Мониторинг зданий и сооружений

Общие правила проведения обследования и мониторинга технического состояния зданий и сооружений. Наблюдение за зданиями, находящимися в аварийном состоянии. Примеры проектирования и эксплуатации схем мониторинга конструкций и оснований высотных зданий.

Рубрика Строительство и архитектура
Вид реферат
Язык русский
Дата добавления 11.06.2011
Размер файла 1,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Московская система мониторинга деформационного состояния сооружений (МСМС) должна создаваться как общегородская система, предназначенная для целенаправленного сбора, накопления, обобщения, хранения и многоаспектного использования информации о деформационном состоянии (остаточном ресурсе) сооружений различного назначения, включая жилые и общественные здания, промышленные сооружения, исторические памятники и т.п. Ее информация необходима для многоаспектного информационного обеспечения процесса принятия долгосрочных и оперативных решений административно-управленческого и проектно-строительного характера, связанных с использованием информации об остаточных ресурсах сооружений города и опасности их разрушения.

Создание такой системы определяется необходимостью получения новых и эффективного использования существующих экспертных заключений о техническом состоянии, результатов обследования и испытаний, мониторинга технического состояния сооружений города для информационного обслуживания компетентных органов города, выполняющих решения задачи обеспечения безопасности сооружений существующей застройки г. Москвы при изменении инженерно-геологических свойств грунтов, изменении природно-техногенных и возникновении новых техногенных воздействий, изменении несущей способности сооружений во времени, а также из-за изменения условий эксплуатации, реконструкции, перестроек и т.п.

МСМС города как информационная система о техническом состоянии его сооружений кроме осуществления планового мониторинга должна аккумулировать вновь получаемую различными проектными и научными организациями информацию (в результате экспертиз, обследований, испытаний и научно-исследовательских работ) для повышения надежности прогнозируемого состояния сооружений и обеспечения их безопасности. В своей деятельности МСМС должна использовать данные других организаций и служб города, связанных с проблемами изменения условий силового и не силового воздействия на сооружения.

Функциональными задачами МСМС должны быть:

Ш Организация планового системного мониторинга технического состояния зданий и сооружений города.

Ш Организация, методическое руководство и выполнение работ по накоплению, хранению, защите и представлению пользователям информационных ресурсов по мониторингу технического состояния зданий и сооружений города.

Ш Информационное обслуживание процесса долгосрочного и оперативного решения административно-управленческих и строительных задач общегородского уровня по обеспечению безопасности зданий и сооружений города.

Ш Координация работ по созданию, эксплуатации и развитию МСМС, интеграция ее информационной базы в общегородскую информационную систему.

Ш Выполнение научно-исследовательских и проектных работ, связанных с развитием и эксплуатацией МСМС.

Ш Разработка и внедрение системы стандартизации и сертификации в организациях участвующих в МСМС, а также использующих ее информацию.

Ш Организация разработки и разработка технологий мониторинга технического состояния зданий и сооружений, прикладных информационных технологий, технических средств наблюдений, согласования систем связи с другими смежными информационными системами.

Ш Обеспечение сохранности государственной и коммерческой тайны, содержащейся в базах данных МСМС, защита информации МСМС от несанкционированного доступа, разрушения, организация регламентного использования информационных ресурсов МСМС.

Ш Обучение обслуживающего персонала и пользователей МСМС.

Ш Посредническая и рекламно-издательская деятельность в области предоставления услуг по использованию информации МСМС при условии соблюдения прав собственника информации.

Особое значение такая система имеет для мониторинга технического состояния уникальных, в том числе высотных, и экспериментальных зданий и сооружений. Важнейшей проблемой безопасной эксплуатации таких зданий является контроль напряженно-деформированного состояния их несущих конструкций.

В последнее время, особенно после трагедии c комплексом «Трансвааль-Парк», появилось много предложений по использованию для контроля технического состояния несущих конструкций зданий и сооружений автоматических станций, работающих непрерывно (круглосуточно) в режиме реального времени. Однако контроль технического состояния зданий в настоящее время нельзя осуществить автоматически, так как это состояние в соответствии с СП-13-102-2003 и разработанными, находящимися на утверждении МГСН 2.1004, определяется на основе поверочных расчетов с уточненными по результатам обследования расчетной схемой объекта и реальными прочностными характеристиками материала конструкций, что пока не поддается автоматизации. Контроль отдельных параметров ограниченного числа несущих элементов, часто мало говорит о реальном техническом состоянии здания. Режим же круглосуточного мониторинга вообще малоэффективен, а потому и нецелесообразен. Действительно обрушение сооружений может происходить по двум схемам: либо с постепенным накоплением напряжений и деформаций и последующим обрушением несущих конструкций, либо быстротечно (прогрессирующее обрушение) при возможно даже кратковременном, но существенном перегрузе важного несущего элемента конструкций, при разрушении которого и возможно последующее прогрессирующее обрушение.

