Расчёт многокорпусной выпарной установки

Методы расчета выпарной установки непрерывного действия, для выпаривания раствора сульфата натрия. Составление технологической схемы выпарной установки, расчет основного аппарата, подбор вспомогательного оборудования (теплообменной и насосной аппаратуры).

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 23.12.2010
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

При остаточном давлении в конденсаторе порядка 104 Па скорость паров v принимают 15 - 25 м/с:

м

По нормалям НИИХИММАШа подбираем конденсатор диаметром, равным расчётному или ближайшему большему. Определяем его основные размеры. Выбираем барометрический конденсатор диаметром dбк = 600 мм.

3.3 Расчёт высоты барометрической трубы

В соответствии с нормалями ОСТ 26716 - 73, внутренний диаметр барометрической трубы dбт равен 150 мм.

Скорость воды в барометрической трубе vв равна:

м/с

Высоту барометрической трубы определяют по уравнению:

(25)

где В - вакуум в барометрическом конденсаторе, Па; Уо - сумма коэффициентов местных сопротивлений; л - коэффициент трения в барометрической трубе; Нбт, dбт - высота и диаметр барометрической трубы, м; 0,5 - запас высоты на возможное изменение барометрического давления, м.

В = Ратм - Рбк = 9,8 • 104 - 3 • 104 = 6,8 • 104 Па

Уо = овх + овых = 0,5 + 1,0 = 1,5

где овх и овых - коэффициенты местных сопротивлений на входе в трубу и на выходе из неё.

Коэффициент трения л зависит от режима течения жидкости. Определим режим течения воды в барометрической трубе:

Для гладких труб при Re = 855000 коэффициент трения л равен:

Отсюда находим Нбт = 7,68 м. [1]

В таблице 17 представлены основные размеры барометрического конденсатора.

Таблица 17 Основные размеры барометрического конденсатора

Параметр

Значение, мм

Диаметр барометрического конденсатора, dБК

600

Толщина стенки аппарата, S

5

Расстояние от верхней полки до крышки аппарата, а

1300

Расстояние от нижней полки до днища аппарата, r

1200

Ширина полки, b

-

Расстояние между осями конденсатора и ловушки:

К1

К2

675

-

Высота установки Н

4550

Ширина установки Т

1400

Диаметр ловушки D

400

Высота ловушки h

1440

Диаметр ловушки D1

-

Высота ловушки h1

-

Расстояние между полками:

а1

а2

а3

а4

а5

260

300

360

400

430

Основные проходы штуцеров:

для входа пара (А)

для входа воды (Б)

для выхода парогазовой смеси (В)

для барометрической трубы (Г)

воздушник (С)

для входа парогазовой смеси (И)

для выхода парогазовой смеси (Ж)

для барометрической трубы (Е)

350

125

100

150

-

100

70

50

4. Расчёт производительности вакуум-насоса

Производительность вакуум-насоса Gвозд определяется количеством газа (воздуха), который необходимо удалять из барометрического конденсатора:

кг/с (26)

где 2,5 • 10-5 - количество газа, выделяющегося из 1 кг воды; 0,01 - количество газа, подсасываемого в конденсатор через неплотности на 1 кг паров.

кг/с

Объёмная производительность вакуум-насоса равна:

(27)

где R - универсальная газовая постоянная, Дж/(кмоль•К); Mвозд - молекулярная масса воздуха, кг/кмоль; tвозд - температура воздуха, °С; Рвозд - парциальное давление сухого воздуха в барометрическом конденсаторе, Па.

Температуру воздуха рассчитывают по уравнению:

°С

Давление воздуха равно:

Рвозд = Рбк - Рп

где Рп - давление сухого насыщенного пара (Па) при tвозд = 26,96 °С.

Рвозд = 0,305 • 9,8 • 104 - 0,04 • 9,8 • 104 = 2,6 • 104 Па

Тогда:

м3/с (1,955 м3/мин)

Зная объёмную производительность Vвозд и остаточное давление Рбк, по ГОСТ 1867 - 57 подбираем вакуум-насос типа ВВН-3 мощностью на валу N = 6,5 кВт. [1]

5. Расчёт диаметров трубопроводов и подбор штуцеров

Штуцера подбираются по внутреннему диаметру трубопровода. Внутренний диаметр трубопровода круглого сечения рассчитывают по формуле:

(28)

где Q - расход воды, м3/с; w - скорость движения жидкости, м/с.

Для жидкости при движении самотёком значение скорости выбирается в интервале от 0,5 до 1 м/с, для того чтобы обеспечить близкий к оптимальному диаметр трубопровода. При перекачке жидкости насосами скорость во всасывающих трубопроводах: w = 0,8 - 2,0 м/с; в нагнетательных трубопроводах: w = 1,5 - 3,0 м/с. Для паров при давлении большем чем 0,1 МПа скорость равна: w = 15 - 25 м/с.

Рассчитываем диаметр трубопровода для подачи раствора из ёмкости в теплообменник-подогреватель:

м3

где сн = 1071 кг/м3 - плотность раствора Na2SO4 при 20 °С.

м

По ОСТ 26 - 1404 - 76 (С. 175 [10]) подбираем штуцер с условным проходом Dу = 50 мм, условным давлением Ру = 0.6 МПа, толщиной стенки Sт = и длиной штуцера Hт: 155; 215.

Рассчитываем диаметр трубопровода для подачи раствора из теплообменника-подогревателя в первый корпус выпарной установки:

м3

w = 0,5 м/с - при движении жидкости самотёком.

