Разработка энергосберегающей технологии ректификации циклических углеводородов

Процесс ректификации играет ведущую роль среди процессов разделения промышленных смесей. В промышленности разделению подвергаются многокомпонентные смеси как простых зеотропных, так и сложных азеотропных смесей. Методы разделения неидеальных смесей.

Рубрика Химия
Вид дипломная работа
Язык русский
Дата добавления 04.01.2009
Размер файла 2,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рис.21. Технологические схемы разделения смеси циклогексан - бензол - этилбензол - анилин, содержащие сложные колонны с боковыми секциями.

Параметрическая оптимизация.

Определение оптимальных рабочих параметров традиционных схем экстрактивной ректификации азеотропной смеси циклогексан - бензол-этилбензол

Принципиальные технологические схемы экстрактивной ректификации смеси циклогексан-бензол-этилбензол с использованием анилина в качестве разделяющего агента приведены на рис.22, 23 и 24.

Схемы 1 и 2 относятся к типу структур, где экстрактивный агент подается в первую колонну, что позволяет на первом этапе выделить азеотропообразующий компонент.

Рассмотрим схему 1 подробнее. Разделяющий агент подается в верхнюю часть колонны экстрактивной ректификации К1, а исходная смесь - в середину колонны. В качестве дистиллята колонны К1 в отбирается практически чистый высококипящий компонент - циклогексан (при давлении 0,3 кг/см2 он является наиболее легколетучим). Кубовая жидкость, содержащая бензол, этилбензол и анилин, направляется на разделение в колонну К2, где бензол выделяется в виде верхнего продукта, а анилин и этилбензол - в виде нижнего. Затем кубовая жидкость направляется в колонну регенерации разделяющего агента К3, где в качестве дистиллята отбирается этилбензол, а кубовый продукт содержит анилин. Далее регенерированный ЭА, после добавления небольшого количества свежего анилина, вновь подается в верхнюю часть колонны К1.

Схема 2. В целом данная структура отличается от предыдущей только расположением колонны регенерации разделяющего агента. Экстрактивная колонна К1 работает аналогично предыдущей схеме 1, где в качестве дистиллата выделяется легкокипящий циклогексан. Вторая колонна работает в режиме второго заданного разделения, ее кубовым продуктом является анилин, направляемый далее на рецикл. В последней колонне происходит разделение бензола и этилбензола.

Рассмотрим схему 3. Эта структура относится к классу схем, где первоначально происходит разделение многокомпонентной смеси на зеотропную и азеотропную составляющие, каждая из которых далее делится соответствующими способами. Исходная смесь, содержащая ЦГ-Б-ЭБ подается в колонну разделения К1, здесь происходит отделение этилбензола в виде кубового продукта от азеотропной смеси циклогексан-бензол. Дистиллат колонны подается на дальнейшее разделение в традиционный комплекс экстрактивной ректификации, состоящий из двух колонн К2 (экстрактивная колонна) и К3 (колонна регенерации экстрактивного агента).

Рис.22. Схема 1 разделения смеси ЦГ-Б-ЭБ методом экстрактивной ректификации.

Рис.23. Схема 2 разделения смеси ЦГ-Б-ЭБ методом экстрактивной ректификации.

Рис.24. Схема 3 разделения смеси ЦГ-Б-ЭБ методом экстрактивной ректификации.

Для выявления наиболее предпочтительного, наименее энергоемкого варианта разделения нами была проведена параметрическая оптимизация рассмотренных схем по критерию минимальных энергозатрат на разделение. Кроме того, для выявления закономерности трансформации оптимальной структуры технологической схемы от состава питания исходной смеси нами было проведено сравнение энергозатрат каждой из схем при оптимальных параметрах работы. В целом нами были рассмотрены восемь исходных составов питания (ЦГ-Б-ЭБ: 10-80-10, 10-10-80, 80-10-10, 0,333-0,333-0,334, 10-57-33, 57-10-33, 57-33-10, 10-33-57,% мол), расположенных в различных областях концентрационного симплекса. Для каждой точки исходного состава был определен набор оптимальных параметров схем экстрактивной ректификации и выявлены области концентрационного симплекса, в каждой из которых оптимальна та или иная технологическая схема.

В данной главе представим процедуру оптимизации схем экстрактивной ректификации на примере одного из составов исходной смеси ЦГ - Б - ЭБ = 10 - 80 - 10%мол. Процедура поиска областей оптимальности будет описана ниже.

Рассмотрим подробно процедуру оптимизации схемы с предварительным фракционированием смеси (рис.24).

Первоначально мы определили оптимальную совокупность рабочих параметров колонны экстрактивной ректификации. Энергоемкость разделения в этой колонне при фиксированных количестве, составе и температуре исходной смеси и заданном качестве продуктовых потоков зависит в основном от температуры и расхода экстрактивного агента, а также уровня ввода исходной смеси и разделяющего агента.

Все расчеты проводили на 100 кмоль/ч смеси ЦГ-Б-ЭБ указанного выше состава. Качество продуктовых потоков задавали равным 95% мол. целевого компонента, регенерированного анилина - 99,9% мол. Разделяемую смесь ЦГ-Б-ЭБ подавали в колонну при температуре кипения и давлении 0,3 кг/см2 (исходя из условий термической стабильности выделяемых в кубе компонентов). Эффективность колонн схемы составляла 20 т. т.

На первом этапе мы исследовали влияние на энергозатраты температуры подачи в колонну экстрактивного агента при фиксированном составе исходной смеси ЦГ-Б-ЭБ и закрепленном соотношении питания и экстрактивного агента (1: 2).

Мы рассчитали энергозатраты при температурах подачи анилина в колонну 70, 80, 90 и 100 С. При этом для каждой температуры мы определили положение тарелок питания, при котором энергопотребление в кубе минимально. Результаты расчета приведены в табл.6.

Таблица 6. Зависимость энергозатрат от температуры подачи в колонну ЭА.

ТЭА, С

NЭА/NF

Энергозатраты, ГДж/ч

70

4/12

0.07

7.222

1. 206

10.985

80

3/10

0.91

7.444

1.127

10.888

90

3/10

1.98

7.795

1.127

10.888

100

4/11

3.17

8.171

1.134

10.893

Рис.25. Изменение энергозатрат в зависимости от температуры подачи ЭА.

Видно, что при изменении температуры подачи ЭА оптимальное положение уровня подачи ЭА практически не изменяется. Флегмовое число уменьшается с уменьшением температуры. Это связано с тем, что при более высокой температуре возрастает концентрация анилина в укрепляющей секции колонны и для получения циклогексана заданного качества требуется возвращать в колонну больший поток флегмы. Зависимость суммарных энергозатрат от температуры имеет экстремальный характер - минимальные энергозатраты наблюдается при температуре подачи ЭА 80°С, что видно из рисунка 25.

Изменение энергозатрат на разделение при разных температурах подачи экстрактивного агента можно объяснить, рассмотрев уравнение теплового баланса экстрактивной колонны (4).

(4)

QF-количество тепла, поступающее с потоком исходной смеси

QЭА - количество тепла, поступающее в колонну с потоком экстрактивного агента;

QD-количество тепла, отводимое из колонны с потоком дистиллята;

QW - количество тепла, отводимое из колонны с кубовым потоком;

Qконд - количество тепла, отводимое при конденсации потоков дистиллята и флегмы;

Члены уравнения Qконд и QЭА зависят от ТЭА. С одной стороны, с ростом температуры анилина происходит увеличение флегмового числа и затрат на конденсацию (Qконд), а с другой стороны, увеличивается количество тепла, приносимое потоком ЭА в колонну (QЭА). Очевидно, что увеличение Qконд приводит к росту энергопотребления в кубе, а увеличение QЭА - к его снижению.

