Химические источники тока

Гальванический элемент Даниэль-Якоби. Стандартный водородный потенциал. Распространенные типы гальванических элементов. Никель-металлогидридные аккумуляторные батареи и свинцовые аккумуляторы. Сравнительная характеристика литиевых источников тока.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 27.11.2010
Размер файла 2,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Напряжение разомкнутой цепи элемента Li/SO2 составляет 2,95В. Элемент Li/SO2 характеризуют высокое значение рабочего напряжения и хорошая стабильность разрядных кривых. Токообразующая реакция:

2Li+2SO2 > Li2S2O4

Одна из особенностей элемента Li/SO2 - его способность эффективно разряжаться в широком диапазоне уровней мощности - от высоких

плотностей тока (например, при двухчасовом разряде) до медленных как прерывистых, так и непрерывных разрядов в течение длительного периода (более двух лет) со стабильным напряжением даже при предельных уровнях мощности.

Элементы Li/SO2 выделяются своими хорошими характеристиками сохранности даже при такой температуре, как 72°С.

Элемент Li/SO2 имеет относительно низкое внутреннее сопротивление по сравнению с обычными первичными элементами. После продолжительного срока хранения при повышенных

температурах элемент Li/SО2 может показать провал рабочего напряжения (свыше 2,0 В), когда он ставится на разряд, особенно при высоких токовых нагрузках и при низких температурах.

5.3.2 Источник тока на основе системы Li/SOCl2 (литий-тионилхлорид)

Элементы системы Li/SOCl2 обладают максимальными из всех разработанных в настоящее время литиевых источников тока значениями удельной энергии. Достигнутые значения уникальны: по весовой энергии >600 Вт*ч/кг, по объемной >1100Вт*ч/дм3. По удельной мощности они ниже элементов Li/SO2 и находятся на уровне 30 - 50 Вт/кг и 50 - 70 Вт/дм3, однако на порядок превышают элементы Li/(CF.x)n. В то же время элементы Li/SOCl2, конструктивно выполненные в резервном варианте, могут развивать на порядок большие мощности (до 1кВт/кг и более). Это связано с особенностями формирования поверхностной пленки на литиевом электроде.

Элементы Li/SOCl2 имеют высокое разрядное напряжение (от 3 до 5В), стабильную разрядную характеристику и отсутствие газовыделений при герметичном исполнении элементов. Температурный диапазон работоспособности так же, как у элементов Li/SO2, весьма широк от -70 до +70°С. Вопрос о сроке сохранности находится еще в стадии изучения. Прогнозируются сроки сохранности для залитых элементов более двух лет, для резервных более 10 лет.

В качестве электролита обычно используется раствор LiAlCl4 в чистом SOCl2 с концентрацией 1,8 моль/дм3. К недостаткам следует отнести высокую коррозионную активность тионилхлорида и его токсичность. Электрохимические реакции, протекающие при разряде элементов, сложны и до конца не изучены. Общепринятой в настоящее время является токообразующая реакция:

2SOCl2 + 4Li > 4LiClv + SO2 + Sv.

Тионилхлорид значительно агрессивнее других электролитов. При длительном контакте он разрушает полиолефины и каучуки, а также ряд обычно используемых металлов, например, медь и алюминий. Поэтому в качестве конструкционных материалов применяются никель и нержавеющая сталь, в качестве изоляционных пригодны лишь стекло и фторированные полиолефины, например, фторопласт.