м

По ОСТ 26 - 1404 - 76 подбираем штуцер с условным проходом Dу = 100 мм, условным давлением Ру = 0,6 МПа, толщиной стенки Sт = 5 и длиной штуцера Hт: 155; 215.

Рассчитываем диаметр трубопровода для подачи греющего пара в теплообменник-подогреватель. Расход греющего пара D = 0,83 кг/с.

м3

где сп = 2,1 кг/м3 - плотность греющего пара при 143,5 °С.

м

По ОСТ 26 - 1404 - 76 подбираем штуцер с условным проходом Dу = 200 мм, условным давлением Ру = 0,6 МПа, толщиной стенки Sт = 6 и длиной штуцера Hт: 160; 220.

Рассчитываем диаметр трубопровода для выхода конденсата из теплообменника-подогревателя:

м3

где св = 923 кг/м3 - плотность воды при 143,5 °С.

м

По ОСТ 26 - 1404 - 76 подбираем штуцер с условным проходом Dу = 50 мм, условным давлением Ру = 0,6 МПа, толщиной стенки Sт = 3 и длиной штуцера Hт: 155; 215.

Рассчитываем диаметр трубопровода для выхода конденсата из третьего корпуса выпарной установки:

м3

где ск = 1323 кг/м3 - плотность раствора Na2SO4 в третьем корпусе выпарной установки.

м

По ОСТ 26 - 1404 - 76 подбираем штуцер с условным проходом Dу = 40 мм, условным давлением Ру = 0,6 МПа, толщиной стенки Sт = 3 и длиной штуцера Hт: 155; 215 [10].

6. Расчёт насоса для подачи исходной смеси

В данной установке необходимо подобрать насос для подачи исходного раствора из ёмкости в теплообменник-подогреватель. Необходимо определить необходимый напор и мощность при заданном расходе жидкости. Далее по этим характеристикам выбираем насос конкретной марки.

а) Выбор трубопровода.

Для всасывающего и нагнетательного трубопровода примем одинаковую скорость течения воды, равную 2 м/с. Тогда диаметр будет определяться по формуле (24):

где Q - расход Na2SO4, равный Q = G/с = 3,333/1071 = 0,31 • 10-2 м3/с.

м

Выбираем стальную трубу наружным диаметром 48 мм, толщиной стенки 3 мм. Внутренний диаметр трубы d = 42 мм. Фактическая скорость раствора в трубе:

Примем, что трубопровод стальной, коррозия незначительна.

б) Определение потерь на трение и местные сопротивления.

Находим критерий Рейнольдса:

где с = 1071 - плотность раствора Na2SO4 при 20 °С; м = 0,89 • 10-3 Па - вязкость раствора Na2SO4 при 20 °С.

То есть режим турбулентный. Абсолютную шероховатость трубопровода принимаем Д = 2 • 10-4 м. Тогда относительная шероховатость трубы определяется по формуле:

(29)

В турбулентном потоке различают 3 зоны, для которых коэффициент теплопроводности л рассчитывают по разным формулам. Получим:

; ;

2100 < Re < 117600 (Re = 113147)

Таким образом, в трубопроводе имеет место смешанное трение, и расчёт л следует проводить по формуле:

(30)

Подставив, получим:

Вт/(мЧК)

Определим сумму коэффициентов местных сопротивлений отдельно для всасывающей и нагнетательной линий.

Для всасывающей линии:

1) Вход в трубу (принимаем с острыми краями): о1 = 0,5.

2) Прямоточные вентили: для d = 0,03 м о = 0,85, для d = 0,05 м о = 0,79.

Экстраполяцией находим для d = 0,042 м о = 0,814. Так как Re < 3 • 105, следовательно о умножаем на коэффициент k = 0,927, получаем о2 = 0,75.

3) Отводы: плавный отвод круглого сечения определяют по формуле: о = А • В. Коэффициент А зависит от угла ц, на который изменяется направление потока в отводе: ц = 90 °С, следовательно А = 1. Коэффициент В зависит от отношения радиуса поворота трубы Rо к внутреннему диаметру d: Примем , так как радиус поворота равен шести диаметрам трубы, следовательно В = 0,09. о3 = 1 • 0,09 = 0,09.

Сумма коэффициентов местных сопротивлений во всасывающей линии:

Потерянный напор во всасывающей линии находим по формуле:

(31)

где l и dэ - длина и эквивалентный диаметр трубопровода. Принимаем длину трубопровода на линии всасывания, равной 6 м.

м

Для нагнетательной линии:

1) Отводы под углом 120°: А = 1,17, В = 0,09, о1 = А • В = 1,17 • 0,09 = 0,105.

2) Отводы под углом 90°: о2 = 0,09 (см. выше).

3) Нормальные вентили: для d = 0,04 м о = 4,9, для d = 0,08 м о = 4,0. принимаем для d = 0,042 м о3 = 4,86.

4) Выход из трубы: о3 = 1.

Сумма коэффициентов местных сопротивлений в нагнетательной линии:

Потерянный напор в нагнетательной линии:

м

Общие потери напора:

м

в) Выбор насоса.

Находим напор насоса по формуле:

(32)

где Р1 - давление в аппарате, из которого перекачивается жидкость; Р2 - давление в аппарате, в который подаётся жидкость; Нг - геометрическая высота подъёма жидкости; hп - суммарные потери напора во всасывающей и нагнетательной линии. Примем Нг = 10 м.

м вод. столба

Подобный напор при заданной производительности обеспечивается центробежными насосами. Учитывая, что центробежные насосы широко распространены в промышленности ввиду достаточно высокого к. п. д., компактности и удобства комбинирования с электродвигателями, выбираем для последующего рассмотрения именно эти насосы.