Определив на предыдущем этапе оптимальные уровни подачи входящих потоков экстрактивной колонны, а также температуру ввода разделяющего агента, закрепив их, мы исследовали влияние расхода ЭА на энергозатраты. Некоторые результаты представлены в табл.7 и на рис.26.

Таблица 7. Зависимость энергозатрат от расхода ЭА при температуре его подачи

80 0С. Уровни подачи NЭА/NF = 3/10.

Расход ЭА, кмоль/ч

Энергозатраты, ГДж/ч

70

1.52

1.136

7.524

9.483

80

1.37

1.131

7.508

9.587

90

1.23

1.129

7.491

9.692

100

1.08

1.129

7.474

9.796

110

0.93

1.131

7.457

9.900

Из приведенных данных видно, что энергозатраты экстрактивной колонны мало зависят от расхода ЭА.

Для всей схемы в целом наблюдается монотонная зависимость энергозатрат с минимальным значением при расходе ЭА, равным 70 кмоль/час. С уменьшением расхода анилина увеличивается флегмовое число и, соответственно, энергозатраты на конденсацию.

Наряду с этим уменьшается количество тепла, приносимое в колонну с потоком экстрактивного агента. Это приводит к росту Qкип. С другой стороны, за счет уменьшения кубового потока происходит снижение Qw, а следовательно и Qкип.

Рис.26. Зависимость энергозатрат от расхода ЭА при температуре 800С.

Далее мы проделали подобную процедуру для каждого значения температуры ЭА и различного положения тарелок питания, в результате мы определили оптимальный расход экстрактивного агента. При этом для каждого набора параметров фиксировали энергозатраты на разделение. Результаты расчета приведены в таблице 8.

Таблица 8. Зависимость величины оптимального расхода ЭА от его температуры и положения тарелок.

NЭА/NF

Опт. расход ЭА,

моль/час

Энергозатраты, ГДж/час

Тэа=1000С

3/8

70

3. 20

1.146

9.493

3/9

1.13

1,133

9.901

3/10

1.13

1,136

9.901

4/8

1. 19

1, 195

9.971

4/9

1.15

1,148

9.917

4/10

1.14

1,140

9.903

Тэа=900С

3/8

70

2.06

1.146

9.493

3/9

2.35

1.134

9.480

3/10

2.00

1.136

9.483

4/9

2.07

1.147

9.493

4/10

2.03

1.139

9.485

4/11

2.04

1.1478

9.493

Тэа=800С

3/8

70

1,54

1.146

9.493

3/9

1,53

1.134

9.480

3/10

1.53

1.136

9.483

4/9

1,55

1.147

9.492

4/10

1,54

1.139

9.485

4/11

1,53

1.147

9.493

Тэа=700С

3/8

70

0.98

1.145

9.492

3/9

0.94

1.133

9.481

3/10

0.93

1.136

9.483

4/9

0.99

1.146

9.491

4/10

0.95

1.136

9.494

4/11

0.96

1.147

9.493

Тэа=600С

3/8

70

0.11

1.182

9.535

3/9

0.08

1.174

9.529

3/10

0.07

1.171

9.528

4/9

0.10

1.182

9.535

4/10

0.07

1.175

9.530

4/11

0.07

1.172

9.528

Как видно из таблицы 8, минимальные энергозатраты в кипятильниках колонн обеспечиваются при следующих значениях рабочих параметров:

температуре подачи ЭА 80-900С;

расходе ЭА 70 кмоль/час;

уровнях подачи экстрактивного агента и исходной смеси на 3 и 9 тарелки соответственно.

В таблице 9 приведены обобщенные данные зависимости энергозатрат на разделение от температуры экстрактивного агента при его оптимальном расходе.

Таблица 9. Зависимость энергозатрат от расхода ЭА при разных температурах подачи ЭА.

Т ЭА, 0С

Опт. расход ЭА, кмоль/час

RЭК

Энергозотраты, ГДж/час

QЭК

100

70

1.13

1,136

9.901

90

70

1.35

1.134

9.480

80

70

1,53

1.133

9.480

70

70

0.94

1.133

9.481

60

70

0.07

1.171

9.528

В общем, с уменьшением температуры экстрактивного агента флегмовое число уменьшается. Минимальные энергозатраты наблюдаются при расходе 70 кмоль/час и температуре подачи ЭА 900С.

Таким образом, нами были найдены оптимальные параметры работы экстрактивной колонны: температура подачи анилина в колонну, расход экстрактивного агента, уровень ввода ЭА и исходной смеси. Далее, при фиксированных параметрах экстрактивной колонны, мы определили тарелку питания в колонне регенерации анилина. Результаты расчета приведены в табл.10.

Таблица 10. Оптимальное положение тарелки питания в колонне регенерации А.

NF

Энегозатраты, ГДж/ч

8

9.480

9

9.480

10

9.470

11

9.481

Затем, при закрепленных оптимальных параметрах экстрактивного комплекса, мы определили тарелку питания в колонне выделения этилбензола. Результаты представлены в табл.11.

Таблица 11. Оптимальное положение тарелки питания в колонне выделения этилбензола

NF

Энегозатраты, кДж/ч

13

8.909

14

8.896

15

8.781

16

8.888

Таким образом, оптимальными рабочими параметрами схемы 3 состоящей из двухотборных колонн являются следующие:

температура подачи анилина в колонну ЭР - 90 0С;

расход экстрактивного агента - 70 кмоль/час;

для колонны экстрактивной ректификации: уровень ввода ЭА - 3 т. т., исходной смеси - 9 т. т.;

для колонны регенерации ЭА: уровень ввода питания - 10 т. т.;

для колонны выделения ЭБ: уровень ввода питания - 15 т. т.

Определение оптимальных рабочих параметров схемы, содержащей сложную колонну с боковой секцией

Разделение смеси циклогексан - бензол - этилбензол с использованием анилина в качестве экстрактивного агента возможно в схемах, содержащих сложные колонны с боковыми секциями. Выше была проведена процедура синтеза таких схем и получено пять работоспособных структур. С целью выявить наименее энергоемкий из них, нами была проведена параметрическая оптимизация полученных вариантов разделения. В результате при фиксированных температуре, давлении и составе исходной смеси и качестве продуктовых потоков была определена совокупность параметров (температура, расход и уровень ввода экстрактивного агента, количество и уровень бокового отбора, положение тарелок питания колонн технологической схемы), которые обеспечивают минимальные энергозатраты. Для всех технологических схем, включающих сложные колонны с боковыми секциями, этапы оптимизация идентичны. В связи с этим представим полную процедуру нахождения оптимальных параметров для одной структуры, принципиальная схема которой приведена на рис.27.

Исходная смесь подается в середину колонны К1, где в качестве куба выделяется ЭБ. Остальная смесь поступает в середину сложной колонны К2, а экстрактивный агент (анилин) подается наверх этой колонны. Дистиллятом является практически чистый циклогексан. Ниже точки питания в паровой фазе отбирается поток, который направляют в боковую исчерпывающую секцию К3, продуктом которой является бензол. Кубовый продукт сложной колонны представляет собой практически чистый анилин, который смешивают с небольшим количеством свежего экстрактивного агента и направляют на рецикл в сложную колонну.