При первом способе обрушения, как показывает многолетний опыт обследований и мониторинга зданий и сооружений, нет необходимости вести непрерывный контроль деформаций конструкций, достаточно его вести регулярно периодически, например, один раз в год. Защитой от второго способа обрушения в настоящее время может быть только надежный расчет несущих элементов конструкций и соответствующие конструктивные мероприятия, обеспечивающие недопустимость прогрессирующего обрушения, поскольку при такой схеме обрушения не могут помочь какие-либо системы контроля деформаций строительных конструкций, так как если процесс начался, то в силу его быстротечности равносильной взрыву даже предварительное обнаружение не дает возможности предпринять какие-либо действия для его предотвращения или спасения людей и оборудования.

В этой связи возникает необходимость ранней диагностики изменений напряженно-деформированного состояния конструкций и локализации мест такого изменения. Разработана методика диагностики изменения напряженно-деформированного состояния конструкций зданий и сооружений, основанная на их динамическом зондировании, и позволяющая достаточно недорого на ранней стадии выявлять такие изменения, своевременно проводить обследование технического состояния конструкций и предпринимать превентивные меры по не допущению аварийных ситуаций.

11. Примеры проектирования и эксплуатации схем мониторинга конструкций и оснований высотных зданий

Высотные здания (более 75 м) становятся особенностью современного силуэта крупного города. Обеспечение безопасности при их строительстве и эксплуатации требует постоянного контроля состояния (мониторинга) объекта. Вслед за промышленными и специальными сооружениями, такие работы в настоящее время предпринимаются для зданий гражданского назначения. Учитывая, что высотное здание является очень сложным инженерным сооружением, необходимо контролировать техническое состояние и функционирование разнообразных компонентов - инженерных сетей, конструкций в целом и отдельных узлов, поведения грунтового массива и пр. Все эти элементы взаимосвязаны и составляют единую систему мониторинга здания, объединяющую набор отдельных технических решений. Важными вопросами создания системы являются проблемы подбора оборудования и методик, их объединения для мониторинга состояний конструкций надземной и подземной частей высотного здания и грунтов основания.

Существенно, что требования проведения инструментального мониторинга содержатся в Московских Городских Строительных Нормах (МГСН-4.19-2005), которыми руководствуются не только при возведении высотных зданий и многофункциональных комплексов в Москве, но и в других городах России (например, в г. Казани). Нормативы США и Европы предусматривают наблюдение за состоянием конструкций и грунтов основания, но не содержат конкретных указания по методам проведения инструментального мониторинга. Благодаря развитию методик и средств измерений, цифровой обработки сигналов, в настоящее время для мониторинга существует широкий набор возможностей выбора инструментов и методик. Тут важно для конкретного объекта и заданных технико-экономических показателей подобрать оптимальный вариант схемы мониторинга, наиболее полно контролирующих его состояние. Ниже представлены примеры создания различных вариантов схем на основании опыта мониторинга высотных зданий в России (с 2003 г.) и обобщения практики строительства за рубежом.

Инструментальный мониторинг конструкций и оснований зданий опирается, в основном, на четыре класса методик:

ь геодезические измерения; выполняются как с помощью традиционной нивелировки, так и с использованием современных цифровых датчиков, спутниковых GPS-технологий, возможно лазерное сканирование объекта. Данные методики позволяют определять перемещение объекта (здания или отдельных его частей) в пространстве, в том числе, измерять осадки и крены. Получаемые данные соответствуют состоянию на момент измерений, т.е. при достаточно редких по времени замерах методики не дают подробной динамики поведения объекта;

ь инженерно-геологические наблюдения состояния грунтового массива в основании и в окрестности здания. Существует набор схем как разной трудоемкости и стоимости, так и разной разрешающей способности и информативности - от измерений в отдельных скважинах до межскважинного просвечивания (вплоть до получения 3-мерного томографического изображения). В зависимости от выбора датчиков, можно вести мониторинг дифференциальных (послойных) или суммарных осадок грунтов основания, уровня воды, порового давления в породах (параметра, используемого в расчетах за рубежом). Помимо скважин, важную информацию получают при размещении под фундаментной плитой сети датчиков давления на грунт, в сваях - вертикальных нагрузок. Наблюдения могут вестись непрерывно или достаточно часто по времени, т.е. есть возможность следить за особенностями динамики объекта;

ь измерения нагрузок и деформаций в конструкциях фундамента и надземной части. Тут также существует набор инструментов, ниже рассмотрены схемы с использованием вибрационных датчиков напряжений, монтируемых по 1-, 2- и 3-м пространственным координатам X, Y, Z в точке и размещаемых в фундаментной плите, а также в стенах, пилонах и колонах здания. Наблюдения могут вестись в автоматическом режиме и, в том числе, непрерывно;

ь сейсмометрические методики; могут выполняться различными измерительными устройствами - деформографами, наклономерами и сейсмометрами (велосиметрами, акселерометрами). Схемы наблюдений разнообразны, включают варианты возбуждения колебаний здания как искусственными (удары, вибраторы), так и естественными (ветер, микросейсмы) источниками. Сейсмометрические измерения дают "мгновенную" картину состояния объекта, наблюдая которую во времени можно получить разнообразную информацию об особенностях динамики сооружения.