Полезная мощность насоса определяется по формуле:

(33)

где Q - расход; Н - напор насоса (в метрах столба перекачиваемой жидкости).

кВт

Мощность, которую должен развивать электродвигатель насоса на выходном валу при установившемся режиме работы, находится по формуле:

(34)

где зн и зпер - коэффициенты полезного действия соответственно насоса и передачи от электродвигателя к насосу.

К. п. д. передачи зависит от способа передачи усилия. В центробежных насосах обычно вал электродвигателя непосредственно соединяется с валом насоса; в этих случаях зпер ? 1. Если к. п. д. насоса неизвестен можно руководствоваться следующими примерными значениями: при малой и средней подаче зн = 0,4 - 0,7; при большой подаче зн = 0,7 - 0,9.

Принимая зпер = 1 и зн = 0,6 (для центробежного насоса средней производительности), найдем мощность на валу двигателя по формуле:

кВт

По Приложению 1 устанавливаем, что заданным подаче и напору больше всего соответствует центробежный насос марки Х 45/54, для которого в оптимальных условиях работы Q = 1,25 • 10-2 м3/с; Н = 42 м; зн = 0,6. Насос обеспечен электродвигателем АО2 - 62 - 2 номинальной мощностью Nн = 13 кВт, здв = 0,88. Частота вращения вала n = 48,3 с-1.

г) Определение предельной высоты всасывания.

Рассчитаем запас напора на кавитацию по формуле:

(35)

где n - частота вращения вала.

м

Устанавливая насос в технологической схеме, следует учитывать, что высота всасывания Нвс не может быть больше следующей величины:

(36)

где Рt - давление насыщенного пара перекачиваемой жидкости при температуре 20 °С Рt = 0,0238 • 9,81 • 104 = 2,35 • 103 Па. Примем, что атмосферное давление равно Р1 = 105 Па, а диаметр всасывающего патрубка равен диаметру трубопровода.

м

Таким образом, насос может быть установлен на высоте 4,5 м над уровнем жидкости в ёмкости. [1]

7. Расчёт теплообменника-подогревателя

Необходимо рассчитать и подобрать нормализованный вариант конструкции кожухотрубчатого испарителя с получением G2 = 0,83 кг/с паров водного раствора Na2SO4w, кипящего при небольшом избыточном давлении и температуре t2 = 125,26 °С. Na2SO4 имеет следующие физико-химические характеристики:

с2 = 1071 кг/м3;

сп = 1,243 кг/м3;

м2 = 0,26 • 10-3 Па • с;

л2 = 0,342 Вт/(м • К);

у2 = 0,0766 Н/м;

с2 = 3855 Дж/(кг • К);

r2 = 2198 • 103 Дж/кг

В качестве теплоносителя будет использован насыщенный водяной пар давлением 0,4 МПа. Удельная теплота конденсации r1 = 2135 • 103 Дж/кг, t1 = 143,5 °С. Физико-химические характеристики конденсата при температуре конденсации: с1 = 923 кг/м3; м1 = 0,192 • 10-3 Па • с; л1 = 0,685 Вт/(м • К).

Для определения коэффициента теплоотдачи от пара, конденсирующегося на наружной поверхности труб высотой Н, используем формулу:

(37)

где для вертикальных поверхностей а = 1,21 м, l = Н м.

Коэффициент теплоотдачи к кипящей в трубах жидкости определим по формуле:

Для определения поверхности теплопередачи и выбора конкретного варианта конструкции теплообменного аппарата необходимо определить коэффициент теплопередачи. Его можно рассчитать с помощью уравнения аддитивности термических сопротивлений на пути теплового потока:

Подставляя сюда выражения для б1 и б2 можно получить одно уравнение относительно неизвестного удельного теплового потока:

(38)

Решив это уравнение относительно q каким-либо численным или графическим методом, можно определить требуемую поверхность .

1) Определение тепловой нагрузки аппарата:

Q = G • r (39)

Уравнение справедливо при конденсации насыщенных паров без охлаждения конденсата и при кипении.

Q = 0,83 2198 103 = 1824340 Вт

2) Определение расхода греющего пара из уравнения теплового баланса:

кг/с

3) Средняя разность температур:

Дtср = 143,5 - 125,26 = 18,24 °С

4) В соответствии с Приложением 2 примем ориентировочное значение коэффициента теплопередачи Кор = 800 Вт/(м2 • К). Тогда ориентировочное значение требуемой поверхности составит:

м2

В соответствии с Приложением 3, поверхность, близкую к ориентировочной могут иметь теплообменники с высотой труб Н = 4,0 м и диаметром кожуха D = 800 мм (F = 127 м2) или с высотой труб Н = 6,0 м и диаметром кожуха D = 600 мм (F = 126 м2).

5) Уточнённый расчёт поверхности теплопередачи.

Примем в качестве первого варианта теплообменник с высотой труб Н = 4,0 м, диаметром кожуха D = 1000 мм и поверхностью теплопередачи F = 127 м2. Выполним его уточнённый расчёт, решив уравнение (34).

В качестве первого приближения примем ориентировочное значение удельной тепловой нагрузки:

Вт/м2

Для определения f(q1) необходимо рассчитать коэффициенты А и В:

Толщина труб 2,0 мм, материал - нержавеющая сталь; лст = 17,5 Вт/(м • К). Сумма термических сопротивлений стенки и загрязнений (термическим сопротивлением со стороны греющего пара можно пренебречь) равна:

м2 • К/Вт

Тогда

Примем второе значение q2 = 20000 Вт/м2 получим:

Третье, уточнённое значение q3, определим в точке пересечения с осью абсцисс хорды, проведённой из точки 1 в точку 2 на графике зависимости f(q) от q:

(40)

Получим

Вт/м2

Такую точность определения корня уравнения (34) можно считать достаточной, и q = 20235,4 Вт/м2 можно считать истинной удельной тепловой нагрузкой. Тогда требуемая поверхность составит:

м2

В выбранном теплообменнике запас поверхности составит:

%

Масса аппарата: М1 = 3950 кг (см. Приложение 4).