Рис.27. Схема экстрактивной ректификации смеси циклогексан - бензол - этилбензол, содержащая сложную колонну с боковой укрепляющей секцией.

Все расчеты проводили на 100 кмоль/ч исходной смеси состава ЦГ: Б: ЭБ = 10: 80: 10%мол. Качество продуктовых фракций задавали равным 95%мол., регенерированного анилина - 99,9%мол. Все аппараты технологической схемы работают при давлении 0,3 кг/см2. Эффективность сложной колонны в данном случае составляет 30 т. т., боковой секции - 10 т. т., колонны регенерации - 20 т. т.

Первоначально было исследовано влияние на энергозатраты температуры подачи экстрактивного агента при закрепленном соотношении исходная смесь: ЭА = 1: 2 и фиксированном количестве отбора в боковую секцию 87 кмоль/ч. При этом для каждого значения температуры агента определили оптимальное положение тарелок подачи в колонну исходной смеси и ЭА и тарелки отбора в боковую секцию. Результаты расчетов приведены в табл.12.

Таблица 12. Зависимость энергозатрат от температуры подачи в колонну ЭА. Соотношение F: ЭА = 1: 2; количество отбора в боковую секцию - 87 кмоль/ч

ТЭА, С

NЭА/NF/NБО

RБС

Тепловые нагрузки, ГДж/час

QкондБС

60

4/14/22

0.01

0.08

-3.115

-0.265

10.056

4/14/23

0.01

0.08

-3.115

-0.265

10.055

5/13/22

0.01

0.08

-3.115

-0.265

10.055

70

4/14/22

0.06

0.07

-3.128

-0.290

9.7921

4/14/23

0.07

0.07

-3.129

-0.290

9.7911

5/13/22

0.06

0.07

-3.128

-0.290

9.7912

5/13/23

0.07

0.07

-3.129

-0.290

9.7911

5/14/22

0.06

0.07

-3.128

-0.290

9.7912

5/14/23

0.07

0.07

-3.129

-0.291

9.7912

5/15/22

0.06

0.07

-3.128

-0.290

9.7911

5/15/23

0.07

0.07

-3.129

-0.291

9.7912

6/14/22

0.06

0.07

-3.128

-0.291

9.7912

6/14/23

0.07

0.07

-3.129

-0.291

9.791

80

4/14/22

0.15

0.07

-3.145

-0.327

9.517

4/14/23

0.15

0.07

-3.145

-0.327

9.512

5/13/22

0.15

0.07

-3.144

-0.326

9.513

5/13/23

0.15

0.07

-3.145

-0.327

9.514

5/14/22

0.15

0.07

-3.144

-0.326

9.513

5/14/23

0.15

0.07

-3.145

-0.327

9.513

5/15/22

0.15

0.07

-3.144

-0.326

9.513

5/15/23

0.15

0.07

-3.145

-0.326

9.513

6/14/22

0.15

0.07

-3.144

-0.327

9.513

6/14/23

0.15

0.07

-3.145

-0.327

9.513

90

4/14/22

1. 19

0.08

-3.151

-0.556

9.405

4/14/23

1. 20

0.08

-3.151

-0.558

9.406

5/13/22

1. 20

0.08

-3.151

-0.555

9.404

5/13/23

1. 20

0.08

-3.151

-0.556

9.405

5/14/22

1. 19

0.08

-3.151

-0.554

9.403

5/14/23

1. 20

0.08

-3.151

-0.556

9.404

5/15/22

1. 19

0.08

-3.151

-0.554

9.403

5/15/23

1. 20

0.08

-3.151

-0.555

9.404

6/14/22

1. 19

0.08

-3.151

-0.554

9.403

6/14/23

1. 20

0.08

-3.151

-0.555

9.404

Продолжение.

100

4/15/22

2.67

0.08

-3.151

-0.928

9.404

4/15/23

2.67

0.08

-3.151

-0.930

9.405

5/13/22

2.67

0.08

-3.151

-0.927

9.404

5/13/23

2.68

0.08

-3.151

-0.929

9.405

5/14/22

2.67

0.08

-3.151

-0.927

9.403

6/13/22

2.68

0.08

-3.151

-0.929

9.405

6/13/23

2.69

0.08

-3.151

-0.930

9.406

6/14/22

2.67

0.08

-3.151

-0.927

9.403

Как видно из рис.28, с ростом температуры ЭА снижаются энергозатраты. Qкип достигает минимального значения при ТЭА = 100 С.

Рис.28. Влияние ТА на энергозатраты

В данном случае на величину тепловой нагрузки на кипятильник сложной колонны влияют величины QЭКконд, QБСконд и QЭБконд.

Поскольку количество бокового отбора фиксировано и оптимальное положение тарелок питания и отбора в боковую секцию практически не изменяется, то QЭКконд практически не изменяется от ТЭА. При этом флегмовое число в основной колонне, а следовательно и QЭБконд, увеличивается, что приводит к росту QЭАкип. Вместе с тем увеличивается количество тепла, приносимое в колонну с потоком ЭА, что способствует снижению энергопотребления в кубе.

На следующем этапе мы исследовали влияние на энергозатраты количества отбираемого в боковую секцию потока при фиксированном соотношении F: ЭА = 1: 2, а также при температуре, тарелках питания и бокового отбора, обеспечивающих минимальные энергозатраты - ТЭА = 100°С и NЭА/NF/NБО =5/14/22. Результаты расчетов приведены в табл.13.

Видно, что с увеличением количества потока, отбираемого в боковую секцию, энергозатраты в кубе падают и достигают минимального значения при БО = 89 кмоль/ч. Здесь энергетику схемы определяет боковая секция сложной колонны, с уменьшением бокового отбора падает ее флегмовое число и нагрузка на конденсатор.

Таблица 13. Влияние количества потока, отбираемого в боковую секцию на энергозатраты. ТЭА = 100 °С, F: ЭА = 1: 2, NЭА/NF/NБО =5/14/22

Количество БО, кмоль/ч

RБС

Тепловые нагрузки, ГДж/ч

QкондБС

84

3.08

0.02

1.243

3.037

9.591

85

2.95

0.04

1.138

3.075

9.531

86

2.83

0.06

1.034

3.113

9.472

87

2.68

0.09

0.920

3.149

9.373

88

2.49

0.11

0.810

3.186

9.301

89

2.25

0.15

0.703

3.228

9.272

Далее мы проделали эту процедуру при различных температурах подачи ЭА. При этом для каждой температуры рассматривали несколько наборов NЭА/NF/NБО. Результаты представим в табл.14.

Таблица 14. Оптимальное количество БО в зависимости от ТЭА и положения тарелок питания и отбора. F: ЭА = 1: 2.

NЭА/NF/NБО

Оптимальное количество БО, кмоль/ч

RБС

Тепловые нагрузки, ГДж/ч

QкондБС

ТЭА = 100 0С.

4/14/22

89

2.24

0.15

0.703

3.227

9.257

4/14/23

2.25

0.14

0.708

3.229

9.275

5/13/22

2.25

0.14

0.706

3.228

9.273

5/13/23

2.25

0.15

0.708

3.228

9.275

5/14/22

2.25

0.15

0.703

3.228

9.272

Продолжение.

6/13/22

2.26

0.15

0.707

3.229

9.274

ТЭА = 90 0С.

4/14/22

89

2.25

0.14

0.708

3.229

9.274

4/14/23

2.25

0.14

0.708

3.229

9.274

5/13/22

2.25

0.14

0.708

3.229

9.274

5/13/23

2.25

0.14

0.707

3.229

9.274

5/14/22

2.24

0.14

0.705

3.229

9.272

6/13/22

2.26

0.14

0.707

3.229

9.274

ТЭА = 80 0С.