При работе «вафельных» элементов в процессе разряда токами 0,5; 1,0 и 5,0 мА емкость составляет 440, 410 и 250 мА*ч. При хранении в течение 6 месяцев при температуре 45°С емкость «пуговичных» элементов не менялась. Емкость «вафельных» элементов при хранении в течение 1 месяца при температуре 45°С снизилась на 2% при разряде током 5 мА и на 5% при разряде током 20 мА, т. е. сохранность элементов вполне приемлемая. Элементы систем Li/SOCl2 существенно превосходят по емкости и удельной энергии при низких температурах элементы других электрохимических систем. Характерной особенностью их является провал напряжения в начальный момент разряда после длительного хранения, выраженного более сильно, чем у элементов системы Li/SO2. После длительного хранения, особенно при повышенных температурах, напряжение в момент включения элемента падает практически до нуля и затем в течение определенного времени (может составлять несколько минут) медленно достигает своего рабочего значения. Для исключения этого явления проводились исследования влиянию различных добавок в SOCl2 на сохранность элементов. Наибольший эффект дали добавки декахлорбората (Li2B10Cl10), обладающего большей кинетической стабильностью, чем тетрахлоралюминат лития. Добавки Li2B10Cl10 препятствуют росту пассивирующей пленки и практически исключают провал напряжения.

Эффект введения галогенов связан с повышением напряжения разомкнутой цепи до 3,9-4,0 В и повышением емкости элементов при разряде.

Кроме элементов с залитым жидким окислителем, рассматриваются создание Li/SOCl2 батарей резервного типа с длительной сохранностью. Среди других систем с апротонным электролитом системе литий-тионилхлорид уделяется наибольшее внимание как перспективной для применения в интенсивных режимах разряда мощных источниках тока.

5.3.3 Источник тока на основе системы Li/МnО2 (литий-диоксид марганца)

К достоинствам литий-диоксидмарганцевых элементов следует отнести возможность получения достаточно высокой удельной энергии (до 200 Вт*ч/кг) при сравнительной дешевизне элементов. Недостаток элементов - Особенностью литий-диоксидмарганцевых элементов является наличие твердофазного деполяризатора (в отличие от систем с жидкими окислителями, рассмотренными ранее). Диоксид марганца - сложное с точки зрения термодинамической устойчивости соединение, может существовать в нескольких видах с множеством переходных форм, трудно поддающихся определению. В настоящее время большинство исследователей придерживается предположения, что общей структурной единицей всех диоксидов марганца является октаэдр из иона Мn4+ и шести кислородных или гидроксильных ионов. В процессе электровосстановления диоксида марганца в решетку внедряется катион лития

Li +Mn4+O2 > Mn3+O2 (Li+)

В качестве электролита в литий-диоксидмарганцевых элементах наиболее часто используются органические растворители на основе г-бутиролактона (рис. 9), пропиленкарбоната (рис. 10) и др. с добавками перхлоратов или тетрахлоралюминатов лития.

Номинальное напряжение батареи литий-двуокись марганца с органическим электролитом составляет 3,0В. Батарея работоспособна в широком диапазоне температур, имеет незначительный саморазряд и длительную сохранность.

5.3.4 Источники тока на основе системы Li/(CFx)n (литий-полифторуглерод)

Состав активного материала катода этой системы выражается формулой (СFx). где х = 0,25 - 1,0. Сначала в элементах применяли вещество, внешне схожее с графитом, для которого х = 0,25. Впоследствии стали использовать вещество с х = 0,4 до х = 1,0, обеспечивающее теоретическую удельную энергию элементов в 1430 - 2190 Вт*ч/кг.

Достоинство литий-полифторуглеродных элементов высокая практическая удельная энергия (до 350 Вт*ч/кг и до 600 Вт*ч/дм3). К недостаткам относится малая удельная мощность и ограниченная работоспособность при низких температурах (до -20°С). Характеристики с понижением температуры ухудшаются. «Пуговичный» элемент емкостью 120 мА*ч при малых скоростях разряда (90 мкА) имеет удельные характеристики 590 кВт*ч/м3 и 300 Вт*ч/кг, за 6 месяцев хранения при комнатной температуре потерь емкости не замечено. Продолжительное хранение при повышенных температурах приводит к усилению эффекта провала напряжения в начале разряда, особенно при низких температурах. Отличием Li/(CFx)n-элементов, как и системы Li/MnO2, является наличие твердофазного окислителя - фторированного углерода. Макаренко и др. сконструировали элемент, не разбухающий в процессе разряда. Подобран компонентный состав катодной массы; заключающий в себе фторированный графит, сажу и фторопластовое связующее в соотношении по массе 10 : 1 : 1, и разработана технология его изготовления.