Следует отметить, что если первые три типа наблюдений дают в основном "прямую" информацию (величины осадок, нагрузок и пр.), то регистрация колебаний требует как достаточно сложной предварительной обработки, так и создания моделей динамики сооружения. Особенностью сейсмометрических методик является то, что схемы наблюдений могут быть достаточно простыми (вплоть до одной точки). Кроме того, они дают возможность контролировать не только величины ускорений, но и, как показано ниже, позволяют судить о совместной работе здания и грунтов основания, в том числе выявить неизвестные ранее явления.

Комплексирование первых трех типов мониторинга с сейсмометрическими наблюдениями позволяет связать между собой все получаемые данные. На рис. 2 представлен пример схемы мониторинга, разработанной для высотного комплекса "Континенталь" с плитным фундаментом в Москве на пр. Маршала Жукова. Схема мониторинга включает инструментальную (аппаратурную) часть и программное обеспечение, собирающее данные, их обрабатывающее и оценивающее состояние здания.

Рис. 2. Блок-схема инструментального мониторинга высотного комплекса “Континенталь” в Москве.

На рис. 3 показаны примеры инструментального оснащения схем мониторинга для плитного фундамента (Москва), а также для плитно-свайного (Казань). Инструментальное оснащение мониторинга может варьироваться, но основными элементами являются:

- скважинные измерения осадок в грунтах, при малом числе скважин - дополняются измерениями наклонов;

- измерения порового давления и вариации уровня грунтовых вод;

- определения нагрузок на грунт и напряжений в фундаментной плите и сваях;

- измерение напряжений в конструкциях: стенах, пилонах и колонах;

- наблюдение колебаний здания.

Рассмотрим принципы проектирования размещения оборудования. Определяющим для подбора конкретных измерительных средств является объемно-планировочное и конструктивное решения объекта, результаты инженерно-геологических изысканий. Основу геометрии размещения составляют результаты расчетов статики и динамики сооружения, важную роль играют результаты аэродинамических испытаний макетов. Проиллюстрируем конкретными примерами.

Рис. 3. Схема расстановки оборудования инструментального мониторинга высотных зданий в Москве (А) и в Казани (В): 1 - геодезические измерения осадок, 2 - датчики давления на грунт, 3 - скважинные измерения осадок (послойных и суммарных), 4 - датчики порового давления, 5 - тензодатчики, 6 - сейсмометрические измерения колебаний, 7 - двухкоординатный инклинометр (измерение крена).

На рис. 4 и 5 представлены результаты расчетов осадок, нагрузок и моментов для коробчатой фундаментной плиты высотного корпуса жилого комплекса "Континенталь" в Москве. Сопоставление расчетов показывает, что зоне наибольших осадок в центральной части плана соответствует область растяжений, что в значительной мере определяет конфигурацию расстановки датчиков разных типов. На плане показаны места установки скважинных датчиков осадок (суммарных и послойных), порового давления, а также датчиков давления на грунт и напряжений в плите (по 3 направлениям X, Y, Z). Видно, что скважины для измерения осадок (5 шт.) позволяют контролировать состояние объекта по основным осям плана, причем для зон разной нагруженности. Достаточно "спокойная" инженерно-геологическая ситуация и устойчивость здания по соотношению ширина-высота позволили здесь "сэкономить" на датчиках крена. Датчики давления на грунт и напряжений в плите образуют своеобразные поля, геометрия их расположения определяется расчетными полями осадок и нагрузок, причем контролируются участки разного нагружения и осадки.

Рис. 4. Проектирование схемы мониторинга фундаментной плиты высотного здания "Континенталь" в Москве - расположение датчиков на результатах расчетов: вверху - осадок, внизу - вертикальной нагрузки; датчики: 1- 3D тензометры, 2 - давления на грунт, скважинные измерения: 3 - порового давления, 4 - послойных и 5 - суммарных осадок.

Таким образом, данная схема позволяет не только вести мониторинг объекта, но и сопоставлять расчетные и реальные величины, получаемые на натурном объекте. Приведенные примеры и опыт мониторинга комбинированных плитно-свайных фундаментов в Германии демонстрируют, что применение схем мониторинга грунтового массива и фундаментов позволяет не только следить за состоянием здания, но и на основании анализа натурных и расчетных данных применять в последующих зданиях более эффективные конструктивные решения.

