Биохимия
Биологически активные пептиды. Связь простетической группы фосфопротеинов с белковым компонентом. Реакция синтеза гликогена. Орнитиновый цикл мочевинообразования. Механизм действия адреналина и глюкагона на липидный обмен. Формула сиаловой кислоты.
Рубрика | Химия |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 04.05.2009 |
Размер файла | 3,9 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Инактивация гормонов происходит в эффекторных органах, в основном в печени, где гормоны претерпевают различные химические изменения путем связывания с глюкуроновой или серной кислотой либо в результате воздействия ферментов. Частично гормоны выделяются с мочой в неизмененном виде. Действие некоторых гормонов может блокироваться благодаря секреции гормонов, обладающих антагонистическим эффектом.
Гормоны выполняют в организме следующие важные функции:
1. Регуляция роста, развития и дифференцировки тканей и органов, что определяет физическое, половое и умственное развитие.
2. Обеспечение адаптации организма к меняющимся условиям существования.
3. Обеспечение поддержания гомеостаза.
Функциональная классификация гормонов:
1. Эффекторные гормоны - гормоны, которые оказывают влияние непосредственно на орган-мишень.
2. Тройные гормоны - гормоны, основной функцией которых является регуляция синтеза и выделения эффекторных гормонов. Выделяются аденогипофизом.
3. Рилизинг-гормоны - гормоны, регулирующие синтез и выделение гормонов аденогипофиза, преимущественно тройных. Выделяются нервными клетками гипоталамуса.
Виды взаимодействия гормонов. Каждый гормон не работает в одиночку. Поэтому необходимо учитывать возможные результаты их взаимодействия.
Синергизм - однонаправленное действие двух или нескольких гормонов. Например, адреналин и глюкагон активируют распад гликогена печени до глюкозы и вызывают увеличение уровня сахара в крови.
Антагонизм всегда относителен. Например, инсулин и адреналин оказывают противоположные действия на уровень глюкозы в крови. Инсулин вызывает гипогликемию, адреналин - гипергликемию. Биологическое же значение этих эффектов сводится к одному - улучшению углеводного питания тканей.
Пермиссивное действие гормонов заключается в том, что гормон, сам не вызывая физиологического эффекта, создает условия для ответной реакции клетки или органа на действие другого гормона. Например, глюкокортикоиды, не влияя на тонус мускулатуры сосудов и распад гликогена печени, создают условия, при которых даже небольшие концентрации адреналина увеличивают артериальное давление и вызывают гипергликемию в результате гликогенолиза в печени.
Вопрос 126. Охарактеризуйте механизм действия адреналина и глюкагона на липидный обмен
Ответ. Обмен липидов регулируется ЦНС. Кора большого мозга оказывает трофическое влияние на жировую ткань либо через нижележащие отделы ЦНС - симпатическую и парасимпатическую системы, либо через эндокринные железы. В настоящее время установлен ряд биохимических механизмов, лежащих в основе действия гормонов на липидный обмен.
Известно, что длительный отрицательный эмоциональный стресс, сопровождающийся увеличением выброса катехоламинов в кровяное русло, может вызвать заметное похудание. Уместно напомнить, что жировая ткань обильно иннервируется волокнами симпатической нервной системы, возбуждение этих волокон сопровождается выделением норадреналина непосредственно в жировую ткань. Адреналин и норадреналин увеличивают скорость липолиза в жировой ткани; в результате усиливается мобилизация жирных кислот из жировых депо и повышается содержание неэстерифицированных жирных кислот в плазме крови. Как отмечалось, тканевые липазы (триглицеридлипаза) существуют в двух взаимопревращающихся формах, одна из которых фосфорилирована и каталитически активна, а другая - нефосфорилирована и неактивна. Адреналин стимулирует через аденилатциклазу синтез цАМФ. В свою очередь цАМФ активирует соответствующую протеинкиназу, которая способствует фосфорилированию липазы, т.е. образованию ее активной формы. Следует заметить, что действие глюкагона на липолитическую систему сходно с действием кате-холаминов.
Не подлежит сомнению, что секрет передней доли гипофиза, в частности соматотропный гормон, оказывает влияние на липидный обмен. Гипофункция железы приводит к отложению жира в организме, наступает гипофизарное ожирение. Напротив, повышенная продукция СТГ стимулирует липолиз, и содержание жирных кислот в плазме крови увеличивается. Доказано, что стимуляция липолиза СТГ блокируется ингибиторами синтеза мРНК. Кроме того, известно, что действие СТГ на липолиз характеризуется наличием лагфазы продолжительностью около 1 ч, тогда как адреналин стимулирует липолиз почти мгновенно. Иными словами, можно считать, что первичное действие этих двух типов гормонов на липолиз проявляется различными путями. Адреналин стимулирует активность аденилатциклазы, а СТГ индуцирует синтез данного фермента. Конкретный механизм, с помощью которого СТГ избирательно увеличивает синтез аденилатциклазы, пока неизвестен.