4/14/22

89

2.24

0.14

0.707

3.229

9.274

4/14/23

2.24

0.14

0.707

3.229

9.274

5/13/22

2.25

0.14

0.705

3.229

9.272

5/13/23

2.25

0.14

0.706

3.229

9.273

5/14/22

2.24

0.14

0.705

3.229

9.272

6/13/22

2.26

0.14

0.707

3.228

9.274

ТЭА = 70 0С.

4/14/22

89

2.24

0.14

0.708

3.229

9.274

4/14/23

2.24

0.14

0.707

3.229

9.274

5/13/22

2.24

0.14

0.705

3.229

9.272

5/13/23

2.25

0.14

0.707

3.229

9.274

5/14/22

2.24

0.14

0.704

3.229

9.272

6/13/22

2.26

0.14

0.708

3.228

9.275

Совокупность оптимальных результатов приведена в таблице 15.

Таблица 15. Оптимальное сочетание количества отбираемого в боковую секцию потока и NЭА/NF/NБО для различных температур подачи в колонну ЭА. F: ЭА = 1: 2.

ТЭА, °С

NЭА/NF/NБО

Оптимальное количество БО, кмоль/ч

RБС

, ГДж/ч

70

5/14/22

89

2.24

0.14

9.272

80

5/14/22

89

2.24

0.14

9.272

90

5/14/22

89

2.24

0.14

9.272

100

5/14/22

89

2.25

0.15

9.272

Видно, что при закрепленном значении расхода ЭА оптимальным является значение бокового отбора 89 кмоль/ч при температуре подачи экстрактивного агента 100°С и уровнях входящих потоков и бокового отбора 5, 14 и 22 тарелки соответственно.

Поэтому на следующем этапе мы исследовали влияние количества БО на величину оптимального рабочего расхода ЭА при ТЭА = 1000С и NЭА/NF/NБО=5/14/22. Результаты расчетов представлены в табл.16.

Таблица 16. Зависимость оптимального расхода ЭА от количества потока, отбираемого в боковую секцию. ТЭА = 100°С, NЭА/NF/NБО =5/14/22

Количество БО,

кмоль/ч

Расход ЭА,

кмоль/ч

RБС

Энергозатраты, ГДж/ч

QкондБС

89

150

2.25

0.14

0.704

3.228

9.257

110

2.25

0.15

0.681

3.218

9.156

130

2.26

0.16

0.660

3. 206

9.041

87

150

2.68

0.08

0.931

3.152

9.419

100

2.76

0.10

0.813

3.092

8.820

80

2.85

0.11

0.783

3.065

8.598

70

2.91

0.12

0.773

3.050

8.492

85

120

2.97

0.04

1.054

3.041

9.162

100

3.01

0.04

1.005

3.017

8.924

70

3.13

0.04

0.949

2.978

8.583

60

3. 19

0.04

0.938

2.963

8.474

84

150

3.10

0.02

1.097

2.981

8.976

100

3.16

0.02

1.052

2.955

8.738

60

3. 20

0.02

1.034

2.941

8.625

50

3.24

0.02

1.019

2.927

8.514

Видно, что при различных значениях бокового отбора существует свое оптимальное значение рабочего расхода ЭА. К минимальному энергопотреблению технологической схемы приводит сочетание отбора в боковую секцию и расхода ЭА 85 кмоль/ч и 60 кмоль/ч соответственно.

В данном случае изменение энергозатрат в кубе сложной колонны определяется рядом величин. С одной стороны снижение расхода приводит к увеличению флегмы и значит энергозатрат на конденсатор. В месте с тем уменьшается количество тепла, приносимое в колонну с потоком экстрактивного агента. Это влечет за собой рост Q?кип. С другой стороны, за счет уменьшения кубового потока происходит снижение QW, а следовательно и Q?кип. Также следует отметить сокращение энергозатрат в кубе колонны регенерации ЭА, при снижении расхода анилина.

На следующем этапе мы проделали подобную процедуру для нескольких наборов NЭА/NF/NБО при оптимальном значении бокового отбора, найденном на предыдущем этапе. Результаты расчетов представлены в табл.17.

Таблица 17. Определение оптимальной совокупности рабочих параметров сложной колонны с боковой секцией. Количество БО=85 кмоль/ч, расход ЭА 60 кмоль/ч

NЭА/NF/NБО

RБС

Энергозатраты, ГДж/ч

QкондБС

Температура ЭА 70°С

4/13/22

3.18

0.04

0.939

2.963

8.474

4/14/22

3.18

0.04

0.939

2.963

8.475

5/14/22

3. 19

0.04

0.937

2.963

8.473

5/15/22

3. 19

0.04

0.938

2.963

8.475

6/15/23

3. 19

0.04

0.937

2.963

8.473

6/16/23

3. 19

0.04

0.938

2.963

8.474

Температура ЭА 80°С

4/13/22

3.18

0.04

0.939

2.963

8.475

4/13/23

3.18

0.04

0.938

2.963

8.474

5/14/22

3. 19

0.04

0.938

2.963

8.475

5/14/23

3. 19

0.04

0.937

2.963

8.473

5/15/23

3. 19

0.04

0.938

2.963

8.474

6/16/23

3. 19

0.04

0.938

2.963

8.474

Температура ЭА 90°С

4/13/22

3.18

0.04

0.939

2.963

8.476

4/13/23

3.18

0.04

0.938

2.963

8.474

5/14/22

3. 19

0.04

0.938

2.963

8.474

5/14/23

3.18

0.04

0.937

2.963

8.473

5/15/23

3. 19

0.04

0.937

2.963

8.473

6/16/23

3. 19

0.04

0.937

2.963

8.473

Температура ЭА 100°С

4/13/22

3.18

0.04

0.938

2.963

8.475

4/13/23

3.18

0.04

0.938

2.963

8.474

5/12/23

3. 19

0.04

0.937

2.963

8.473

5/14/22

3. 19

0.04

0.938

2.963

8.474

5/15/22

3. 19

0.04

0.938

2.963

8.475

5/16/23

3. 19

0.04

0.939

2.963

8.474

Анализируя данные таблицы 17 мы видим, что с ростом температуры суммарные энергозатраты меняются незначительно. Однако минимум наблюдается при 1000С.

Таким образом, мы провели процедуру оптимизации, в результате которой выявили набор параметров сложной колонны, обеспечивающих минимальное энергопотребление. Далее закрепив их, найдем оптимальное положение тарелки питания колонны регенерации экстрактивного агента. Результаты приведены в табл.18.

Таблица 18. Определение оптимальной тарелки питания колонны регенерации ЭА.

NF

RБС

Энергозатраты, ГДж/ч

QкондБС

Q?кип

13

0.04

2.963

8.096

14

0.04

2.963

8.082

15

0.04

2.963

8.023

16

0.04

2.963

8.075

17

0.04

2.963

8.113

Минимальные энергозатраты технологический схемы достигаются при следующих значениях рабочих параметров:

ТЭА = 100 С

соотношение F: ЭА = 1: 0,6

NЭА/NF/NБО = 5/12/23

NF колонны регенерации ЭА = 15

количество потока, отбираемого в боковую секцию - 85 кмоль/ч

флегмовое число в основной колонне - 3, 19

флегмовое число в боковой секции - 0,04

Выявление областей оптимальности в концентрационном симплексе.