На основе ленточных электродов разработана рулонная конструкция элемента ФЛ-2.Увеличение разрядного тока с 5 до 50 мА не приводит к существенному уменьшению разрядной емкости, что указывает на большую величину коэффициента полезного использования полифторграфита. При этом разрядное напряжение уменьшилось в среднем на 0,2 В. При токе разряда более 50 мА разрядные характеристики ухудшаются. Например, при токе 300 мА элемент ФЛ-2 отдает только 70% номинальной емкости.

При создании элементов с катодом из фторуглерода решается вопрос о повышении срока сохранности элемента. Это достигается различными путями. Так, предлагается вводить в электролит полиакрилтриметиламмоний перхлорат, тетраметиламмоний перхлорат и т. п. в количестве 0,16 - 0,20 г на литр электролита. Длительность хранения элементов повышается также после хромирования или науглероживания токоотводов, изготовленных, из алюминия, титана, никеля. Таким образом, несмотря на выпуск серий микроэлементов ХИТ на основе системы литий-полифторуглерод еще не завершили стадию промышленного освоения, и дальнейшая работа по их усовершенствованию обещает привести к созданию мощных экономичных элементов.

5.3.5 Элемент на системе Li/Ag2CrO4 (литий-хромат серебра)

Этот элемент разрабатывался в основном фирмами Mallory и SAFT. В настоящее время изготавливают два конструктивных типа миниатюрного элемента - пуговичный и цилиндрический для питания кардиостимуляторов и электронных часов.

Сверхминиатюрный цилиндрический элемент разработан фирмой Mallory. ЭДС элемента 3,35В. Электролит - 1 М раствор LiClO4 в смеси пропиленкарбоната и диметоксиэтана (3 : 7) Элементы пуговичной конструкции диаметром 11,5 и высотой 5,3 мм при разряде с 3,0 до 2,0В токами 0,5 и 1,0 мА отдают соответственно 130 и 112 мА*ч. Удельная энергия элементов этого типа 620 - 730 Вт*ч/л. Элемент обладает хорошей сохранностью: выдержка элементов в течение года при 20 и 45°С и в течение месяца при 100°С не выявила каких-либо изменений.

Разработано и запатентовано большое число электролитов для данной системы на основе различных растворителей и их смесей, например, пропиленкарбоната, диоксана, тетрагидрофурана и др. Электропроводными добавками служат, перхлораты, тетрахлоралюминаты, тетрафторбораты, гексафторарсенаты, гексафторфосфаты щелочных металлов. С целью придания стойкости против коррозии катодную половину корпуса пуговичного элемента изготавливают из нержавеющей стали. При длительном хранении не наблюдалось следов коррозии. В настоящее время фирма SAFT выпускает элементы системы литий - хромат серебра пуговичной конструкции диаметром 11,4; 21,0 и 35,5 мм. Емкость при начальном напряжении 3,45 В составляла соответственно 120, 600 и 2400 мА*ч. При Разряде этого пуговичного элемента на сопротивление 30 кОм за 200 дней напряжение падает до 3,0 В. Удельная энергия при разряде до 3,0 В составляет 700 Вт*ч/л, срок службы - 6-8 лет.

5.3.6 Элемент на системе Li/CuS (литий-сульфид меди)

Система литий-сульфид меди с органическим электролитом имеет высокую теоретическую удельную энергию в 1050 Вт*ч/кг и 2470 кВт*ч/м3, ЭДС элемента равна 2,15 В. Сульфид меди достаточно электропроводен, что не требует добавления электропроводного вещества. В нашей стране серийно выпускался первичный элемент МЛ-2. Элемент на основе системы Li/CuS разработан французской фирмой SAFT. Катод в нем изготавливался из спеченной сернистой меди или пастообразной CuS со связующим из фторопласта. Электролитом служил 1 М раствор LiClO4 в смеси растворителей - тетрагидрофурана и диметоксиэтана в соотношении 7:3. ЭДС элемента равнялся 2,15 В. Токообразующая реакция:

2Li + 2CuS > Cu2S + Li2S,

2Li + Cu2S > 2Cu + Li2S

Сульфид меди нерастворим в электролите, и это исключает нежелательные процессы потери емкости вследствие переноса металлической меди на .анод и закорачивания элемента ее кристаллами.