Вопрос 130. Клинико-диагностическое значение определения активности амилазы сыворотки крови и мочи
Ответ. У человека альфа-амилаза секретируется поджелудочной и слюнной железами, небольшая ее активность обнаруживается в тканях печени и скелетной мускулатуры. Молекулярная масса альфа-амилазы относительно низка, в отличие от большинства ферментов она фильтруется в клубочках почек и содержится в моче. Альфа-амилаза состоит из двух изоферментов: панкреатического типа (Р - тип) и слюнного (S ? тип). У здоровых людей в сыворотке крови приходится около 70% амилолитической активности приходится на слюнной изофермент, в моче приблизительно такой же процент приходится на панкреатическую изоамилазу.
Гиперамилаземия и гиперамилазурия наблюдаются при многих заболеваниях, но наиболее выражены при остром панкреатите, при котором активность увеличивается в основном (до 90% и более) за счет панкреатического изофермента. При данном заболевании наибольший объем содержания амилазы в крови и моче отмечен в первые 1-3 сут. Гиперамилазурию панкреатического происхождения вызывают также вирусный гепатит, рак поджелудочной железы.
К гиперамилаземии непанкреатического происхождения относят поражение слюнных желез, почечную недостаточность. Причинами повышения б-амилазы в крови являются нарушение секреции желез, содержащих б-амилазу, недостаточность выделения почками амилазы из организма.
Гиперамилаземию вызывают многие фармакологические вещества, кортикостероидные препараты, салицилаты, тетрациклин, фуросемид, гистамин. Для б-амилазы крови характерны широкие внутри- и межиндивидуальные вариации. Наиболее информативным является определение панкреатической изоамилазы.
Изменение активности альфа-амилазы при патологии.
Определение активности альфа-амилазы приобретает клинико-диагностическое значение при диагностике и мониторинге заболеваний поджелудочной железы, пищеварительной системы, поражения органов брюшной полости. В ряде случаев (например, при заболеваниях поджелудочной железы) диагностическое значение имеет активность только одного изофермента - панкреатической альфа-амилазы; при мониторинге заболеваний пищеварительного тракта необходимо проводить сравнение активности фермента в сыворотке (секреторная активность и дополнительное всасывание из органов брюшной полости) и моче (зачастую степень амилазурии является более стабильным и длительно сохраняющимся показателем, чем амилаземия).
Повышенные значения активности альфа-амилазы наблюдаются при:
Заболеваниях поджелудочной железы воспалительного характера (острый, отечный, хронический, реактивный панкреатит). Гиперамилаземия обычно носит острый (повышение в 10-40 раз), но зачастую кратковременный характер, гиперамилазурия также значительна, но уровень альфа-амилазы в моче снижается гораздо медленнее, чем в плазме (сыворотке) крови. Это свойство удобно использовать при "запоздалом" диагностическом обследовании пациента с клиническими признаками панкреатита, однако для мониторинга течения процесса обычно измеряют активность фермента в обеих биологических жидкостях. Следует отметить, что тяжелые формы поражения ПЖ с угрозой некроза тканей, а также панкреатит, сопровождающийся серьезными нарушениями липидного обмена, могут сопровождаться реальным или ложным (за счет ингибирования амилазы триацилглицеридами) снижением активности фермента. Поэтому при подозрении на панкреатит любой формы диагностически важно не только определять активность альфа-амилазы в моче и сыворотке крови, но и рассчитывать амилазокреатининовый клиренс по формуле:
[(Активность альфа-амилазы в моче х Креатинин сыворотки крови)/(Креатинин мочи х Активность альфа-амилазы сыворотки крови)]*100%.
При остром панкреатите эта расчетная величина превышает 6%. Расчет клиренса позволяет не делать поправку на объем и время сбора мочи и делает результат менее зависимым от используемых способов определения.
Заболеваниях органов брюшной полости, имеющих сходные симптомы с острым панкреатитом: остром аппендиците, перитоните, перфоративной язве желудка и двенадцатиперстной кишки. Активность альфа-амилазы увеличивается примерно в 3-5, редко - в 10 раз, основной причиной гиперамилазиемии является не столько повышенная секреция фермента, сколько вторичное всасывание ее из органов брюшной полости в кровь. Для дифференцирования диагноза проводят определение альфа-амилазы и креатинина в моче и расчет клиренса по креатинину с использованием приведенной выше формулы. При постоянном значении клиренса от 1 до 4 % следует заподозрить именно заболевания органов брюшной полости, маскирующихся под острый панкреатит.
По той же причине активность альфа-амилазы достоверно повышается при перфорации пищевода, гастрите, острой кишечной непроходимости, ишемии и инфаркте тонкой кишки, разрыве маточных труб, сальпингите, аневризме аорты.