Нами была проведена параметрическая оптимизация трех различных структур экстрактивной ректификации по критерию минимальных энергозатрат на разделение. В целом нами были рассмотрены восемь исходных составов питания (ЦГ-Б-ЭБ,% мольн.: 10-80-10, 10-10-80, 80-10-10, 0,333-0,333-0,334, 10-57-33, 57-10-33, 57-33-10, 10-33-57) расположенных в различных областях концентрационного симплекса.

Рис.29. Области оптимальности схем

Для каждой точки исходного состава был определен набор оптимальных параметров схем экстрактивной ректификации и выявлены области концентрационного симплекса, в каждой из которых оптимальна та или иная технологическая схема. Ниже приведем методику выявления областей оптимальности.

Для рассматриваемого объекта исследования - трехкомпонентной смеси углеводородов ЦГ-Б-ЭБ - концентрационный симплекс представляет собой равносторонний треугольник. В ходе работы его разбивали одномерными сечениями (линиями) путем закрепления концентрации одного из компонентов. На одномерном сечении размещали с равным шагом 2-4 точки. Для каждой из них был проведен расчет энергозатрат на разделение для всех синтезированных схем и проведено сравнение полученных значений энергопотребления для каждой точки. Затем нами были построены графики зависимостей критерия энергозатрат на разделение от концентрации одного из компонентов в потоке питания. На рис.30 приведен пример построения зависимости энергозатрат на разделение в сечении с содержанием бензола 10%мол.

Рис.30. Пример изменения энергозатрат на разделение (Q) в одномерном сечении от концентрации вещества в потоке питания для схем 1,2 и 3.

Таблица 19. Значения энергозатрат на разделение (Q) в одномерном сечении от концентрации вещества в потоке питания для схем 1,2 и 3.

Энергозатраты, ГДж/час

Xэб

№ Точки

Схема1

схема2

Схема3

Хцг=10%

10

2

9.387

9.031

8.781

33.34

5

7.049

9.325

7.523

56.66

8

4.840

9.644

7.875

80

3

2.185

8.725

7.601

Хэб=10%

Xцг

Точка

Схема1

схема2

Схема3

10

2

9.387

9.030

8.781

56.66

7

8.520

7.182

6.666

80

4

7.404

5.397

5.455

Хэб=33,34%

Xцг

Точка

Схема1

схема2

Схема3

10

5

7.049

9.325

7.523

33.33

1

6.670

8.544

7.517

56.66

6

6.002

7.072

7.220

Хб=10%

Xэб

Точка

Схема1

схема2

Схема3

10

4

7.404

5.397

5.455

33.33

6

6.002

7.072

7.220

80

3

2.185

8.725

7.601

Хб=33,34%

Xэб

Точка

Схема1

схема2

Схема3

10

7

8.520

7.183

6.666

33.34

1

6.670

8.544

7.517

Продолжение.

56.66

8

4.840

9.644

7.875

Хцг=80%

Xэб

Точка

Схема1

схема2

Схема3

10

7

8.520

7.183

6.666

33.33

6

6.002

7.072

7.220

Далее в концентрационном симплексе соединяли граничные точки, соответствующие равенству энергозатрат для двух и более схем, тем самым получая области, в которых оптимальна та или иная схема. Границами искомых областей являются изоэнергетические многообразия, в которых наблюдается равенство энергозатрат для двух или более схем. Результаты представлены на рис 29.

Из рисунка 29 видно, что большую часть концентрационного симплекса занимает область оптимальности схемы с предварительным фракционированием; эта область прилегает к вершине тяжелокипящего компонента. Большой диапазон применимости и расположение области оптимальности этой структуры коррелирует с рядом известных эвристик. Например, с такими:

компонент, содержание которого существенно превышает содержание всех остальных компонентов исходной смеси, должен отбираться первым в общей последовательности выделения компонентов;

процесс разделения наиболее трудноразделимой пары компонентов должен проводится последним в общей последовательности разделения.

Сравнение результатов оптимизации схем.

В ходе работы была проведена параметрическая оптимизация технологических схем экстрактивной ректификации смеси циклогексан - бензол - этилбензол, принадлежащих различным классам структур: класс П - схемы, состоящие из двухотборных колонн (схемы-прообразы), класс Ф - схемы, содержащие сложные колонны с боковыми секциями (схемы-образы). В результате были найдены параметры (температура, расход, уровень ввода экстрактивного агента, положение тарелок питания всех колонн схемы, уровень и количество бокового отбора), обеспечивающие минимальные энергозатраты на разделение. Выше подробно были описаны все необходимые этапы оптимизационной процедуры для одной их схем каждого класса. Для остальных схем разделения мы провели подобную оптимизацию, включающую те же этапы.

Для смеси циклогексан - бензол - этилбензол нами был рассмотрен состав питания,%мол.: 10-80-10.

Обратимся к результатам оптимизации технологических схем. В табл.20 представлена совокупность параметров схем класса П (рис.31), обеспечивающих минимальные энергозатраты.

Рис.31. Технологические схемы класса П для разделения смеси циклогексан - бензол - этилбензол экстрактивной ректификацией, разделяющий агент - анилин

Для всех исследуемых структур температура подачи разделяющего агента достаточно высока, она превышает температуру кипения верхнего продукта, однако при этом анилин остается в жидкой фазе для обеспечения нисходящего потока экстрагента. Расход анилина варьируется от 0,6 до 0,7 на единицу потока исходного питания, это достаточно невысокие значения. Оптимизация этого параметра с учетом энергопотребления колонны регенерации позволяет существенно снизить энергозатраты.

Более подробные результаты, включающие энергопотребление каждой колонны технологических схем класса П представлены в табл.21.

Таблица 20. Оптимальные параметры схем разделения смеси циклогексан - бензол - этилбензол, состоящих из двухотборных колонн. ЭА - анилин

Параметр

Схема

ТЭА, °С

F: ЭА

NF1

NF 2

NF3

Q?, ГДж/ч

Состав ЦГ-Б-ЭБ,% мол. = 10-80-10

Схема 1

100

1: 0,6

3/9

8

9

6,53

Схема 2

100

1: 0,6

3/9

11

18

9,52

Схема 3

90

1: 0,7

15

3/9

10

8,78

Таблица 21. Энергопотребление (ГДж/ч) и флегмовые числа колонн в схемах класса П

R

Qконд

Qкип

К1

К2

К3

К1

К2

К3

Q?

К1

К2

К3

Q?

Состав ЦГ-Б-ЭБ,% мол. = 10-80-10

Схема 1

5,79

0,63

1,98

2,23

2,99

0,75

5,97

2,06

3,60

0,87

6,53

Схема 2

5,79

0,10

0, 19

2,23

3,39

3,33

8,95

2,06

4,09

3,37

9,52

Схема 3

0,22

2,35

0,04

3,58

1,74

2,80

8,12

3,64

1,51

3,63

8,78

Сравнение энергопотребления схем для исследуемого состава питания показывает, что максимальная разница между структурами достигает 46%. Это говорит о значительной экономии при выборе оптимального технологического решения.

Профили температур, а также расходов жидкости и пара экстрактивной колонны для оптимальных технологических схем разделения смеси циклогексан - бензол - этилбензол состава питания 10-80-10%мол. представлены на рис.32.

Далее проанализируем данные, полученные в результате параметрической оптимизации схем класса Ф, содержащие сложные колонны с боковыми секциями Структуры исследуемых технологических схем были представлены на рис.21, а результаты параметрической оптимизации в табл22.