Рис. 5. Проектирование схемы мониторинга фундаментной плиты высотного здания "Континенталь" в Москве - расположение датчиков на результатах расчетов: вверху - горизонтальной (по оси X) нагрузки, внизу - моментов относительно оси X; датчики - те же, что на рис. 4.

Датчики в элементах конструкций здания. В зарубежной практике принято устанавливать поля 1-мерных датчиков напряжений по системе взаимно-перпендикулярных линий. Результаты измерений легко визуализировать в поля деформаций. При более экономной схеме в ключевых точках монтируются 3D-датчики по осям X, Y, Z. Датчики крепятся на арматуру в процессе строительства. Сигнальные кабели от датчиков сводятся в комнату мониторинга, откуда идет автоматический опрос показаний (рис. 1)

На рис. 6 на примере результатов расчетов сил и моментов для колонн стилобата высотного жилого комплекса "Континенталь" в Москве показано размещение 3D-датчиков. Контролируется напряженно-деформированное состояние участков наибольших нагрузок и моментов. На данном объекте мониторинг напряжений ведется в фундаментной плите, в стенах и колонах стилобата и на уровне 1-го этажа. Особое внимание уделяется пилонам и колонам. Существенно, что датчики расположены таким образом, что образуют объемную схему мониторинга в нижней части здания.

Сейсмометрический мониторинг. Для возможности обследования здания в целом используются датчики в диапазоне частот от 0,2 Гц и выше, причем низкочастотный край диапазона ориентирован на выявление изменений в состоянии конструкций и может применяться для оценки физических характеристик грунтов оснований в условиях естественного залегания (модулей упругости, параметров нелинейности, флюидонасыщенности и пр.).

Остановимся на основных способах сейсмометрического мониторинга зданий. Для отслеживания изменений необходимо повторение наблюдений при сравнении регистрируемых волновых полей. Исходя из способов получения волновых полей и схем обработки, можно выделить три группы методик мониторинга конструкций зданий:

Ш с возбуждением колебаний зданий искусственными источниками - ударами разной силы по зданию или в не его. Основные недостатки - требуется создание идентичного воздействующего сигнала для накопления отклика и подавление микросейсм; доступны лишь отдельные части здания, т.к. достаточно сложно возбудить колебания ниже 1 Гц - частоты, характерные для основного тона собственных колебаний высотных зданий.

Ш при воздействии на здание микросейсм и их регистрации на коротких профилях в здании с последующей корреляционной обработкой. Например, при анализе функции когерентности каналов выявляют собственные колебания зданий, проводится построение амплитудных и фазовых распределений по объему сооружения. В это способе возможно, при условии подходящего соотношения частот, ошибочное включение в обработку колебаний, наведенных на здание от других объектов.

Ш источником, возбуждающим собственные колебания здания, являются постоянно присутствующие пульсации атмосферного давления, регистрируют одновременно пульсации давления (микробарографом) и микросейсмы по 3 компонентам (X, Y, Z), наблюдения могут вестись в одной точке, в том числе вне здания. При обработке выделяют тонкие линии в спектре, анализируют временной ход их амплитуд в сравнении с ходом вариаций атмосферного давления, что позволяет отсеять наведенные колебания от соседних сооружений. Мониторинг по этому способу может вестись в одной точке, обследования целостности здания - в нескольких ключевых точках.

Последний способ представляется наиболее технологичным и экономичным. Кроме того, модификация этой методики может применяться для изучения свойств оснований сооружений, а также для задач сейсмического просвечивания. В настоящее время по способу оборудована станция стационарного мониторинга высотного жилого здания "Эдельвейс" в Москве (ул. Давыдковская), измерения проводятся с интервалом в 10 суток в течение около 3 лет.

Рис. 6. Пример размещение 3D-тензометров на схеме результатов расчетов сил и моментов для колонн стилобата высотного жилого комплекса "Континенталь" в Москве: 1- датчики в колоннах, 2 - в стенах.

Опыт мониторинга высотного жилого дома "Эдельвейс" показывает, что схема наблюдений, использующая для возбуждения колебаний здания ветровые пульсации, позволяет определить собственные частоты и следить за изменением их во времени. На рис. 7 показано изменение во времени (временной ход) значений собственных частот основного тона для высотного 44-эт. жилого дома "Эдельвейс" (0,54 и 0,72 Гц в направлениях разных осей плана X, Y). После ввода в эксплуатацию наблюдается тенденция к систематическому уменьшению значений - за год на 0,015 Гц, что связано, по-видимому, с "загрузкой" здания;

Рис. 7. Изменение во времени собственных частот основного тона колебаний здания "Эдельвейс" в горизонтальной плоскости (по осям X, Y).