Вариант 2. рассчитаем также теплообменник с высотой труб 6,0 м, диаметром кожуха 600 мм и номинальной поверхностью 126 м2.

Для этого уточним значение коэффициента В:

Пусть Вт/м2.

Тогда

Пусть q2 = 25000 Вт/м2.

Тогда

Получим

Вт/м2

Требуемая поверхность: м2

В выбранном теплообменнике запас поверхности составляет:

%

Масса аппарата: М2 = 3130 кг (см. Приложение 4).

У последнего аппарата масса значительно меньше, поэтому выбираем его.

Критическую удельную тепловую нагрузку, при которой пузырьковое кипение переходит в плёночное, а коэффициент теплоотдачи принимает максимальное значение, можно оценить по формуле, справедливой для кипения в большом объёме:

(41)

кВт/м2

Следовательно, в рассчитанных аппаратах режим кипения будет пузырьковым. Коэффициенты теплоотдачи и теплопередачи в выбранном варианте соответственно равны:

Вт/(м2 • К)

Вт/(м2 • К)

Вт/(м2 • К)

Таким образом, был выбран теплообменник-испаритель со следующими характеристиками [1]:

Таблица 18 Характеристики теплообменника-испарителя

Диаметр кожуха, мм

Диаметр труб, мм

Общее число труб, шт

Поверхность теплообмена (в м3) при длине труб 6,0 м

Масса, кг

600

25Ч2

334

126

3130

8. Расчёт вспомогательного оборудования выпарной установки

8.1 Расчёт конденсатоотводчиков

Для отвода конденсата, образующегося при работе теплообменных аппаратов, в зависимости от давления пара, применяют различные виды устройств. При давлении на выходе не менее 0,1 МПа и противодавлении не более 50 % давления на выходе устойчиво работают термодинамические конденсатоотводчики. При начальном давлении не менее 0,06 Мпа рекомендуется устанавливать конденсатоотводчики поплавковые муфтовые, которые надёжно работают при перепаде давления более 0,05 МПа при постоянном и переменных режимах расходования пара. При ?Р от 0,03 до 1,3 МПа для автоматического удаления конденсата из различных пароприемников пригодны конденсационные горшки с открытым поплавком. При давлении пара до 0,03 МПа для отвода конденсата могут применяться гидравлические затворы (петли).

8.1.1 Расчёт конденсатоотводчиков для первого корпуса выпарной установки

Из условия видно, что Рг = 0,4 МПа, значит, применим термодинамические конденсатоотводчики.

1) Расчётное количество конденсата после выпарного аппарата:

G = 1,2 • Gг = 1,2 • 0,83 = 0,996 кг/с или 3,59 т/ч.

2) Давление пара перед конденсатоотводчиком.

P = 0,95 • Pг = 0,95 • 0,4 = 0,38 МПа или 3,87 атм.

3) Давление пара после конденсатоотводчика.

P' = 0,01 МПа или 0,1 атм, т.к. у нас свободный слив конденсата.

4) Условная пропускная способность K•Vy.

(42)

?P = P - P' = 0,38 - 0,01 = 0,379 МПа или 3,77 атм.

Тогда:

т/ч

Подходящей условной пропускной способностью конденсатоотводчика 45ч12нж является 0,9 т/ч, поэтому установим 4 конденсатоотводчика с такой пропускной способностью.

Размеры данного конденсатоотводчика: Dy = 25 мм, L = 100 мм, L1 = 12 мм, Hmax = 53 мм, Н1 = 30 мм, S = 40мм, S1 = 21 мм, D0 = 60 мм.

8.1.2 Расчёт конденсатоотводчиков для второго корпуса выпарной установки

Давление греющего пара во втором корпусе - 0,277 МПа, значит, используем термодинамические конденсатоотводчики.

1) Расчётное количество конденсата после выпарного аппарата:

G = 1,2 • Gг = 1,2 • 0,63 = 0,756 кг/с или 2,72 т/ч.

2) Давление пара перед конденсатоотводчиком.

P = 0,95 • Pг = 0,95 • 0,277 = 0,263 МПа или 2,682 атм.

3) Давление пара после конденсатоотводчика.

P' = 0,01 МПа или 0,1 атм, т.к. у нас свободный слив конденсата.

4) Условная пропускная способность K•Vy.

?P = P - P' = 0,263 - 0,01 = 0,253 МПа или 2,582 атм.

Тогда: т/ч

Подходящей условной пропускной способностью конденсатоотводчика 45ч12нж является 0,9 т/ч, поэтому установим 4 конденсатоотводчика с такой пропускной способностью.

8.1.3 Расчёт конденсатоотводчиков для третьего корпуса выпарной установки

Давление греющего пара во втором корпусе - 0,094 МПа, значит используем поплавковый муфтовый конденсатоотводчик.

1) Расчётное количество конденсата после выпарного аппарата.

G = 1,2 • Gг = 1,2 • 0,43 = 0,52 кг/с или 1,86 т/ч.

2) Давление пара перед конденсатоотводчиком.

P = 0,95 • Pг = 0,95 • 0,153 = 0,145 МПа или 1,48 атм.

3) Давление пара после конденсатоотводчика.

P' = 0,01 МПа или 0,1 атм, т.к. у нас свободный слив конденсата.