Видно, что для класса схем Ф значение оптимальных параметров (температура экстрактивного агента, расход ЭА, уровни ввода ЭА и питания в экстрактивную колонну) близки к соответствующим значениям, полученным для схем класса П. Это говорит о возможности использования совокупности оптимальных данных для одного класса техно-логических схем в качестве начальных приближений при проектировании и оптимизации схем другого класса. Это в свою очередь приводит к сокращению затрат времени на пред-проектную проработку и ускоренному созданию энергосберегающих структур. Схема 2

Схема 1

Схема 2

Схема 3

Рис.32 Профили температуры и потоков жидкости и пара экстрактивной колонны для состава исходного питания ЦГ - Б - ЭБ = 10 - 80 - 10% мол.

Таблица 22. Оптимальные параметры схем разделения смеси циклогексан - бензол - этилбензол, содержащих колонны с боковыми секциями. ЭА - анилин

Параметр

Схема

ТЭА, °С

F: ЭА

NF1

NF 2

NF3

БО кмоль/ч

Q?, ГДж/ч

Состав ЦГ-Б-ЭБ,% мол. = 80-10-10

Схема 1-1

100

1: 0,6

3/9/22

-

7

99

6,10

Схема 1-2

100

1: 0,6

3/9

8/17

-

9

6,14

Схема 1-3

100

1: 0,6

3/11/26/34

-

-

90/15

5,75

Схема 2-1

100

1: 0,5

3/12

3/9

-

15

6,47

Схема 3-1

100

1: 0,6

15

5/12/23

-

85

8,02

Видно, что для класса схем Ф значение оптимальных параметров (температура экстрактивного агента, расход ЭА, уровни ввода ЭА и питания в экстрактивную колонну) близки к соответствующим значениям, полученным для схем класса П. Это говорит о возможности использования совокупности оптимальных данных для одного класса технологических схем в качестве начальных приближений при проектировании и оптимизации схем другого класса. Это в свою очередь приводит к сокращению затрат времени на предпроектную проработку и ускоренному созданию энергосберегающих структур.

Оценка энергопотребления технологических схем, содержащих сложные колонны с боковыми секциями, показывает снижение тепловых нагрузок на кипятильники колонн по сравнению с традиционными структурами из простых двухотборных колонн. Результаты расчета по каждой колонне для схем класса Ф представлены в табл.23.

Таблица 23. Энергопотребление (ГДж/ч) и флегмовые числа колонн в схемах класса Ф

Схема

R

Qконд

Qкип

К1

К2

К3

К1

К2

К3

Q?

К1

К2

К3

Q?

Состав ЦГ-Б-ЭБ,% мол. = 10-80-10

1-1

4,60

0,24

1,37

1,18

3,41

0,93

5,52

5,01

-

1,09

6,10

1-2

5,78

0,06

0,47

2,23

2,98

0,37

5,58

2,06

4,08

-

6,14

1-3

4,74

0,11

0,85

1,49

3,07

0,61

5,17

5,75

-

-

5,75

2-1

5,46

0,49

2,03

1,86

4,14

-

6,00

1,68

4,50

0,29

6,47

3-1

0,22

3, 19

0,04

3,58

0,94

2,96

7,48

3,64

4,38

-

8,02

Видно, что структурой, обладающей минимальным энергопотреблением оказывается для состава питания ЦГ - Б - ЭБ = 10-80-10% мол. - схема 1-3, состоящая из одной сложной колонны с двумя укрепляющими секциями, представленная на рис.33.

Рис.33. Оптимальные технологические схемы разделения класса Ф.

На рис.34 представлены профили температур и расходов жидкости и пара по высоте ректификационной колонны, содержащей две боковые секции (схема 1-3) Ф для состава ЦГ - Б - ЭБ = 10 - 80 - 10% мол.

Рис.34. Профили температуры и потоков жидкости и пара сложной колонны, содержащей два боковых отбора. Состав исходного питания ЦГ - Б - ЭБ = 10 - 80 - 10% мол.

Проведем количественное сравнение энергопотребления схем различных классов структур, для этого обратимся к табл.24. Здесь проведено сопоставление суммарных энергозатрат схем-прообразов и соответствующих им схем-образов, а также энергопотребление колонн технологических схем, которые подвергались непосредственно трансформации при синтезе структур. Так, например, для схемы 1 сравнивались нагрузки на кипятильники двухотборных колонн 1 и 2 для прообраза и соответствующей им сложной колонны 1 с боковой укрепляющей секцией для схемы-образа.

Таблица 24. Результаты сравнения энергопотребления технологических схем

Схема

Суммарные энергозатраты, ГДж/ч

,%

Состав ЦГ-Б-ЭБ,% мол. = 10-80-10

1-1

6,53

6,10

6,58

1-2

6,53

6,14

5,97

1-3

6,53

5,75

11,94

2-1

9,52

6,47

32,04

3-1

8,78

8,02

8,66

Таблица 25. Результаты сравнения энергопотребления для трансформируемых комплексов колонн.

схема

энерго-

затраты, ГДж/час

1-1

1-2

1-3

2

3

Q12

5,66

-

6,53

-

-

Q23

-

4,47

7,46

5,14

Q12

5,01

-

5,75

-

-

Q23

-

4,08

4,79

4,38

,

%

11,48

8,72

11,94

35,79

14,79

Видно, что экономия энергозатрат в некоторых случаях существенна и превышает 10% -ую величину. Особенно явно это видно при сравнении энергопотребления колонн, участвующих в трансформации схем-прообразов в схемы-образы.

Таким образом, нами была рассмотрена экстрактивная ректификация азеотропной смеси циклогексан - бензол - этилбензол с использованием анилина в качестве разделяющего агента. Для осуществления разделения синтезированы схемы, принадлежащие разным классам, одни из них - это схемы, состоящие из двухотборных колонн, другие - схемы, содержащие сложные колонны с боковыми секциями. Последние относятся к структурам с частично связанными тепловыми и материальными потоками, позволяющие снизить энергопотребление за счет приближения к термодинамической обратимости. Связывание секций колонн потоками определенным образом позволяет отказаться от наличия кипятильников или дефлегматоров для боковых секций, которые являются источниками термодинамической необратимости. В целом организация разделения в колоннах со связанными потоками приводит к снижению энергозатрат. В ходе работы нами была показана эффективность использования таких структур по сравнению с традиционными двухотборными экстрактивными комплексами.

Выводы

Для разделения смеси бензол - циклогексан - этилбензол - анилин методом экстрактивной ректификации синтезированы технологические схемы, принадлежащие различным классам структур: схемы из двухотборных колонн и схемы, содержащие сложные колонны с боковыми секциями.

Проведена параметрическая оптимизация полученных технологических схем ректификации по критерию минимальных энергозатрат на разделение. В результате для каждой структуры найден набор параметров, обеспечивающих минимальное энергопотребление - температура, уровень ввода и расход экстрактивного агента, положение тарелок питания ректификационных колонн, для схем содержащих боковые секции - также количество и положение бокового отбора.

В результате анализа полученных результатов, выявлено, что применение схем с частично связанными тепловыми и материальными потоками (схем со сложными колоннами с боковыми секциями) позволяет снизить затраты на разделение (в данном случае для энергопотребления схем в целом экономия может превышать 10%).

Для разделения смеси бензол - циклогексан - этилбензол фиксированного состава (бензол: циклогексан: этилбензол = 10: 80: 10%мол) оптимальной по энергопотреблению является структура из одной сложной колонны, с двумя боковыми секциями.