Построение в разных точках траекторий движения собственных колебаний, на этой базе - получение картины деформаций. На рис. 8 на фундаментной плите наиболее выразительны траектории в вертикальной плоскости поперек корпуса - видны различия траекторий в противоположных точках плана, свидетельствующих о деформировании плиты. Оценка значений дает добавочные напряжения при нормативном ветре 0,5% от расчетных статических, при сильном ветре - до 2%. Существенно, что это многоцикловое динамическое воздействие, которое следует иметь в виду при армировании;

Выявление нарушений в конструктивных связях. В высотном здании присутствует деформационный шов, на рис. 8 видны различия в траекториях по разные стороны деформационного шва - в горизонтальной плоскости амплитуды колебаний поперек корпуса совпадают, а вдоль - для крайней точки амплитуда больше, чем для центральной. Данные позволяют оценить расхождение блоков здания по шву;

Наблюдением особенностей совместной работы здания с грунтами основания, в том числе появление так называемой присоединенной массы грунта к фундаменту после возведения здания. Эффект проявляется в том, что в период замерзания и оттаивания грунта появляется еще один пик в спектре - для здания "Эдельвейс" на частоте 0,18 Гц. Явление создания присоединенной массы к колеблющемуся штампу на грунте хорошо известен в вибрационной сейсморазведке, аналогичный эффект возможен тут как результат постоянных слабых колебаний здания при нежестком закреплении.

Рис. 8. Траектории движения точек при ветровых колебаниях высотного здания в г. Москва: на 30 этаже и на фундаментной плите (положение точек показано на плане).

Существенно, что этот эффект отмечен нами для двух обследованных зданий в Москве - "Эдельвейс" и высотного главного корпуса МГУ. В качестве опорных для МГУ использовались результаты сейсмометрических работ, выполненных И.Л. Корчинским в 1950-х гг.

Важным вопросом организации сейсмометрического мониторинга является подбор датчиков и их размещение. Основные параметры для выбора типа датчика - частотный диапазон и чувствительность. Несомненно, что сейсмометр должен регистрировать собственные колебания основного тона и нескольких более высокий гармоник. Для высотных зданий основной тон лежит в диапазоне менее 1 Гц (обычно 0,2-0,8 Гц), частоты выше 25-30 Гц регистрировать нецелесообразно (полезный сигнал маскируется промышленными помехами). Таким образом, мониторинг должен вестись датчиками, ориентированными на сейсмологические наблюдения. В настоящее время нами опробованы различные типы датчиков:

- велосиметры - российские С-5-С, СМ-3, КМВ (конструкции ИФЗ РАН), и зарубежные - фирмы Guralp CMG-3ESPC (трехкомпонентный широкополосный с частотным диапазоном от 100 сек (0,01Гц) до 50 Гц и чувствительностью 2*10 000 В/м/с);

- акселерометры - конструкции ИФЗ РАН и фирмы Guralp CMG-5Т (трехкомпонентный форс-балансный).

Проведены испытания, в том числе с установкой на одном постаменте. По результатам испытаний для обследований зданий и сооружений приняты датчики фирмы Guralp CMG-5Т или отечественные СМ-3 (трехкомпонентная расстановка). Для стационарного мониторинга в соответствии с требованиями метрологии приняты датчики фирмы Guralp CMG-3ESPC и CMG-5Т, укомплектованные датчиками GPS для наблюдений в едином мировом времени и с автономной регистрацией на флеш-памяти устройством GSR-24 (фирмы GeoSIG). Такой подход позволяет оборудовать систему мониторинга не только датчиками по международному стандарту, но и в случае чрезвычайных ситуаций иметь сейсмический «черный ящик», содержащий информацию о происшествии. Размещение датчиков по зданию определяется его архитектурно-планировочным решением. Тут также существенную роль играют результаты аэродинамических испытаний макетов. На рис. 9 приведена схема статических (средних) ветровых нагрузок на фасад высотного корпуса на пр. Маршала Жукова в Москве. Видна явная неравномерность нагрузки, что создает предпосылку для дополнительных деформаций объекта. Для таких сложных зданий целесообразно устанавливать 4 датчика - по 2 на верхних этажах и на фундаментной плите, причем располагать их в противоположных концах плана для возможности выявления крутильных колебаний. Существенно, что датчики должны вести наблюдения в едином времени, что возможно путем синхронизации их по GPS-временным маркам. Для зданий более простой формы количество датчиков может быть уменьшено, вплоть до 1 шт., с размещением на верхнем этаже.