При заболеваниях внутренних органов, не связанных напрямую со системой пищеварения, возможно умеренное повышение активности общей альфа-амилазы и/или ее изоферментов. К таким заболеваниям относятся: холецистит, холелитиаз, поражение паренхимы почек и воспалительные заболевания этого органа, почечная недостаточность, простатит, диабетический кетоацидоз, метастазирование злокачественных опухолей в ткани и органы (в особенности, в легкие, поджелудочную железу, поперечно-ободочную кишку). При подозрении на описанные выше патологии проводят сравнительный анализ общей и панкреатической альфа-амилазы, поскольку при описанных заболеваниях в основном повышается активность селиварного изофермента (при онкологическом поражении ПЖ и поперечно-ободочной кишки повышается активность обоих - P- и S-изоферментов, что позволяет отличить его от воспалительных заболеваний тех же органов).
Гиперамилаземия непанкреатического происхождения возникает также при заболеваниях слюнных желез и некоторых патологиях мозга. В этом случае повышение общей альфа-амилазной активности также возникает за счет увеличения активности слюнного изофермента и для дифференцирования диагноза следует провести параллельное измерение общей и панкреатической альфа-амилазы (при нормальной активности Р-амилазы можно заподозрить указанную выше патологию).
Сравнительный анализ активности альфа-амилазы в моче и сыворотке крови является также ценным диагностическим параметром при оценке патологии почек. При поражении функции почечного фильтра (при нефротическом синдроме, гломерулонефритах и др.) активность альфа-амилазы в моче резко снижена, тогда как в крови отмечается умеренная или значительная гиперамилаземия, поэтому коэффициент "Амилаза сыворотки крови / амилаза мочи" является одним из основных диагностических параметров при данной патологии.
Послеоперационные состояния (системный воспалительный ответ на хирургическое вмешательство, развитие ОРДС и др.) также могут явиться причиной умеренной гиперамилаземии.
Понижение активности альфа-амилазы обычно сопутствует понижению функциональной активности поджелудочной железы, вызванной поражением паренхимы органа и/или нарушением экзокринной регуляции, и чаще всего возникает при:
Некротических изменениях в поджелудочной железе, связанных с гемморагическим панкреатитом и тотальным панкреонекрозом.
При заболеваниях печени (гепатиты, цирроз). Злокачественных опухолях, в особенности - при метастазировании печени.
Тяжелых нарушениях эндокринного баланса: гипотиреозе, сахарном диабете, гиперлипемии (особенно, с избытком триацилглицеридов, за счет ингибрования активного центра фермента), при общем расстройстве питания, кахексии, при токсикозе беременных.
В ряде случаев при описанных выше патологиях сывороточная активность альфа-амилазы может не снизиться, а остаться неизменной.
Основные соотношения при дифференциальной диагностике патологий со сходными симптомами.
Наиболее распространенные коэффициенты соотношений :
Общая альфа-амилаза /панкреатическая составляющая. Используется при дифференциальной диагностике воспалительных и злокачественных процессов в органах брюшной полости и некоторых других тканей. При воспалительных процессах, не задевающих поджелудочную железу, основным источником активности общей альфа-амилазы является селиварный фермент, поэтому соотношение "Общая амилаза/панкреатическая изоформа" > 1. При злокачественном поражении органов брюшной полости вклад обоих изоферментов примерно одинаков, и указанный коэффициент приблизительно равен 1,8-2,4. При вовлечении ПЖ в воспалительный процесс или при наличии в ней метастазов опухоли соотношение активности общей и панкреатической амилазы не превышает 1,5.
Общая альфа-амилаза/креатинин в моче и в сыворотке крови. Используется расчетный клиренс (формула приведена в пункте 3), позволяет дифференцировать воспалительный процесс в ПЖ (коэффициент превышает 6%) и органах брюшной полости (1-4%).
Общая альфа-амилаза сыворотки крови / Общая альфа-амилаза мочи. Используется при оценке функциональной активности почечного фильтра. При нефротическом синдроме и гломерулонефритах коэффициент выше 2-2,5.
Общая альфа-амилаза сыворотки крови / Триглицериды сыворотки крови. Соотношение носит "обратный" характер, поскольку избыток триацилглицеридов может ингибировать активность альфа-амилазы. Позволяет дифференцировать патологическое снижение продукции фермента и интерференцию с гиперипемией.
Общая альфа-амилаза сыворотки крови/ Панкреатическая липаза. Биологический и диагностический смысл коэффициента аналогичен таковому у предыдущего соотношения, поскольку наличие свободных триацилглицеридов в сыворотке крови напрямую связано с деятельностью панкреатической липазы. Пропорция прямая.