4) Перепад давления на конденсатоотводчике.

?P = P - P' = 0,153 - 0,01 = 0,143 МПа или 1,38 атм.

5)Условная пропускная способность K•Vy.

=> (43)

с = 1323 кг/м3 или 1,323 г/см3.

т/ч

Выбираем конденсатоотводчик типа 45ч12нж с KV = 0,9 т/ч - 4 шт.

Размеры данного конденсатоотводчика: Dy = 25 мм, L = 100 мм, L1 = 12 мм, Hmax = 53 мм, Н1 = 30 мм, S = 40мм, S1 = 21 мм, D0 = 60 мм.

8.2 Расчёт ёмкостей

Необходимо рассчитать две ёмкости: для начального и упаренного раствора.

Вычислим объём ёмкости для исходного (начального) раствора.

(44)

где ф - время, ф = 4 часа; с - начальная плотность Na2SO4 при 20 °С, с = 1071 кг/м3.

м3

По ГОСТ 9931 - 79 (С. 334 [10]) выбираем ёмкость ГЭЭ, исполнение 2 - горизонтальная с эллиптическим днищем и крышкой. V = 63 м3, Dв = 3000 мм; l = 7920 мм; Fв = 94,1 м2.

Рассчитаем ёмкость для упаренного раствора:

(45)

кг/ч

м3

По ГОСТ 9931 - 79 выбираем ёмкость ГЭЭ, исполнение 2 - горизонтальная с эллиптическим днищем и крышкой. V = 12,5 м3, Dв = 1800 мм; l = 4315 мм; Fв = 31,4 м2.

Ёмкости выбираются из расчёта 4 часа непрерывной работы при отсутствии поступления раствора + 20 % - запас на переполнение ёмкости.

9. Механические расчёты основных узлов и деталей выпарного аппарата

Одним из определяющих параметров при расчётах на прочность узлов и деталей химических аппаратов, работающих под избыточным давлением, является давление среды в аппарате. Расчёт аппарата на прочность производится для рабочего давления при нормальном протекании технологического процесса.

Другим важным параметром при расчёте на прочность узлов и деталей является их температура. При температуре среды в аппарате ниже 250 °С расчётная температура стенки и деталей принимается равной максимально возможной при эксплуатации температуре среды.

Расчёту на прочность предшествует выбор конструкционного материала в зависимости от необходимой химической стойкости, требуемой прочности, дефицитности и стоимости материала и других факторов. Прочностные характеристики конструкционного материала при расчётной температуре определяются допускаемыми напряжениями в узлах и деталях.

Разрушающее действие среды на материал учитывается введением прибавки Ск к номинальной толщине детали:

Ск = П • фа = 10 • 0,1 = 1 мм (46)

где фа - амортизационный срок службы аппарата (можно принять фа = 10 лет); П - коррозионная проницаемость, мм/год. При отсутствии данных о проницаемости принимают П = 0,1 мм/год.

9.1 Расчёт толщины обечаек

Главным составным элементом корпуса выпарного аппарата является обечайка. В химическом аппаратостроении наиболее распространены цилиндрические обечайки, отличающиеся простотой изготовления, рациональным расходом материала и достаточной прочностью. Цилиндрические обечайки из стали, сплавов из основы цветных металлов и других пластичных материалов при избыточном давлении среды в аппарате до 10 МПа изготовляют вальцовкой листов с последующей сваркой стыков.

Необходимо определить толщину стенки сварной цилиндрической обечайки корпуса выпарного аппарата, работающего под внутренним избыточным давлением Р = 0,6 МПа, при следующих данных: материал обечайки - сталь марки Х18Н10Т, проницаемость П ? 0,1 мм/год, запас на коррозию Ск = 1 мм; среда - насыщенный водяной пар при абсолютном давлении 0,4 МПа и температуре 143,5 °С. Внутренний диаметр обечайки Dв = 1,8 м, отверстия в обечайке укреплённые, сварной шов стыковой двухсторонний (цш = 0,95). Допускаемое напряжение для стали марки 12Х18Н9Т при 150 °С определим по графику: уд = 236 МН/м2.

Толщина обечайки с учётом запаса на коррозию и округлением рассчитывается по формуле:

(47)

где D - наружный или внутренний диаметр обечайки, м; уд - допускаемое напряжение на растяжение для материала обечайки, МН/м2. Коэффициент ц учитывает ослабление обечайки из-за сварного шва и наличия неукреплённых отверстий. При отсутствии неукреплённых отверстий ц = цш, причём для стальных обечаек принимают цш =0,7 - 1,0, в зависимости от типа сварного шва. Прибавка толщины с учётом коррозии Ск определяется формулой (41), а полученное суммарное значение толщины округляется до ближайшего нормализованного значения добавлением Сокр.

м (48)

Границей применимости формулы (42) является условие:

(49)

То есть условие выполняется.

Допускаемое избыточное давление в обечайке можно определить из формулы (42):

МПа [1].

9.2 Расчёт толщины днищ

Составными элементами корпусов выпарных аппаратов являются днища, которые обычно изготовляются из того же материала, что и обечайки, и привариваются к ней. Днище неразъёмно ограничивает корпус вертикального аппарата снизу и сверху. Форма днища может быть эллиптической, сферической, конической и плоской. Наиболее рациональной формой днищ для цилиндрических аппаратов является эллиптическая. Эллиптические днища изготовляются из листового проката штамповкой и могут использоваться в аппаратах с избыточным давлением до 10 МПа толщину стандартных эллиптических днищ, работающих под внутренним избыточным давлением Р, рассчитывают по формуле (42), которая справедлива при условии:

(50)

Необходимо определить толщину стенки верхнего стандартного отбортованного эллиптического днища для обечайки выпарного аппарата, рассчитанной выше. Днище сварное (цш = 0,95); в нём имеется центрально расположенное неукреплённое отверстие dо = 0,2 м. Коэффициент ослабления днища отверстием определяется по формуле:

(51)

Поскольку цо < цш, примем ц = цо = 0,889.