Рис. 9. Нагрузки на фасад высотного здания "Континенталь" в Москве по результатам аэродинамических испытаний макета (слева - наветренный, справа - подветренный фасады)

Опыт проектирования схем мониторинга, их монтажа и проведения наблюдений показывает эффективность использования в едином комплексе цифровых измерительных устройств различных типов, дающих сведения о состоянии конструкций и грунтов основания зданий. Инструменты мониторинга объединяются в единую схему с помощью программного комплекса, управляющего сбором, обработкой и анализом информации. Подбор и размещение датчиков определяется путем анализа материалов инженерно-геологических изысканий, расчетов статики и динамики сооружения, результатов аэродинамических испытаний макетов высотных зданий.

мониторинг проектирование здание высотный

Литература

1) Айме К.А. Мониторинг зданий и котлованов, ч. 2 //Строительные материалы, оборудование, технологии века, № 11, 2005, С. 37-39.

2) Временные нормы и правила проектирования многофункциональных высотных зданий и зданий-комплексов в г. Москве МГСН 4.19-2005. М., 2005. - 129 с.

3) ГОСТ Р 53778-2010 «Здания и сооружения. Правила обследования и мониторинга технического состояния».

4) Корчинский И.Л. Колебания высотных зданий, Науч. сообщ. вып. 11, ЦНИПС, М., 1953, 44 с.

5) Селезнев В.С., Еманов А.Ф., Барышев В.Г., Кузьменко А.П. Способ определения физического состояния зданий и сооружений. Патент РФ 2140625 С1, 17.02.98, Бюлл. № 30, 27.10.99.

6) Технический регламент о безопасности зданий и сооружений, введенный в действие Федеральным законом Российской Федерации от 30.12.2009 года N 384 - ФЗ

7) Шахраманьян М.А., Нигметов Г.М. и др. Способ динамических испытаний зданий. Патент РФ № 2141635, G01M7/00, 1999.

Интернет-источники:

1) www.dom6.ru

2) www. geodin.ru

3) http://www.kyowa.ru/products/civil/index.htm

4) http://www.ingil.ru/scientific-activities/16-monitoring.html

Приложения

Приложение I

Форма заключения (текущего) по этапу общего мониторинга технического состояния зданий (сооружений)

Заключение составляется головной организацией по результатам этапа общего мониторинга технического состояния зданий (сооружений).

заключение по этапу общего мониторинга технического состояния зданий (сооружений)

1

Перечень адресов объектов

2

Номер этапа мониторинга

3

Время проведения этапа мониторинга

4

Головная организация этапа мониторинга

5

Перечень организаций, проводивших этап мониторинга технического состояния объектов, с указанием, какой объект обследовался и какой организацией.

6

Перечень объектов, категория технического состояния которых соответствует ограниченно работоспособному состоянию.

7

Перечень объектов, категория технического состояния которых соответствует аварийному состоянию.

8

Общая оценка ситуации

9

Информация, требующая экстренного решения возникших проблем безопасности

Приложение II

Форма паспорта здания (сооружения), заполняемого при общем мониторинге зданий (сооружений)

Паспорт здания (сооружения)

1

Адрес объекта

2

Время составления паспорта

3

Организация, составившая паспорт

4

Назначение объекта

5

Тип проекта объекта

6

Число этажей объекта

7

Наименование собственника объекта

8

Адрес собственника объекта

9

Степень ответственности объекта

10

Год ввода объекта в эксплуатацию

11

Конструктивный тип объекта

12

Форма объекта в плане

13

Категория деформационного состояния объекта

14

Тип воздействия наиболее опасного для объекта

15

Период основного тона собственных колебаний вдоль большой оси

16

Период основного тона собственных колебаний вдоль малой оси

17

Период основного тона собственных колебаний вдоль вертикальной оси

18

Логарифмический декремент основного тона собственных колебаний вдоль большой оси

19

Логарифмический декремент основного тона собственных колебаний вдоль малой оси

20

Логарифмический декремент основного тона собственных колебаний вдоль вертикальной оси

21

Значение крена объекта вдоль большой оси

22

Значение крена объекта вдоль малой оси

23

Фотографии объекта

Приложение III

Форма заключения (текущего) по этапу мониторинга технического состояния объекта при общем мониторинге зданий (сооружений)

заключение по этапу мониторинга технического состояния

объекта при общем мониторинге технического

состояния зданий и сооружений

1

Адрес объекта

2

Номер этапа мониторинга

3

Время проведения этапа мониторинга

4

Организация, проводившая этап мониторинга

5

Предыдущее значение крена объекта вдоль большой оси

6

Текущее значение крена объекта вдоль большой оси

7

Предыдущее значение крена объекта вдоль малой оси

8

Текущее значение крена объекта вдоль малой оси

9

Предыдущее значение периода основного тона собственных колебаний вдоль большой оси

10

Текущее значение периода основного тона собственных колебаний вдоль большой оси

11

Предыдущее значение периода основного тона собственных колебаний вдоль малой оси

12

Текущее значение периода основного тона собственных колебаний вдоль малой оси

13

Предыдущее значение периода основного тона собственных колебаний вдоль вертикальной оси