Изменение активности альфа-амилазы у практически здоровых людей. Интерференция с лекарственными препаратами.
Активность альфа-амилазы в плазме крови здоровых людей существенно зависит от характера питания и превалирующих в диете продуктов. Кроме того, этот параметр сильно зависит от интенсивности обменных процессов у конкретного индивидуума, а также от мозговой активности обследуемого. Поэтому активность фермента у одного и того же индивидуума в различные сроки (даже в течение одних и тех же суток) может варьировать в пределах 25-50% в обе стороны.
Гиперамилазиемия у здоровых людей может быть вызвана эмоциональным состоянием (стресс, усиление умственной активности), употреблением (даже однократным) алкоголя, а также связан с диетой, обогащенной белком и обедненной углеводами и сахарами. Гипоамилаземия возникает при увеличении утилизации глюкозы, при голодании, активной физической нагрузке, а также у людей с гиперлипидемией даже в отсутствие ее клинических проявлений.
При беременности сроком до 19 недель активность альфа-амилазы понижена в сравнении с нормой, в сроки до 33-34 недели беременности уровень активности повышается, а к 37-40 неделе стабилизируется на уровне, на 10-20% превышающем активность фермента у здоровых небеременных женщин.
На активность альфа-амилазы и ее панкреатического изофермента существенное влияние оказывает также применение целого ряда распространенных лекарственных препаратов, употребляемых практически здоровыми людьми при возникновении преходящих заболеваний инфекционного и воспалительного характера - например, антибиотиков тетрациклинового ряда, фуросемида, кортикостероидных противовоспалительных препаратов, салицилатов.
Также, значительное влияние на активность альфа-амилазы оказывают препараты, приводящие к сокращению сфинктера Одди, в том числе - гормоны (адреналин, гистамин, секретин), наркотические вещества (морфин, пантопон, опий, кодеин) и другие препараты, повышающие секрецию фермента и подавляющие отток секрета из поджелудочной железы.
Вопрос 133. Нарушение прямого и соотношения непрямого билирубина при желтухах. Охарактеризуйте гемолитическую, паренсиматозную и обтурационную желтухи
Ответ. Желтухой называется синдром, развивающийся вследствие накопления в крови избыточного количества билирубина. В клинике он диагностируется по окрашиванию кожи и слизистой в различные оттенки желтого цвета.
Интенсивность желтухи зависит от кровоснабжения органа или ткани. В начале обнаруживается желтое окрашивание склер, несколько позднее - кожных покровов. Накапливаясь в коже и слизистой, билирубин в сочетании с другими пигментами прокрашивает их в светло-желтый цвет с красноватым оттенком. В дальнейшем происходит окисление билирубина в биливердин, и желтуха приобретает зеленоватый оттенок. При длительном существовании желтухи кожные покровы приобретают черновато-бронзовую окраску. Таким образом, осмотр больного позволяет решить вопрос о длительности желтухи, что имеет большое дифференциально-диагностическое значение.
Для того, чтобы классификацироать различные формы желтухи, необходимо знать основные данные физиологии билирубина.
Эритроциты разрушаются в селезенке или ретикуло-эндотелиальной системе. При этом гемоглобин расщепляется на глобин, железосодержащий гемосидерин и не содержащий железа гематоидин. Глобин распадается на аминокислоты и снова идет на построение белков организма. Железо подвергается окислению и снова использется организмом в виде ферритина. Гематоидин (порфириновое кольцо) превращается через стадию биливердина в билирубин. Свободный билирубин захватывается плазмой крови. Он совершенно не растворим в воде и соединяется с белками плазмы. В этом состоянии он задерживается печенью, где под влиянием фермента глюкоруноилтрансферазы переходит в билирубин - глюкуроновую кислоту. В отличие от свободного билирубина эта кислота растворима в воде. Таким образом в печени образуется прямой билирубин, который растворим в воде и в дальнейшем выделяется с желчью в кишечник. В кишечнике часть прямого билирубина превращается в уробилиноген, который, реабсорбируясь, частично возвращается в печень, а частично выделяется с мочой в виде уробилина (около 4 мг в сутки). Другая асть прямого билирубина, попавшего в кишечник, под действием кишечной флоры, превращается в стеркобилин, который выделяется с калом (60-80 мг в сутки).
Повышение в крови уровня непрямого билирубина может быть следствием повышенного гемолиза, при снижении способности гепатоцитов захватывать билирубин из плазмы крови, обусловленного недостаточностью трансферазной активности клеток печени (синдромы Жильбера и Криглера - Найара - наследственная недостаточность глюкуронилтрансферазы). Повышение в крови уровня прямого билирубина, как правило, обусловлено нарушением оттока желчи по внепеченочным желчным протокам (подпеченочная или механическая желтуха) или холангиолам (внутрипечечный холестаз).