В батарее набор электродов помещают в корпус с общим электролитом. Для предупреждения образования короткого замыкания подвод электролита к каждой паре электродов осуществлен через узкие каналы. В процессе работы батареи продукты разряда осаждаются в каналах, способствуя ограничению диффузии и повышению межэлементного сопротивления через электролит. В качестве электролита используют раствор перхлората лития в тетрагидрофуране с добавкой 1,3-диметоксиэтана.

5.4 Сравнительные характеристики литиевых источников тока

Удельная энергия. Сравнение разрядных характеристик литиевых источников тока Li/SOCl2, Li/SO2, Li/MnO2, Li/(CFx)n, Li/CuS в габаритах элементов размера С при токе 30 мА показывает, что по эффективности удельных электрических параметров их можно расположить в следующий ряд по степени их убывания: Li/SOCl2, Li/SO2, Li/MnO2, Li/(CFx)n. Разрядные характеристики тех же элементов, выполненных на традиционных, электрохимических системах с цинковым анодом и водными электролитам Zn/HgO, Zn/MnO2 (щелочные), Zn/МnО2 (солевые) существенно уступают ЛХИТ.

Как видим, литиевые источники существенно превосходят по электрическим характеристикам традиционные системы. Анализ рассмотренных литиевых систем.

Температурный диапазон. Изучение работоспособности литиевых источников тока в широком температурном интервале дает основание сделать вывод, что самым широким температурным диапазоном работы обладают элементы, изготовленные на системах Li/SOCl2 и Li/SO2, от -60°С до +70°С.

Элементы на системах Li/MnO2 и Li/(CFx)n при температурах ниже - 20°С существенно теряют свои характеристики по энергоотдаче.

6. Ионисторы (конденсаторы с двойным электрическим слоем)

Ионисторы - это полярные электрохимические приборы, которые способны запасать и в последствии высвобождать электрическую энергию посредством внутреннего перераспределения ионов электролита. По своим электрическим параметрам они занимают промежуточное положение между электролитическими конденсаторами большой емкости и аккумуляторами, но по принципу действия - отличаются как от тех, так и от других. Например, для накопления и высвобождения энергии в аккумуляторных батареях используются обратимые химические реакции, а накопление энергии в конденсаторах происходит путем образования заряда на его обкладках под действием приложенного электрического поля. В ионисторах же, происходят несколько иные процессы, которые и будут рассмотрены далее.

Обладая такими прекрасными параметрами, как очень большая емкость, некритичность к процессу зарядки и короткому замыканию, низкий ток утечки, широкий диапазон рабочих температур, и длительный срок службы, ионисторы сегодня уже используются в очень разных по назначению электронных устройствах. Ионисторы можно условно разделить на слаботочные и сильноточные. Слаботочные используются в основном как резервный источник энергии для поддержания схем памяти и настроек в цифровых устройствах, бытовой технике, компьютерах, и т. д... Сильноточные применяются как правило для облегчения работы аккумуляторных батарей при их работе с большими импульсными токами. Например запуск стартеров в автомобилях, работа в источниках бесперебойного питания, в системах управления электродвигателями, и т. д... В таких случаях экономится около 20 % емкости батареи.

Перспективно применение ионисторов и в энергосберегающих технологиях (солнечные батареи, ветрогенераторы), а также в разработке и производстве электромобилей, опытные образцы которых уже не существует.

На рисунке 11 показано устройство одного из нескольких видов ионисторов EPCOS. Внутри него, как и любого другого подобного прибора, находятся два электрода пропитанных электролитом, и разделенных между собой сепараторной перегородкой.