Список использованной литературы

Серафимов Л.А. Технология разделения азеотропных смесей (дополнительная глава) в кн. Свентославский В. Азеотропия и полиазеотропия. - М.: “Химия”, 1968, 186 с.

Жаров В.Т., Серафимов Л.А. Физико-химические основы дистилляции и ректификации. - М.: - “Химия”, 1975, 240 с.

Серафимов Л.А., Фролкова А.К. Фундаментальный принцип перераспределения полей концентраций между областями ректификации как основа создания технологических комплексов // Теор. осн. хим. технологии. - т.31, №2, 1997, с.184-193.

Гришунин А.В., Балашов М.И., Серафимов Л.А. Синтез комплексов ректификационных колонн для разделения трехкомпонентных азеотропных смесей с использованием принципов переходимости разделяющих многообразий // Разделение жидких неидеальных смесей, труды Алтайского политехнического института, Барнаул, 1974, с.45-49.

Петлюк Ф.Б., Серафимов Л.А. Многокомпонентная ректификация, теория и расчет. -М.:, Химия, 1983, 304 с.

Тимошенко А.В., Серафимов Л.А., Синтез технологических схем ректификации многокомпонентных смесей с одним бинарным азеотропом // Теор. осн. хим. технологии. -1999, т.33, №1, с.47-53.

Тимошенко А.В. Серафимов Л.А. Синтез и дискриминация технологических схем ректификационного разделения с использованием критерия энергозатрат. - В сб. “Наукоемкие химические технологии” III международная конференция, Тверь, 1995, с.65.

Тимошенко А.В., Серафимов Л.А., Тимофеев В.С., Глушаченкова Е.А. Синтез и анализ технологических схем для разделения трехкомпонентных азеотропных смесей. - в сб. “Наукоемкие химические технологии”, IV международная конференция, Волгоград, 1996, с.84.

Гельперин И. Н, Новикова К.Е. / Журнал прикладной химии - 1961. Т 34. - № 9. - С 11-16.

Тимофеев В.С., Серафимов Л. А "Принципы технологии основного органического и нефтехимического синтеза", Москва "Высшая школа" 2003 г, 536 с.

Айнштейн В.Г., Захаров М.К., Носов Г.А., Захаренко В.В., Зиновкина Т.В., Таран А.Л., Костаян А.Е. "Общий курс процессов и аппаратов химической технологии" т.2 Москва "Логос" "Высшая школа" 209023 г.1758с.

Berg L., Separation of benzene and toluene from close boiling nonaromatics by extractive distillation. // AIChE J., 1983, 29, 6, 961.

Duan Z. T., Development of extractive distillation. // Petrochem. Technol., 1978, 7, 2, 177.

Hafslund E. R. Propylene-propane extractive distillation. // Chem. Eng. Prog., 1969, 65, 9, 58.

Hilal N., Yousef G., Anabtawi M. Z., Operating parameters effect on methanol-acetone separation by extractive distillation. // Sep. Sci. Technol., 2002, 37, 14, 3291.

Кириченко Г.А. Исследование физико-химических основ технологии разделения продуктов алкилирования фенола метанолом на -окиси алюминия. Автореф. дисс... . канд. техн. наук. - М.: МИТХТ, 1981. - 31 с.

Кива В.Н., Кириченко Г.А. Особенности ректификации с двухпоточной подачей питания / В кн.: Нефтехимические процессы в многофазных системах. Сборник научных трудов. - М.: ЦНИИТЭНЕФТЕХИМ, 1980, с.108-115.

Петлюк Ф.Б. Качественная теория, синтез и расчет технологических схем ректификации многокомпонентных неидеальных смесей. Дисс. докт. техн. наук. - М.: МИТХТ, 1983

Петлюк Ф. Б., Серафимов Л. А., Тимофеев В. С., Майский В.И. Юдин Е.Н., Аветьян М.Г. Способ тепломассообмена между жидкостями с различными температурами кипения / А. с. N1074555, приоритет от 16.07.82 г.

Фролкова А.К., Павленко Т.Г. Влияние организации потоков на процесс экстрактивной ректификации // Тез. докл. VI Всесоюз. конф. по ректификации, Северодонецк, 1991. - С.241-242.

Семенов Л.В. Межмолекулярные взаимодействия и разделение углеводородов с использованием селективных растворителей. Автореф. дисс. докт. хим. наук. - Л.: ЛТИ, 1986. - 49 с.

Пирог Л.А. Оценка эффективности агентов при разделении неидеальных смесей экстрактивной ректификацией. Дисс. канд. техн. техн. наук. - М.: МИТХТ, 1987.

R. C. Everson, B. J. van der Merwe. The effects of selected solvents on the relative volatility of a binary systems consisting of 1-octene and 2-hexanone // Fluid Phase Equilibria. - 1998. - №.143. - pp.173-184.

Jose M. Resa, Cristina Gonzalez, Miguel A. Betolaza, Aitor Ruiz. Behavior of butyl ether as entrainer for the extractive distillation of the azeotropic mixture propanone +diisopropyle ether. Isobaric VLE data of the azeotropic components with the entrainer // Fluid Phase Equilibria. - 1999. - №.156. - pp.89-99.

Alberto Arce, Jose Martinez-Ageitos, Eva Rodil, Ana Soto. Phase equilibria involved in extractive distillation of 2-methoxy-2-methylpropane+methanol using 1-butanol as entrainer // Fluid Phase Equilibria. - 2000. - №.171. - pp. 207-218.

Rodriguez-Donis, V. Gerbaud and X. Joulia. Entrainer selection rules for the separation of azeotropic and close-boiling-temperature mixtures by homogeneous batch distillation process // Ind. Eng. Chem. Res. - 2001. - V.40. - pp.2729-2741.

Зарецкий М.И. Разработка научных основ новой технологии селективного разделения смесей органических соединений с близкими физико-химическими свойствами. Автореф. дисс. докт. хим. наук. - М.: МИТХТ, 1990.

Фролкова А.К., Павленко Т.Г., Тимофеев В.С. Выбор селективных разделяющих агентов на основе анализа избыточных термодинамических функций // Тез. докл. VI Всесоюз. конф. по термодинамике орг. соединений, Минск, 1990. -С.105.

Zhigang Lei, Chengyue Li, Biaohua Chen Extractive Distillation: A Review // Separation and Purification Reviews, 2003, Vol.32, No.2, pp.121

Фролкова А.К. Разработка технологических схем разделения полиазеотропных смесей с использованием автоэкстрактивной ректификацией. Дисс. … канд. техн. наук. - М.: МИТХТ, 1980

Ханина Е.П. Исследование влияния структур фазовых диаграмм и рециклов на технологические схемы разделения. Дисс. …канд. техн. наук. - М.: МИТХТ, 1978

Павленко Т.Г., Фролкова А.К., Ханина Е.П., Перфильева А.С., Тимофеев В.С. О роли флегмы в процессах экстрактивной и автоэкстрактивной ректификации // Сб. "Основной органический синтез и нефтехимия". - Ярославль: ЯПИ. - Вып. 19, 1983. - С.76-81

Виджесингхе А. М.Д.Ч. Разработка технологических комплексов специальных методов ректификации для регенерации растворителей. Автореф. дисс. …канд. техн. наук. - М.: МИТХТ, 1985. - 21 с.

Лапшина В.Б. Разработка технологии разделения полиазеотропных смесей растворителей, образующихся в производстве синтетической аскорбиновой кислоты. Автореф. дисс. …канд. техн. наук. - М.: МИТХТ, 1988. - 22 с.