Толщина днища равна:

м

То есть условие выполняется.

Конические днища применяют в тех случаях, когда это обусловлено технологическим процессом, исключающим применение эллиптических или плоских днищ, например, при необходимости непрерывного или периодического удаления вязких жидкостей, суспензий, сыпучих или кусковых материалов через нижний штуцер. Угол конуса при вершине в днищах обычно принимают равным 60° или 90°.

Расчёт нижнего конического днища с торроидальным переходом (отбортовкой), нагруженных внутренним избыточным давлением, рассчитывают по формуле:

(52)

Угол б = 45° - половина угла при вершине конуса cosб = 0,71.

м

Эта формула справедлива при условии:

(53)

, , следовательно условие выполняется.

Допускаемое избыточное давление для конических днищ определяется из формулы (46):

МПа [1].

9.3 Определение фланцевых соединений и крышек

Среди разъёмных неподвижных соединений в химическом аппаратостроении наибольшее распространение получили фланцевые соединения. При конструирования аппаратов следует применять стандартные и нормализованные фланцы, например, по ГОСТ 12815 - 67 - ГОСТ 12839 - 67, ГОСТ 1233 - 67 - ГОСТ 1235 - 67. Конструкция фланцевого соединения принимается в зависимости от рабочих параметров аппарата: при давлении Р ? 2,5 МПа, температуре t ? 300 °С и числе циклов нагружения за время эксплуатации до 2000 применяются плоские приварные фланцы. Во фланцевых соединениях при Р ? 2,5 МПа, t ? 300 °С применяются болты.

Таблица 19 Основные размеры фланцевого соединения [10]

D, мм

Ру, Мпа

Размеры, мм

Число отверстий z

Dц

DБ

D1

D2

D3

h

a

a1

s

d

1800

0,6

1930

1890

1848

1860

1845

60

17,5

14

10

23

68

Болты подбираются по ГОСТ 7798 - 70 из стали 12Х18Н10Т [10].

9.4 Расчет аппарата на ветровую нагрузку

Расчетом проверяется прочность и устойчивость аппарата, устанавливаемого на открытой площадке при действии на него ветра. В частности, определяются размеры наиболее ответственного узла аппарата - опоры и фундаментных болтов, которыми крепится опора к фундаменту.

При отношении высоты аппарата к его диаметру H/D >5 (H/D=6,4) аппараты оснащают цилиндрическими или коническими юбочными опорами.

Аппарат по высоте условно разбивается на участки -- произвольно, но не более чем через 10 м. Сила тяжести каждого участка принимается сосредоточенной в середине участка. Ветровая нагрузка, равномерно распределенная по высоте аппарата, заменяется сосредоточенными силами, приложенными в тех же точках, что и сила тяжести участков.

Рис. 12 Схема разбивки аппарата на участки при расчете его на ветровуюнагрузку.

Нормативный скоростной напор ветра q0 на высоте от поверхности земли до x=10 м для разных географических районов России различен, он принимается по таблице 7, наш город находиться в районе 2.

Для высот более 10 м нормативный скоростной напор принимается с поправочным коэффициентом и, величина которого определяется по графику на рис. 7.

Рис.7 График для определения поправочного коэффициента на увеличение скоростного напора ветра для высот более 10.

Таблица 20 Нормативный скоростной напор ветра q0 на высоте от поверхности земли до 10 м для разных географических районов Росси по ОН 26-01 -13- 65/Н1039-65

Географический район России

1

2

3

4

5

6

7

q, Па

230

300

380

480

600

790

850

Т.к. высота аппарата 13 м , то разбиваем её на 4 равных уровня по 3,25 м и определяем скоростной напор на каждом из них по формуле:

q= и· q0·К (54)

где К - аэродинамический коэффициент (для цилиндрического корпуса К=0,6).

при x1=3,25 м => 1q= и1· q0·К =1·300•0,6=180 Па;

при x2=6,5 м => q2= и2· q0·К =300·0,6=180 Па;

при x3=9,75 м => q33·q0·К =1·300·0,6=180 Па;

при x4=13 м => q44· q0·К =1,1·300 ·0,6=198 Па.

Кроме учета изменения нормативного скоростного напора ветра в зависимости от высоты аппарата при расчете на ветровую нагрузку, учитываются также динамическое воздействие на аппарат возможных порывов ветра, колебания аппарата и явления резонанса, возникающего в том случае, когда при определенных скоростях ветра частота порывов его совпадает с частотой собственных колебаний аппарата. Для этого при определении расчетной нагрузки от ветра вводится коэффициент увеличения скоростного напора:

(55)

где - коэффициент динамичности, определяемый по графику на рис.8, - коэффициент пульсации скоростного напора ветра, определяемый по графику на рис. 9.

Рис. 8. График для определения коэффициента динамичности

Период собственных колебаний аппарата Т в секундах определяется по формуле:

, (56)

где Н - высота аппарат, м; Еt - модуль нормальной упругости материала корпуса аппарата при рабочей температуре, МПа; Еt=2,00·105 МПа; J - момент инерции верхнего поперечного сечения корпуса аппарата относительно центральной оси, м4; g - ускорение силы тяжести, м/с2; G - сила тяжести всего аппарата, МН.