Различают три основных вида желтух:
1). Рассмотрим механизмы развития гемолитической желтухи. Для этого необходимо кратко вспомнить определение гемолиза и его механизмы. Гемолизом называется усиленное разрушение эритроцитов. В норме эритроциты циркулируют в крови в течение 120 дней. При гемолитических состояниях продолжительность жизни эритроцитов значительно укорачивается, иногда до нескольких часов. Гемолиз бывает внутрисосудистым, когда эритроцитоц лизируются в крови, и внесосудистым - эритроциты подвергаются деструкции и перевариваются системой макрофагов. Внутрисосудистый гемолиз встречается относительно редко. Он может возникнуть вследствие механического разрушения эритроцитов при травмировании в малых кровеносных сосудах (маршевая гемоглобинурия), турбулентном кровяном потоке (дисфункция протезированных клапанов сердца), при прохождении через депозиты фибрина в артериолах (тромботическая тромбоцитопеническая пурпура, гемолитико-уремический синдром, ДВС-синдром), в результате несовместимости эритроцитов по системе АВ0, резус или какой-либо другой системе (острая посттрансфузионная реакция), под влиянием комплемента (пароксизмальная ночная гемоглобинурия, пароксизмальная холодовая гемоглобинурия), вследствие прямого токсического воздействия (яд змеи кобры, инфекции), при тепловом ударе.
Внесосудистый гемолиз осуществляется преимущественно в селезенке и печени. Селезенка способна захватывать и разрушать малоизмененные эритроциты, печень различает лишь эритроциты с большими нарушениями, однако поскольку ток крови к печени примерно в 7 раз больше, чем к селезенке, печень может играть существенную роль в гемолизе.
Удаление эритроцитов из крови макрофагами происходит в основном двумя путями. Первый механизм связан с распознаванием макрофагами эритроцитов, покрытых IgG-АТ и С3, к которым на поверхности макрофагов имеются специфические рецепторы - иммуногемолитические анемии. Фагоцитоз эритроцитов сопровождается усиленной клеточной пролиферацией в селезенке (и в меньшей степени печени) с гиперплазией органа, увеличением тока крови в нем, повышением его функционально активности.
Второй механизм обусловлен изменениями физических свойств эритроцитов, снижением их пластичности - способности изменять свою форму при прохождении через узкую фильтрационную сеть селезенки. Нарушение пластичности отмечается при мембранных дефектах эритроцитов (наследственный микросфероцитоз), изменении липидного состава мембран (при циррозе печени), аномалиях гемоглобина, ведущих к повышению вязкости внутриклеточной среды эритроцита (серповидно-клеточная анемия), наличии включений в цитоплазме эритроцитов (бета-талассемия, альфа-талассемия), прециптированного гемоглобина в виде телец Гейнца (дефицит глюкозо-6-фосфатдегидрогеназы). Накопление эритроцитов в селезеночной пульпе, независимо от его механизма, вызывает дальнейшую редукцию эритроцитарной поверхности - процесс "кондиционирования", что еще больше ухудшает условия продвижения клеток через синусы селезенки, приводит к необратимой задержке и деструкции эритроцитов путем их фрагментации и фагоцитоза макрофагами.
Наиболее важным признаком в начальной диагностике гемолиза является увеличение числа ретикулоцитов. Ретикулоцитоз отражает активацию костномозговой продукции эритроцитов в ответ на их разрушение на периферии. Кроме того, ускоренный выброс из костного мозга недозрелых эритроцитов, содержащих РНК, обуславливает феномен полихроматофилиии эритроцитов в фиксированных окрашенных азурэозином мазках крови. Уровень непрямого билирубина в сыворотке крови при гемолизе повышен. Уровень его повышения зависит от активности гемолиза и способности гепатоцитов к образованию прямого билирубина и его экскреции. Уровень прямого билирубина (связанного) в сыворотке крови нормальный и билирубинурия отсутствует, так как через неповрежденный почечный фильтр проходит только прямой билирубин. В моче и кале содержится увеличенное количество уробилина и стеркобилина.
Таким образом, повышенный гемолиз независимо от его этиологии всегда приводит к характерной клинической триаде:
1. Анемия
2. Желтуха с лимонным оттенком
3. Спленомегалия
Несколько практических советов: как запомнить, что прямой билирубин - это связанный, а непрямой - свободный.
1. Быть прямым и свободным одновременно невозможно, следовательно, прямой билирубин связанный.
2. Не свой. Непрямой билирубин свободный.