14

Текущее значение периода основного тона собственных колебаний вдоль вертикальной оси

15

Предыдущее значение логарифмического декремента основного тона собственных колебаний вдоль большой оси

16

Текущее значение логарифмического декремента основного тона собственных колебаний вдоль большой оси

17

Предыдущее значение логарифмического декремента основного тона собственных колебаний вдоль малой оси

18

Текущее значение логарифмического декремента основного тона собственных колебаний вдоль малой оси

19

Предыдущее значение логарифмического декремента основного тона собственных колебаний вдоль вертикальной оси

20

Текущее значение логарифмического декремента основного тона собственных колебаний вдоль вертикальной оси

21

Установленная категория технического состояния объекта

22

Собственник объекта

Приложение IV

Форма заключения (текущего) по мониторингу технического состояния здания, находящегося в ограниченно работоспособном или аварийном состоянии

заключение по этапу мониторинга технического состояния

объекта

1

Адрес объекта

2

Номер этапа мониторинга

3

Время проведения этапа мониторинга

4

Организация, проводившая этап мониторинга

5

Наличие изменения ранее выявленных дефектов и повреждений

6

Появление новых дефектов и повреждений

7

Предыдущее значение крена объекта вдоль большой оси

8

Текущее значение крена объекта вдоль большой оси

9

Предыдущее значение крена объекта вдоль малой оси

10

Текущее значение крена объекта вдоль малой оси

11

Предыдущее значение периода основного тона собственных колебаний вдоль большой оси

12

Текущее значение периода основного тона собственных колебаний вдоль большой оси

13

Предыдущее значение периода основного тона собственных колебаний вдоль малой оси

14

Текущее значение периода основного тона собственных колебаний вдоль малой оси

15

Предыдущее значение периода основного тона собственных колебаний вдоль вертикальной оси

16

Текущее значение периода основного тона собственных колебаний вдоль вертикальной оси

17

Предыдущее значение логарифмического декремента основного тона собственных колебаний вдоль большой оси

18

Текущее значение логарифмического декремента основного тона собственных колебаний вдоль большой оси

19

Предыдущее значение логарифмического декремента основного тона собственных колебаний вдоль малой оси

20

Текущее значение логарифмического декремента основного тона собственных колебаний вдоль малой оси

21

Предыдущее значение логарифмического декремента основного тона собственных колебаний вдоль вертикальной оси

22

Текущее значение логарифмического декремента основного тона собственных колебаний вдоль вертикальной оси

23

Установленная категория технического состояния объекта

24

Собственник объекта

Приложение V

Форма заключения (текущего) по мониторингу технического состояния зданий (сооружений), попадающих в зону влияния нового строительства и природно-техногенных воздействий

Составляется головной организацией по результатам этапа мониторинга технического состояния зданий и сооружений, попадающих в зону влияния нового строительства и природно-техногенных воздействий.

заключение по этапу мониторинга технического состояния

объектов, попадающих в зону влияния нового строительства

и природно-техногенных воздействий

1

Информация, определяющая местонахождение и тип воздействия (эпицентр природно-техногенного воздействия, адрес стройки)

2

Номер этапа мониторинга

3

Время проведения этапа мониторинга

4

Радиус зоны влияния воздействия

5

Перечень объектов, попадающих в зону влияния воздействия

6

Головная организация этапа мониторинга

7

Перечень организаций, проводивших этап мониторинга технического состояния объектов, с указанием, какой объект обследовался и какой организацией.

8

Перечень объектов, категория технического состояния которых соответствует ограниченно работоспособному состоянию.

9

Перечень объектов, категория технического состояния которых соответствует аварийному состоянию.

10

Общая оценка ситуации

11

Информация, требующая экстренного решения возникших проблем безопасности

Приложение VI

Приборы для мониторинга зданий и сооружений

ь Датчики напряжений серии BR-BT позволяют непосредственно измерять напряжения в бетоне, а не получать значения путём определения деформации. С помощью функции измерения температуры можно одновременно измерять напряжения и температуру.

ь Датчики грунтового давления серии GTI-E201-S созданы для спуска в скважину, проделанную в точке измерения. Это не только избавляет от необходимости проведения широкомасштабных земляных, восстановительных и насыпных работ, но и позволяет выполнять измерения, не нарушая структуры места измерения.

ь Тензометрические датчики серии BS-25AT/BS-25BT предназначены для измерения деформации, возникающей внутри бетона со сравнительно большой долей заполнителей. Так как данные датчики имеют функцию измерения температуры, с их помощью можно одновременно измерять температуру и деформацию.