Работу ионистора в процессе накопления и высвобождения энергии схематично поясняет рисунок 3. Под действием приложенного электрического поля, ионы электролита внутри ионистора двигаются по направлению к электродам, имеющим противоположный заряд. Сосредоточившись на границе раздела между электродом и электролитом, и уравновесив таким образом противоположный заряд электрода, анионы и катионы формируют так называемый электрический двойной слой (см. рис. 3). Отсюда и происходит второе название ионисторов - конденсаторы с двойным электрическим слоем, или просто двухслойные конденсатор (double layer capasitor).

Одним из важных отличий двухслойных конденсаторов от электролитических конденсаторов является отсутствие собственного диэлектрика, как такового. Его функции выполняет сам сформированный двойной электрический слой, а сепараторная перегородка между электродами служит всего лишь для предотвращения замыкания между электродами. Такая перегородка должна иметь хорошие диэлектрические свойства, и в то же время легко пропускать ноны электролита.

7. Техника безопасности при работе с ХИТ

С кислотами и щелочами работают при приготовлении электролита. Кроме того, очень опасен гремучий газ, который образуется из смеси водорода, выделяющегося при зарядке аккумуляторов, и кислорода воздуха. Эта смесь при появлении искры может взорваться. Особенно опасно ее действие в закрытых, плохо вентилируемых помещениях

В аккумуляторных цехах при их постройке предусматривается максимальное соблюдение правил техники безопасности. Зарядное помещение отделено от других помещений по ремонту батарей, оно оборудовано мощной приточно-вытяжной вентиляцией, в нем отсутствуют аппараты или машины, при работе которых могла бы образоваться искра. В ремонтном помещении, где разбираются пластины, также имеется вентиляция. Для расплавления мастики и сушки ящиков служат специальные шкафы с вытяжкой. В ремонтном отделении имеется водопроводный кран для смывания электролита, питьевая сода для нейтрализации кислоты или борная кислота для нейтрализации щелочи

Нахождение кислотных и щелочных батарей в одном цехе недопустимо. Попадание щелочи в кислотные батареи и наоборот разрушает аккумуляторы. Поэтому нельзя пользоваться одной посудой, ареометрами, мерными трубками, грушами.

Людям, связанным с обслуживанием аккумуляторных батарей, необходимо соблюдать следующие правила личной безопасности:

v не курить в аккумуляторных помещениях или при работе с ХИТ;

v применять безопасные методы переноски кислоты и щелочи:

v работы, связанные с приготовлением электролита, разливом его по банкам и обслуживанием батарей, выполнять в защитных очках, фартуке и резиновых сапогах;

v не проводить никаких механических работ инструментом, не имеющим изолированной ручки (случайные короткие замыкания инструментом могут привести к взрыву),

v при разбивании твердой щелочи (для приготовления щелочного электролита) закрывать ее мешковиной, чтобы предотвратить попадание отлетевших кусочков на тело или одежду;

v поднимая и опуская щелочной аккумулятор в резиновом чехле, быть особенно внимательным, так как в чехле часто скапливается электролит и при резком опускании, установке на пол или стеллаж электролит фонтаном выбрасывается из-под аккумулятора и может попасть в лицо;

v нельзя производить какие-либо работы на батарее во время ее зарядки;

v нельзя влипать в кислоту воду -- это может привести к бурному разогреву и выбрасыванию электролита (в сосуд вначале заливают воду, затем кислоту).

8. Выводы

В результате курсовой работы, я рассмотрел принцип работы, классификацию и значение химических источников тока.

Подробно рассмотрев разновидность ХИТ, я убедился, что для конкретного случая надо использовать определенный тип аккумуляторов, при выборе которых следует рассматривать все условия эксплуатации и возможные аварийные ситуации.