2). При паренхиматозной желтухе повышается уровень прямого билирубина. В норме прямой билирубин выделяется в желчный капилляр и далее по билиарному дереву поступает в двенадцатиперстную кишку. Этот путь транспорта может нарушаться на внутриклеточном участке. Таким образом, при паренхиматозной желтухе страдает сама печеночная клетка. Этот вид желтухи возникает, например, при вирусных гепатитах. Вирус гепатита А обладает прямым повреждающим действием на клетки печени. Иммунная реакция в ответ на попадание вируса обычно адекватна, что и обусловливает редкость тяжелых форм заболевания и отсутствие перехода в хронический гепатит. Вирус гепатита В не обладает прямым цитопатогенным действием, но инкорпорирование вирусов или их частиц в мембраны печеночных клеток вызывает развитие клеточной цитотоксической реакции, направленной против клеточной оболочки, которая может приводить к некрозу печеночных клеток. Полный зрелый вирус гепатита В имеет 3 антигенные системы. В наружной оболочке вируса содержится поверхностный антиген (HbsAg), во внутренней оболочке - 2 антигена, HbеAg локализуется в цитоплазме гепатоцита, но не проникает в ядро, HbcAg (от латинского соr - сердцевина, ядро) проникает в ядро гепатоцита. Последний никогда не обнаруживается в крови, где можно выявить лишь антитела к нему. HbsAg способен образовывать с иммунные комплексы, которые могут циркулировать в крови (ЦИКи). Именно наличие циркулирующих иммунных комплексов при хроническом гепатите обусловливает наличие целого ряда системных проявлений. Кроме вирусных гепатитов, печеночные клетки поражаются и при гепатитах другой этиологии (острые токсические, лекарственные гепатиты, алкогольные гепатиты).
3).Обтурационная (механическая) желтуха. При этом виде желтухи также увеличивается уровень прямого билирубина, что обусловлено нарушением оттока желчи по внепеченочным желчным протока. Таким образом, обтурационная желтуха является следствием закупорки желчных протоков. Это патологическое состояние, которое не имеет однородных этиологических факторов. В патогенезе ключевым моментов является нарушение оттока желчи. Желчь не втекает в желудочно-кишечный тракт, следовательно не происходит нормального всасывания и переваривания.
Обтурация происходит за счет:
- камня
- опухоли
- рубцовой стриктуры протоков
При опухоли наблюдается ахолия, холемия. При закупорке камней присоединяется инфекция (холангит), что отягощает течение обтурационной желтухи. Наблюдается синдром Шарко или, другое название триада Шарко: желтуха, сопровождающаяся увеличением печени, боли, лихорадка. Это острое состояние, связанное с закупоркой. Застой желчи, закупорка и инфекция являются ведущими моментами. В тяжелых случаях может развиться сепсис, при котором появится пентада Рейнольда: триада Шарко + гипотония и спутанное сознание. Таким образом, речь идет о билиарном септическом шоке. Чаще всего камни вентильные. В крови лейкоцитоз, ускорение СОЭ, сдвиг формулы влево, анемия. В моче - желчные пигменты. Кал не окрашен, но при вентильном камне кал то окрашен, то нет. В биохимическом анализе крови щелочная фосфатаза не увеличена. Паренхиматозных поражений нет. Будут гнойная инфекция и синдром холестаза.
При закупорке опухолью клиника будет скудная, отмечается симптом Курвуазье - увеличенный, безболезненный желчный пузырь. Этот симптом связан с закупоркой дистальных отделов желчных путей. Этот симптом встречается при раке головки поджелудочной железы. Однако, если опухоль высокой локализации, то симптома Курвуазье не будет. Высокая локализация: рак желчного пузыря, пузырного протока. При высокой локализации опухоли будет синдром блокады доли печени: длительная время обтурационная желтуха, а билирубинемия не более 170 (норма 17-20). Происходит закупорка одного из печеночных протоков (правого или левого). Если рак головки поджелудочной железы, то билирубинемия достигает 300-400-500 Ед. В клиническом анализе крови при опухоли может быть незначительное увеличение СОЭ. Повышен прямой билирубин. Щелочная фосфатаза и пировиноградная фосфатаза не изменены.
Вопрос 134. С какими свойствами белков плазмы крови связана их способность регулировать объем крови и ее онкотическое давление? Какая белковая фракция играет наиболее существенную роль в обеспечении этой функции?
Ответ. Из 9-10% сухого остатка плазмы крови на долю белков приходится 6,5-8,5%. Используя метод высаливания нейтральными солями, белки плазмы крови можно разделить на три группы: альбумины, глобулины и фибриноген. Нормальное содержание альбуминов в плазме крови составляет 40-50 г/л, глобулинов - 20-30 г/л, фибриногена - 2,4 г/л. Плазма крови, лишенная фибриногена, называется сывороткой.
Синтез белков плазмы крови осуществляется преимущественно в клетках печени и ретикулоэндотелиальной системы. Физиологическая роль белков плазмы крови многогранна.