Хассиба Бенюнес. Закономерности разделения азеотропных смесей в присутствии селективных разделяющих агентов // Дисс…канд. техн. наук. М.: МИТХТ - 2002.

Коган В.Б. Азеотропная и экстрактивная ректификация. - Л.: Химия, 1971. - 432 с.

Юсеф Джорж Джамиль. Влияние расхода разделяющего агента на разделение азеотропных смесей экстрактивной и автоэкстрактивной ректификации. Дисс…канд. техн. наук. - М.: МИТХТ, 1989.

Фролкова А.К., Павленко Т.Г., Тимофеев В.С. К оценке расхода разделяющего агента в процессах экстрактивной и автоэкстрактивной ректификации // ЖПХ. - 1987. - № 3. - С.631-634.

Вerg L. Selecting the agent for distillation processes // Chem. Eng. Progr. 1969, V 65. - № 9. - P.52-57.

Susksmith I. Extractive distillation saves energy // Chem. Eng. (USA). - 1982. - V.89, № 13. - P.91-95.

Бенедикт М. Многоступенчатые процессы разделения / Физическая химия разделения смесей. Сб. № 1/ Пер. с англ. М.Э. Аэрова. -М.: Изд. иностр. лит-ры, 1949. - с.11-72.

Wahnschafft O. M., Rudulier J. P., Westerberg A. W. A problem decomposition approach for the synthsis of complex separation processes with recycles // Ind. Eng. Chem. Res., 32, 1993, 1121-1141.

Heckl I., Kovacs Z., Friedler F., Fan L. T., Super-structure Generation for Separation Network Synthesis Involving Different Separation Methods // Chemical Engineering Transactions. - 2003, 3. - S1209-S1214.

Bauer M. H., Stichlmair W. Design and economic optimization of azeotropic distillation processes using mixed-integer nonlinear programming // Comp. Chem. Eng., 22(9), 1998, 1271-1286.

Brendel M. H., Friedler F., Fan L. T., Combinatorial Foundation for Logical Formulation in Process Network Synthesis // Comput. Chem. Eng. - 2000, V.24 - PP.1859-1864.

Gangyi Feng, L. T. Fan, F. Friedler Synthesizing alternative sequences via a P-graph-based approach in azeotropic distillation systems // Waste Management, 20, 2000, 639-643.

B. Bertok, F. Friedler, G. Feng, L. T. Fan Systematic Generation of the Optimal and Alternative Flowsheets for Azeotropic-Distillation Systems // European Symposium on Computer Aided Process Engineering, 11, 2001, 351-356.

G. Feng, L. T. Fan, P. A. Seib, B. Bertok, L. Kaloti, F. Friedler Graph-Teoretic Method for the Algorithmic Synthesis of Azeotropic-Distillation Systems // Ind. Eng. Res., 42, 2003, 3602-3611.

Thong D. Y. -C., Jobson M. Multicomponent azeotropic distillation.3. Column sequence synthesis // Chem. Eng. Sci., 56, 2001, 4417-4432.

Thong D. Y. -C., G. Liu, Jobson M., R. Smith Synthesis of distillation sequences for separation azeotropic mixture // Chem. Eng. Pross., 43, 2004, 239-250.

Thong D. Y. -C., Jobson M. Multicomponent azeotropic distillation.1. Assessing product feasibility // Chem. Eng. Sci., 56, 2001, 4369-4391.

Серафимов Л.А., Тимошенко А.В. Графометрия технологических схем ректификационного разделения многокомпонентных зеотропных смесей (Часть II): Учебное пособие. - М.: ООО Полинор-М, 1996. - 47c.

Sargent R. W. H, Gaminibandara K. Optimum Design of Plate Distillation Columns. // Optimization in Action; Dixon, L. W. C., Ed.; Academic Press: London. - 1976, p.267-273.

Agrawal R. Synthesis of Distillation Column Configurations for a Multicomponent Separtion. // Ind. Eng. Chem. Res. - 1996, v.35, p.1059-1071.

Agrawal R. A Method to Draw Fully Thermally Coupled Distillation Column Configuration for Multicomponent Distillation. // Chem. Eng. Res. and Des. - 2000, v.78, №A3, p.454-464.

Yeomans H., Grossmann I. E. A Systematic Modeling Framework of Superstructure Optimization in Process Synthesis // Comput. Chem. Eng. - 1999, V.23. - P.709.

Серафимов Л.А., Мозжухин А.С., Науменкова Л.Б. Определение числа вариантов технологических схем ректификации n-компонентных смесей. // ТОХТ. - 1993, т.27, №3, с.292-299.

Тимошенко А.В., Паткина О.Д., Серафимов Л.А. Синтез оптимальных схем ректификации, состоящих из колонн с различным числом секций. // ТОХТ. - 2001, т.35, №5, с.485-491.

Тимошенко А.В., Серафимов Л.А. Стратегия синтеза множества схем необратимой ректификации зеотропных смесей. // ТОХТ. - 2001, т.35, №6, с.603-609.

Береговых В.В., Корабельников В.В., Серафимов Л.А. Выбор оптимальной технологической схемы ректификации тройных зеотропных смесей. Хим.-фарм. журн., 1984, №3, с.350 - 355.

Береговых В.В., Корабельников В.В., Серафимов Л.А. Стратегия синтеза и анализа технологических схем ректификации. Хим. - фарм. журн., 1985, №3, с. 202 - 207.

Underwood A. J. V. Fractional Distillation of Ternary Mixtures. Part I. // J. Inst. Petrol., 1945, v.31,p.111-118; Part II. // ibid. -1946,v.32, p.598-613

Tedder D. W., Rudd D. F. Parametric Studies in Industrial Distillation. // AIChE J. - 1978, v.24, №2, p.303-334.

Тимошенко А.В., Паткина О.Д., Серафимов Л.А. Синтез оптимальных схем ректификации, состоящих из колонн с различным числом секций. // ТОХТ. - 2001, т.35, №5, с.485-491.

Тимошенко А.В., Тимофеев В.С., Паткина О.Д. Оптимальные по энергозатратам схемы ректификации смесей бензола и алкилбензолов. // Хим. пром. - 1998, №4, с.41-44.

Паткина О.Д., Глушаченкова Е.А., Осипова Т.А., Назаренко С.П., Серафимов Л.А., Тимошенко А.В. Топологический анализ изоэнергетических многообразий процесса ректификации. // ТОХТ. - 2000, т.34, №1, с.43-49.

Кузина О.Д. Разработка энергосберегающих технологических схем ректификации многокомпонентных зеотропных смесей органических продуктов: Дисс. кандидата техн. наук. // М.: МИТХТ. - 2000, 155с.

Иванова Л.В., Тимошенко А.В., Тимофеев В.С. Синтез схем экстрактивной ректификации азеотропных смесей // ТОХТ, 2005, т.39, № 1, с. 1-8.

Фролкова А.К. Теоретические основы разделения многокомпонентных многофазных систем с использованием функциональных комплексов - Дисс. на соискание ученой степени д. т. н., Москва, МИТХТ, 2000.

Серафимов Л.А. Термодинамико-топологический анализ диаграмм гетерогенного равновесия многокомпонентных смесей // Журн. физ. хим., 2002, т.76, №8, с.1331.

Тимошенко А.В., Серафимов Л.А. Стратегия синтеза множества схем необратимой ректификации зеотропных смесей. // ТОХТ. - 2001, т.35, №6, с.603-609.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.