При написании работы я пришел к таким выводам:

· что химические источники тока имеют огромное значение для развития науки, для освоения космоса, и развития общества;

· что наиболее перспективным типом ХИТ являются элементы с литиевым анодом и апротонными растворителями типа г-бутиролактона, пропиленкарбонат, ацетонитрил и т.п.;

· что кроме гальванических элементов существует другие, не менее перспективные источники тока, например ионисторы;

· что при использовании нескольких типов ХИТ, можно добиться надежной продолжительной работы аппаратов без доступа электроэнергии, получаемой от электростанций, например системы аккумулятор-ионистор, которая используется в источниках бесперебойного питания.

Значение химических источников тока очевидно, потому как мы используем их в повседневной жизни, трудно представить себе мп3-плееры, фотоаппараты, мобильные телефоны, карманные персональные компьютеры и т.п. подключенные к электросети, ограничивающие свободу человека. Современная наука стремится к созданию компактных и надежных приборов, сопровождающих человека в его жизни, химические источники тока играют в это немаловажную роль.

В результате этой работы, я ознакомил аудиторию с назначением и принципом работы ХИТ.

9. Приложение. Таблица стандартных электродных потенциалов


Подобные документы

  • Литиевые источники тока как новые, нетрадиционные химические источники тока. Актуальность, цель, научная новизна исследования процесса формования электродов. Практическая ценность непрерывного формования ленточных электродов, практические рекомендации.

    автореферат [25,0 K], добавлен 14.10.2009

  • Описание принципа действия гальванического элемента как устройства превращения энергии химической реакции в электрическую энергию. Электродный потенциал растворов и электрохимический ряд напряжения металлов. Электролиз растворов, аккумуляторы и батареи.

    презентация [1,1 M], добавлен 16.01.2015

  • История открытия химических источников тока, создания первых аккумуляторов. Принцип работы кислотной и щелочной аккумуляторной батареи. Устройство современных источников тока на основе NiCd, NiMH и Li-Ion технологий, перспективы их совершенствования.

    курсовая работа [309,0 K], добавлен 26.06.2014

  • Литиевые источники тока (ЛИТ). Теоретическая основа процессов гранулирования активных масс и формования ленточных положительных электродов ЛИТ. Требования к положительным электродам в виде тонких лент, пластин и дисков, состояние производства сегодня.

    автореферат [2,4 M], добавлен 22.03.2009

  • Разработка и исследование нетрадиционных химических источников тока с твердыми электролитами. Твердо-электролитные химические источники тока с натриевым и литиевым анодами. Проблемы, возникающие при разработке и эксплуатации электрохимических систем.

    автореферат [1,7 M], добавлен 22.03.2009

  • Электрод - система, состоящая из двух фаз, из которых твердая обладает электронной, а другая - жидкая - ионной проводимостью. Электродные процессы. Формула Нернста, редоксипереход. Гальванический элемент для измерения разности внутренних потенциалов.

    реферат [89,8 K], добавлен 24.01.2009

  • Литиевые аккумуляторы - перспективные химические источники тока. Разработка liCg электрода. Свойство углеграфитовых материалов образовывать фазы внедрения благодаря их слоистой структуре и протеканию реакции в межслоевых пространствах с высокой скоростью.

    автореферат [25,9 K], добавлен 23.03.2009

  • Сущность электролитической диссоциации. Основные законы электролиза как процессов, протекающих в растворе или расплаве электролита, при пропускании через него электрического тока. Проводимость электролитов и закон Ома для них. Химические источники тока.

    курсовая работа [911,2 K], добавлен 14.03.2012

  • Закономерности, связанные с превращением химической и электрической энергии, как предмет изучения электрохимии. Основные разделы дисциплины: электропроводность, электролиз, электродвижущие силы гальванических элементов. Особенности проведения электролиза.

    методичка [927,3 K], добавлен 18.09.2012

  • Области применения свинца. Его вред как экотоксиканта, который способен в различных формах загрязнять все три области биосферы. Источники свинцового загрязнения. Свойство свинца задерживать губительных для человека излучений. Свинцовые аккумуляторы.

    презентация [833,3 K], добавлен 03.03.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.