ь Датчики напряжения серии BFD-A-TS созданы для измерения напряжения арматурных стержней, чьи номинальные диаметры больше диаметров при измерениях датчиками серии BF-CT. Датчики серии BFD-A-TS также монтируются путём приваривания обоих концов к арматурному стержню. Существует несколько моделей датчиков на выбор в соответствии с диаметром арматурных стержней. Каждая модель имеет функцию измерения температуры для одновременного измерения напряжения и температуры.

ь Датчики серии BT-100B встраиваются в бетон или устанавливаются в грунте и предназначены для измерения распределения температуры конструкций или измерения температуры для компенсации коэффициента линейного расширения бетона.

ь Комбинированные датчики серии BJ-AT вставляются на стыке примыкающих друг к другу бетонных блоков и предназначены для измерения зазора между блоками. Функция измерения температуры позволяет выполнять одновременное измерение смещения и температуры. Кроме того, для измерения трещин в бетоне или скалистом основании благодаря специализированному приёмнику можно заделывать датчики в бетон, а монтажные ножки или крепления позволяют устанавливать датчик на поверхности.

ь Датчики смещения серий BJB-C-S, BJB-D-S и BJB-E-S используются для измерения смещения скального основания и осадки грунта. Доступны различные модели на выбор в соответствии с диапазоном измерения, размерами и условиями проведения исследований.

ь Датчики серии BJC-AT созданы для измерения трещин внутри бетона, в который они заделаны. С помощью комбинированного датчика серии BJ-AT проводится измерение трещин, образующиеся между комбинированным датчиком и наконечником соединенного с ним удлиняющего стержня.

ь Датчики серии BEM-A - датчики подземного грунтового давления с диаметром чувствительной поверхности 80мм. Конструкция из нержавеющей стали позволяет применять датчики на море.

ь Датчики линейного перемещения серии DT-A имеют в основе тезометрический принцип преобразования и предназначены для долговременных стабильных измерений. Позволяют проводить измерения относительных и абсолютных перемещений от нулевой точки.

Размещено на Allbest.ru


Подобные документы

  • Структурированные системы мониторинга и управления инженерными системами зданий и сооружений. Источники данных и контроль состояния конструкций. Алгоритмы, применяемые при мониторинге строительных конструкций. Датчики, применяемые в системах мониторинга.

    курсовая работа [54,6 K], добавлен 25.10.2015

  • Обследование технического состояния строительных конструкций является самостоятельным направлением строительной деятельности. Оно занимается обеспечением эксплуатационной надежности зданий и разработкой проектной документации по реконструкции зданий.

    контрольная работа [27,8 K], добавлен 21.01.2009

  • Организация работ по технической эксплуатации зданий и сооружений. Виды ремонтов: текущий и капитальный. Техническое состояние здания и факторы, вызывающие изменения его работоспособности. Физический и моральный износ сооружений, срок их службы.

    реферат [37,9 K], добавлен 22.07.2014

  • Общие сведения о зданиях и сооружениях. Организация работ по технической эксплуатации сооружений, продолжительность их эксплуатации. Параметры, характеризующие техническое состояние постройки. Особенности конструкций жилых зданий старой постройки.

    реферат [30,6 K], добавлен 01.12.2010

  • Цель и виды технического обследования. Проведение обмерных работ, определение фактических размеров зданий, сооружений, внутренних помещений. Измерение отклонений положения и прогибов горизонтальных конструкций. Методы контроля прочности сооружений.

    презентация [1,0 M], добавлен 26.08.2013

  • Оценка технического состояния как установление степени повреждения и категории технического состояния строительных конструкций или зданий и сооружений, этапы и принципы ее проведения. Цели обследования строительных конструкций, анализ результатов.

    контрольная работа [26,6 K], добавлен 28.06.2010

  • Характеристика основных этапов работ по обследованию конструкций, зданий и сооружений. Составление инженерно-технического отчета. Используемые приборы при обследовании. Обследование железобетонных плит и ригелей. Формирование цены в ООО "Реконструкция".

    отчет по практике [33,0 K], добавлен 19.10.2011

  • Частичный или полный ремонт деревянных конструкций. Методика обследования деревянных частей зданий и сооружений. Фиксация повреждений деревянных частей зданий и сооружений. Защита деревянных конструкций от возгорания. Использование крепежных изделий.

    презентация [1,4 M], добавлен 14.03.2016

  • Организация работ по технической эксплуатации зданий и сооружений, основные критерии оценки их состояния. Система планово-предупредительного ремонта. Основные причины физического износа строений, методы его определения. Нормативные сроки службы зданий.

    реферат [33,3 K], добавлен 15.05.2009

  • Знакомство с основными признаками, характеризующими техническое состояние деревянных частей зданий и сооружений: нарушение геометрической неизменяемости, температурно-влажностные условия эксплуатации. Анализ принципов реконструкции жилых зданий.

    реферат [632,0 K], добавлен 28.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.