1. Белки поддерживают коллоидно-осмотическое (онкотическое) давление и тем самым постоянный объем крови. Содержание белков в плазме значительно выше, чем в тканевой жидкости. Белки, являясь коллоидами, связывают воду и задерживают ее, не позволяя выходить из кровяного русла. Несмотря на то что онкотическое давление составляет лишь небольшую часть (около 0,5%) от общего осмотического давления, именно оно обусловливает преобладание осмотического давления крови над осмотическим давлением тканевой жидкости. Известно, что в артериальной части капилляров в результате гидростатического давления безбелковая жидкость крови проникает в тканевое пространство. Это происходит до определенного момента - «поворотного», когда падающее гидростатическое давление становится равным коллоидно-осмотическому. После «поворотного» момента в венозной части капилляров происходит обратный ток жидкости из ткани, так как гидростатическое давление стало меньше, чем коллоидно-осмотическое. При иных условиях в результате гидростатического давления в кровеносной системе вода просачивалась бы в ткани, что вызвало бы отек различных органов и подкожной клетчатки.
2. Белки плазмы принимают активное участие в свертывании крови. Ряд белков, в том числе фибриноген, являются основными компонентами системы свертывания крови.
3. Белки плазмы в известной мере определяют вязкость крови, которая, как отмечалось, в 4-5 раз выше вязкости воды и играет важную роль в поддержании гемодинамических отношений в кровеносной системе.
4. Белки плазмы принимают участие в поддержании постоянного рН крови, так как составляют одну из важнейших буферных систем крови.
5. Важна также транспортная функция белков плазмы крови: соединяясь с рядом веществ (холестерин, билирубин и др.), а также с лекарственными средствами (пенициллин, салицилаты и др.), они переносят их к тканям.
6. Белки плазмы играют важную роль в процессах иммунитета (особенно это касается иммуноглобулинов).
7. В результате образования с белками плазмы недиализируемых комплексов поддерживается уровень катионов в крови. Например, 40-50% кальция сыворотки связано с белками, значительная часть железа, магния, меди и других элементов также связана с белками сыворотки.
8. Наконец, белки плазмы крови могут служить резервом аминокислот. Современные физико-химические методы позволили открыть и описать около 100 различных белковых компонентов плазмы крови. Особое значение приобрело электрофоретическое разделение белков плазмы (сыворотки) крови.
В сыворотке крови здорового человека при электрофорезе на бумаге можно обнаружить 5 фракций: альбумины, б1-, б2-, в-, г-глобулины. Методом электрофореза в агаровом геле в сыворотке крови выделяют 7- 8 фракций, а при электрофорезе в крахмальном или полиакриламидном геле - до 16-17 фракций. Следует помнить, что терминология белковых фракций, получаемых при различных видах электрофореза, еще окончательно не установилась. При изменении условий электрофореза, а также при электрофорезе в различных средах (например, в крахмальном или полиакриламидном геле) скорость миграции и, следовательно, порядок белковых зон могут меняться.
Еще большее число белковых фракций (свыше 30) можно получить методом иммуноэлектрофореза (рис. 17.1). Этот метод представляет собой своеобразную комбинацию электрофоретического и иммунологического методов анализа белков. Иными словами, термин «иммуноэлектрофорез» подразумевает проведение электрофореза и реакции преципитации в одной среде, т.е. непосредственно на гелевом блоке. При данном методе с помощью серологической реакции преципитации достигается значительное повышение аналитической чувстительности электрофоретического метода.
Вопрос 143. Приведите схему строения антител. Обозначьте на схеме участки взаимодействия с антигеном
Ответ. Основной функцией иммунной системы является защита генетической целостности организма от проникновения чужеродных веществ. Эта защита обеспечивается сложной системой органов, клеток и растворимых факторов. В механизмах устойчивости организма к генетически чужеродной информации участвуют два основных феномена: неспецифическая резистентность и приобретенный иммунитет.
Приобретенный антиинфекционный иммунитет отражает специфическую устойчивость, возникающую в организме в течение его жизни против конкретных видов микроорганизмов.
При этом приобретенный антиинфекционный иммунитет не обособлен от неспецифической резистентности организма, которую обеспечивают системы фагоцитов, комплемента, естественных киллеров, лизоцима, интерферонов и других медиаторов взаимодействия клеток, вызванных неспецифическими раздражителями; белков острой фазы воспаления и других веществ, участвующих в механизмах развития воспаления.
В развитии противовирусного иммунитета участвуют гуморальные и клеточные факторы. Особенности противовирусного иммунитета обусловлены своеобразием строения и биологии вирусов. Иммунитет направлен на нейтрализацию и удаление из организма вируса, его антигенов и зараженных вирусом клеток. Приобретенный противовирусный иммунитет, как и другие виды антиинфекционного иммунитета начинает развиваться со стадии представления антигена Т-хелперам. Напряженность противовирусного иммунитета зависит от уровня циркулирующих антител и образования цитотоксических лимфоцитов. Цитотоксические лимфоциты вызывают лизис инфицированных вирусом клеток.