Рис. 9. График для определения коэффициента пульсации скоростного напора ветра.

(57)

где плотность материала стали сХ18Н10Т = 7880 кг/м3.

Подставляем найденные значения:

Тогда =1,5 по графику.

Далее находим:

;

;

;

.

Далее определяем силу, действующую на i-й участок аппарата от ветрового напора:

(58)

;

;

;

.

Далее определяем изгибающий момент от ветровой нагрузки относительно основания аппарата:

Изгибающий момент от действия ветровой нагрузки на одну площадку, расположенную на высоте хi - от основания аппарата, Мвni определяется по формуле

(59)

где xni - расстояние от низа i-ou площадки до основания аппарата в м; - сумма проекции всех элементов площадки, расположенных вне зоны аэродинамической тени на вертикальную плоскость в м2:

;

;

где n - число площадок.

Общий изгибающий момент от ветровой нагрузки найдем по формуле:

9.5 Расчёт опор аппарата

Расчет опор [9, 10], предназначенных для цилиндрических колонных аппаратов производят исходя из ветровой и сейсмической нагрузок. В таких опорах расчётом определяются: размеры рёбер, сварные или паянные швы и местные напряжения в цилиндрических стенках аппарата в местах присоединения к ним опор.

Отношение вылета к высоте ребра l/h рекомендуется принимать равным 0,5.

Расчётная толщина ребра определяется по формуле:

(48)

где G - максимальный вес аппарата, МН (обычно бывает во время испытания, когда аппарат заполнен водой); n - число лап (не менее двух); z- число рёбер в одной лапе (1 или 2); ус.д - допускаемое напряжение на сжатие (можно принять равным 100 МН/м2); l - вылет опоры, м. Значение коэффициента k рекомендуется предварительно принять k = 0,6. Если при этом д получится не менее l/13, то расчётная величина д является окончательной. В противном случае значение коэффициента k необходимо уменьшить с пересчётом толщины д и последующей проверкой l/д по графику.

Определим основные размеры опоры (лапы) для вертикального цилиндрического аппарата, подвешенного на четырёх лапах по следующим данным: максимальный вес аппарата G = 0,085 МН, число лап n = 4; конструкция лап - двухрёберная, z = 2; вылет лапы l = 0,2 м; Ск = 1 мм; диаметр корпуса Dв = 1,8 м.

Пренебрегаем отношением вылета лапы к высоте ребра l/h = 0,5.

Тогда м.

Толщину ребра определим по формуле (48):

м

Отношение > д = 0,004, поэтому уменьшаем значение k до 0,27, при котором по графику .

Пересчитываем д:

м > м.

Принимаем толщину ребра д = 10 мм.

Общая длина сварного шва определяется по формуле:

м (49)

Прочность сварного шва проверим по формуле:

(50)

где Lш - общая длина сварных швов, м; hш - катет сварного шва, hш = 0,008 м; фш.с. - допускаемое напряжение материала на срез, фш.с. = 80 МН/м2.

То есть прочность обеспечена.

Определим опоры аппарата. При определении нагрузки на подвесную опорную лапу все действующие на аппарат нагрузки приводят к осевой силе Р, определяемой максимальным весом аппарата при эксплуатации или при гидравлических испытаниях, и моменту М, зависящему от конструкции аппарата, и т. д. При учебных расчётах момент М можно принять равным нулю. Нагрузку на одну опору рассчитывают по соотношению:

(51)

Если М = 0, следовательно , значит ,

где л1 - коэффициент, зависящий от числа опор z. Примем z = 4, значит л1 = 2.

Рассчитаем осевую силу Р = m • g. Масса аппарата при гидравлических испытаниях равна:

m = mап + mводы (52)

mап = 8500 кг; mводы = V • с, где V = УVсост.ч..

Зная технические характеристики аппарата найдём:

м3

м3

V = 3,14 + 20,57 + 2,88 = 26,59 м3

mводы = V • с = 26,59 • 1000 = 26590 кг

m = 13000 + 26590 = 39590 кг

Р = m • g = 39590 • 9,81 = 388378 Н

кН

По ОСТ 26 - 665 - 79 [10] выбираем опору (тип 2) со следующими характеристиками:

Q, kH

а

а1

а2

в

в1

в2

с

с1

h

h1

s1

k

k1

d

dб

250

360

540

300

800

360

350

65

240

940

40

24

75

220

42

-

Заключение

Целью данного курсового проекта являлся расчет выпарной установки непрерывного действия для выпаривания растворяя сульфата натрия от начальной концентрации соли 6 % (масс.) до конечной концентрации 30% (масс.).

В ходе проектирования произведены следующие расчеты: составление и описание технологической схемы выпарной установки, расчет основного аппарата, подбор вспомогательного оборудования (теплообменной и насосной аппаратуры), а также был произведен расчет на прочность.

Маркировку выбранного оборудования сведем в таблицу 21.

Таблица 21 Маркировка оборудования

Наименование

Марка

1

Насос центробежный

Х 45/54

2

Вакуум-насос

ВВН-3

3

Теплообменник

600 ТНВ-8-М1

О/20-6-4 гр. Б

4

Конденсатоотводчик

45ч12нж

5

Ёмкость начального раствора

ГЭЭ1-1-63-0,6

6

Ёмкость упаренного раствора

ГЭЭ1-1-12,5-0,6

7

Обечайка

Х 18Н10Т

8

Барометрический конденсатор

КБ-2-600

9

Опора

2-1800-25-125-800

Произведенный анализ работы показал, что основной процесс теплопередачи сосредоточен в греющей камере выпарного аппарата. Интенсивность теплопередачи повышается в аппаратах с вынесенной циркуляционной трубой, т. к. раствор в ней не кипит и парожидкостная смесь не образуется. В них, по сравнению с аппаратами с центральной циркуляционной трубой, кратность циркуляции и коэффициент теплоотдачи выше. Еще большей эффективности можно добиться, используя аппараты с вынесенной греющей камерой. В них вследствие увеличенного гидростатического столба жидкости раствор кипит не в греющих трубах, а в трубе вскипания из-за перехода в зону пониженного гидростатического давления. Таким образом, уменьшается отложение накипи на теплообменной поверхности греющих труб и увеличивается коэффициент теплопередачи.

