматографии, основные группы и сравнительная характеристика, оценка достоинств и недостатков. Силикагель и оксид алюминия, их структура и химия поверхности.

    реферат [38,0 K], добавлен 07.01.2010

  • Анализ методов разделения веществ как совокупности характерных для них химических и физических процессов и способов их осуществления: экстракция, мембранный, внутрифазный. Соосаждение — метод концентрирования следовых количеств различных элементов.

    курсовая работа [31,8 K], добавлен 16.10.2011

  • Расчет установки для непрерывного выпаривания раствора нитрата калия, для непрерывного концентрирования раствора нитрата аммония в одном корпусе. Определение температур и давлений. Расчет барометрического конденсатора и производительности вакуум насоса.

    курсовая работа [529,5 K], добавлен 15.12.2012

  • Принцип работы и конструкция установки концентрирования серной кислоты. Расчет диаметра трубопровода, определение потерь напора на различных участках трубопроводной сети. Выбор центробежного химического насоса и электродвигателя. Режим работы насоса.

    курсовая работа [610,1 K], добавлен 04.01.2013

  • Анализ рынка сорбентов драгоценных металлов и сорбционных систем. Обзор существующих предприятий-производителей и поставщиков. Оценка рынка, выбор сегмента. Стратегия позиционирования. Описание установки синтеза сорбентов. Охрана труда и окружающей среды.

    дипломная работа [2,1 M], добавлен 10.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.