Антитела, образующиеся при вирусных инфекциях, действуют непосредственно на вирус или на клетки, инфицированные вирусом. В связи с этим можно выделить две основные формы участия антител в развитии противовирусного иммунитета. Одна из них - нейтрализация вируса антителами. Такая нейтрализация препятствует рецепции вируса на клетке и проникновению его в клетку. Вторая форма участия антител - иммунный лизис инфицированных клеток.
Основную массу противовирусных антител составляют иммуноглобулины класса G. Антитела класса M свидетельствуют о свежеперенесенной инфекции, они появляются раньше и раньше исчезают по сравнению с IgG-антителами.
Схематическое строение антитела.
Прочность иммунитета при различных вирусных инфекциях значительно варьирует. При некоторых инфекциях (ветряная оспа, корь, паротит, краснуха) иммунитет достаточно стойкий. Повторные заболевания в этом случае редки. Менее стойкий иммунитет развивается при инфекциях дыхательных путей и кишечного тракта. Например, при гриппе иммунитет сохраняется в течение нескольких месяцев. Повторное заболевание гриппом объясняется прежде всего тем, что происходит постоянный дрейф поверхностных антигенных вирусных белков и смена циркулирующих штаммов.
Список используемой литературы
1. Березов Т.Т., Коровкин Б.Ф. «Биологическая химия». М., 2003
2. Комов Б.В. «Биохимия. Учебник для ВУЗов». М., 2004
3. Филиппович Ю.Б. «Биохимия». М., 2003
Размещено на Allbest.ru
Подобные документы
Функции липидов в организме, сущность и биохимия жирового обмена в организме. Взаимодействие углеводного и липидного обменов, роль L-карнитина. Характеристика факторов, продуцирующих нарушения обмена, улучшение его за счет физических упражнений.
реферат [35,9 K], добавлен 17.11.2011Витамины как микронутриенты. Понятие и значение в организме минеральных веществ. Взаимодействие минеральных веществ и витаминов между собой и друг с другом. Обмен железа в организме человека, механизм влияния аскорбиновой кислоты на усвоение элемента.
курсовая работа [309,8 K], добавлен 11.05.2015Свойства диэтилового эфира малеиновой кислоты. Практическое применение диэтилмалеата - использование в качестве органического растворителя. Методика синтеза. Дикарбоновые кислоты. Реакция этерификации. Механизм этерификации. Метод "меченых атомов".
курсовая работа [585,5 K], добавлен 17.01.2009Основные участники цикла. Общая схема цикла Кребса. Стадии цикла Кребса. Изомеризация лимонной кислоты в изолимонную. Декарбоксилирование изолимонной кислоты. Дегидрирование янтарной кислоты. Модификации и родственные пути. Получение фумаровой кислоты.
презентация [1,5 M], добавлен 31.10.2016Реакция Виттига как химическая реакция альдегидов или кетонов с илидами фосфора, которая приводит к образованию алкенов или алленов и оксида трифенилфосфина. Механизм реакции, модификации метода и его промышленное использование. Схема синтеза витамина А.
реферат [675,9 K], добавлен 18.10.2014Свойства изоамилацетата. Практическое применение в качестве растворителя в различных отраслях промышленности. Методика синтеза (уксусная кислота и уксуснокислый натрий). Реакция этерификации и гидролиз сложных эфиров. Механизм реакции этерификации.
курсовая работа [634,2 K], добавлен 17.01.2009Строение углеводов. Механизм трансмембранного переноса глюкозы и других моносахаридов в клетке. Моносахариды и олигосахариды. Механизм всасывания моносахаридов в кишечнике. Фософорилирование глюкозы. Дефосфорилирование глюкозо-6-фосфата. Синтез гликогена.
презентация [1,3 M], добавлен 22.12.2014Теоретические и практические аспекты синтеза, очистки и анализа свойств сульфаниловой кислоты. Формула бензольного кольца ароматических сульфокислот, их молекулярное строение. Гидролиз сульфанилина в кислой среде. Физические свойства исходных веществ.
курсовая работа [744,3 K], добавлен 31.01.2012Оротовая кислота как витаминоподобное вещество, влияющее на обмен веществ и стимулирующее рост живых организмов. Химическая структура. Конденсация ацетоуксусного эфира с мочевиной. Влияние оротовой кислоты на белковый обмен. Применение кислоты в медицине.
презентация [224,7 K], добавлен 10.12.2015Рассмотрение методов проведения реакций ацилирования (замещение водорода спиртовой группы на остаток карбоновой кислоты). Определение схемы синтеза, физико-химических свойств метилового эфира монохлоруксусной кислоты и способов утилизации отходов.
контрольная работа [182,3 K], добавлен 25.03.2010