В итоге был получен следующий результат: выпарной аппарат с естественной циркуляцией и вынесенной греющей камерой общей высотой 13 м, диаметром сепаратора 1,8 м и диаметром греющей камеры 1 м.

Библиографический список

1. Дытнерский, Ю. И. Основные процессы и аппараты химической технологии. Пособие по проектированию [текст] / Ю. И. Дытнерский, - М.: Химия, 1983, 270 с.

2. Павлов, К. Ф. Примеры и задачи по курсу процессы и аппараты химической технологии [текст] / К. Ф. Павлов, П. Г. Романков, А. А. Носков, - М.: Химия, 1970, 624 с.

3. Справочник химика, т III, М.: Химия, 1964, 1008 с.

4. Справочник химика, т V, М.: Химия, 1968, 976 с.

5. Воробьёва, Г. Я. Коррозионная стойкость материалов в агрессивных средах химических производств [текст] / Г. Я. Воробьёва, М.: Химия, 1975, 816 с.

6. Касаткин, А. Г. Основные процессы и аппараты химической технологии [текст] / А. Г. Касаткин, М.: Химия, 1973, 750 с.

7. Викторов, М. М. Методы вычисления физико-химических величин и прикладные расчёты [текст] / М. М. Викторов, Л.: Химия, 1977, 360 с.

8. Каталог УКРНИИХИММАШа. Выпарные аппараты вертикальные трубчатые общего назначения. М.: ЦИНТИХИМНЕФТЕМАШ, 1979, 38 с.

9. Лащинский, А. А. Основы конструирования и расчёта химической аппаратуры [текст] / А. А. Лащинский, А. Р. Толчинский, Л.: Машиностроение, 1970, 752 с.

10. Лащинский, А. А. Конструирование сварочных химических аппаратов [текст] / А. А. Лащинский, Л.: Машиностроение, 1981, 382 с.

Приложения

Приложение 1

Основные характеристики центробежных насосов, используемых в химической промышленности


Подобные документы

  • Процесс выпаривания. Описание технологической схемы выпарной установки, ее преимущества и недостатки. Теплотехнический и механический расчёт выпарных аппаратов и их вспомогательного оборудования. Узел подогрева исходного раствора, поддержания вакуума.

    курсовая работа [45,3 K], добавлен 04.01.2009

  • Технологический, полный тепловой расчет однокорпусной выпарной установки непрерывного действия для выпаривания водного раствора нитрата калия. Чертеж схемы подогревателя начального раствора. Определение температур и давлений в узловых точках аппарата.

    курсовая работа [404,1 K], добавлен 29.10.2011

  • Технологические схемы процесса выпаривания. Конструкции выпарных аппаратов. Принцип действия проектируемой установки. Определение поверхности теплопередачи. Расчет толщины тепловой изоляции. Определение гидравлического сопротивления теплообменника.

    курсовая работа [1,4 M], добавлен 29.11.2010

  • Схема двухкорпусной выпарной установки. Расчет подогревателя. Количество передаваемого тепла от конденсатора к воде. Расход греющего пара. Подготовка к расчету коэффициента теплопередачи. Расчет коэффициента теплопередачи, поверхности теплообмена.

    курсовая работа [93,7 K], добавлен 04.01.2009

  • Проект однокорпусной выпарной установки непрерывного действия для выпаривания раствора хлорида аммония. Материальный баланс процесса выпаривания. Определение температур, давлений в узловых точках технологической схемы. Тепловой баланс выпарного аппарата.

    курсовая работа [346,4 K], добавлен 19.01.2011

  • Расчет выпарной установки для концентрирования водного раствора кальциевой соли соляной кислоты. Описание технологических схем выпарных установок. Расчет конструкции установки, концентраций упариваемого раствора, выбор барометрического конденсатора.

    курсовая работа [1,6 M], добавлен 03.11.2013

  • Технологический расчет выпарного аппарата. Температуры кипения растворов. Полезная разность температур. Определение тепловых нагрузок. Расчет коэффициентов теплопередачи. Толщина тепловой изоляции выпарной установки. Высота барометрической трубы.

    курсовая работа [393,9 K], добавлен 30.10.2011

  • Расчет установки для непрерывного выпаривания раствора нитрата калия, для непрерывного концентрирования раствора нитрата аммония в одном корпусе. Определение температур и давлений. Расчет барометрического конденсатора и производительности вакуум насоса.

    курсовая работа [529,5 K], добавлен 15.12.2012

  • Выбор аппарата и определение диаметра штуцеров. Степень концентрирования на ступени обратного осмоса. Концентрация упариваемого раствора. Расчет поверхности мембраны. Секционирование аппаратов в установке. Расчет трехкорпусной выпарной установки.

    курсовая работа [814,9 K], добавлен 06.01.2015

  • Описание технологической схемы производства и автоматизация технологического процесса. Материальный баланс установки. Организация основного и вспомогательного производства. Расчет материального баланса технологической установки производства метанола.

    дипломная работа [362,8 K], добавлен 18.05.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.