Эниология и архитектура

Понятие архитектуры. Феномены энергоинформационного обмена в архитектуре. Явления и их взаимодействия. Эниология архитектурных форм: пирамиды и шатры, складки и ребра, своды и купола, арки, круглые формы, производные формы. Применение эниологии форм.

Рубрика Строительство и архитектура
Вид курсовая работа
Язык русский
Дата добавления 12.11.2010
Размер файла 70,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таким образом, напрашивается вывод, что крупные формы являются средством выравнивания энергоинформационных характеристик в обитаемом пространстве. Обогащенная круглой пластикой архитектура может быть средством снижения патогенности.

3.5 Производные формы

К производным формам предлагается относить пространственные образования, обладающие совокупностью свойств простейших форм:

1) формы второго порядка, то есть образованные сочетания одной или двух простейших;

2) сложные формы третьего и более высоких порядков.

К формам второго порядка относится конус (шатровая форма), имеющий круглое в плане основание и лучевую образующую. Конус обладает свойствами, близкими к свойствам пирамиды, но отличается от нее независимостью магнитной ориентации (для пирамиды меридиональная ориентация -- средство усиления эффекта), более слабыми полевыми проявлениями, равномерностью поля по периметру.

К формам третьего порядка можно в первую очередь отнести призмы. Эти архитектурные формы являются чаще всего основой зданий и сооружений, их фрагментов. Трехгранные призмы встречаются редко. Чаще всего здания формируются из прямоугольных призм, но и многогранные призмы, применяемые обычно для башен, барабанов, малых форм, могут встретиться, особенно в реконструируемых зданиях. Традиционно призмы представляют образованными из плоскостей. В этом случае поля призмы аналитически представить трудно. Но если представить призму как совокупность простейших форм -- пирамид, то возникает форма второго порядка, поля которой суммируются из полевых характеристик входящих пирамид. Призмы образуются трехгранными пирамидами, сочлененными по граням. Совокупные полевые свойства проявляются как сумма полевых свойств пирамид и ребер. Это особенно наглядно видно на примере прямоугольных призм -- параллелепипедов, лежащих в основе архитектуры большинства зданий. Шалаши могли иметь форму пирамиды, конуса, призмы. Каменные постройки -- гэр, ложный свод, свод являлись сочетанием призм. С течением времени монопространственные ячейки блокировались, а отдельные объемы плоско перекрывались, и лишь затем возводились покрытия. Возникла устойчивая параллелепипедная форма помещения.

Вопрос комфортности и безопасности такого объема возникает особенно остро в связи с массовым жилым строительством панельных зданий и реконструкцией существующего жилого фонда. Две стороны этого вопроса представляют особый интерес в зданиях с ячеистой параллелепипедной структурой -- форма как пространство жизнедеятельности и форма как энергетический генератор, влияющий на состояние здоровья и активности человека. С точки зрения жизнедеятельности у параллелепипеда выявлено много достоинств, связанных с технологией производства и модульностью формы и размеров,-- вот основное, что сделало такую форму столь распространенной в течение веков по всему миру. Прямой угол и прямая линия легли в его основу. При изменении масштаба основные свойства пространства сохраняются. Отмечается нейтральность и универсальность по отношению к эргономическим характеристикам жизнедеятельности.

Параллелепипед -- самая заурядная и массовая пространственная форма -- образован шестью плоскостями, пересекающимися под прямым углом . Попробуем построить параллелепипед не из плоскостных, а объемных элементов. За основу возьмем элементарную пространственную форму -- в каждой вершине углов параллелепипеда находится 3-гранная прямоугольная пирамида; 8 пирамид, взаимно встречно состыкованные гранями, образуют исследуемый объем .

В кубе все диагонали сходятся в его центре, и можно предположить, что образованные ими 4 квазипирамиды со взаимно противоположно направленными вершинами, сходящимися в центре куба, взаимно гасят собственную энергию. В параллелепипеде происходит иная картина. Если торцевые стенки -- квадраты, то внутри объема содержатся 2 квазипирамиды, такие же, как и в кубе, и 4 вальмовые призмы, их разъединяющие. Во всех случаях по линии фокусов Рг и Р происходит взаимодействие полей, образованных торцевыми энергетическими квазиструктурами, и эта зона представляется наиболее энергоактивной. В более общем случае при неквадратных торцах параллелепипеда вместо пирамид образуются вальмы и фокусные точки преобразуются в линии (энергогребни вальм). Таким образом, согласно предложенной гипотезе внутреннее поле параллелепипеда структурировано и имеет энергозначимые зоны и линии разной напряженности поля формы.

Для жилища одной из важнейших характеристик формы являются пропорции. Их роль существенна при определении высоты помещения, пределы которой в последние десятилетия минимизируют . Существует физический минимум высоты помещения для различных видов деятельности и ее длительности. Этот лимит основывается на самолокации излучений мозга, что доказано Г. А. Сергеевым в его лабораторных опытах в Ленинграде более четверти века назад. Здесь же следует учитывать и эффект интерференции от группы участников процесса, усиливающей самооблучение (улавливание собственного отраженного сигнала) на частотах клеток мозга. При этом, материал потолка является не полностью прозрачным для такого излучения. Но замечено, что эффект придавленности возникает и в помещениях с высотой более физического минимума, но с пропорциями, развитыми активно по горизонтали. Можно с уверенностью предположить, что здесь образуется информационный сигнал на базе энергохарактеристик пропорционального строя объема, близких по параметрам к тем, которые возникают при снижении физического минимума высоты. Возникает еще один предмет опытного исследования архитектурной формы элементарного пространства.

Возвращаясь к проблеме масштаба, есть основания утверждать, что мощность проявления энергоактивности формы соотносима с ее физическими размерами. Не исключено, что существуют пределы, в которых такая закономерность соблюдается.

При переходе к градостроительным формам пространства приходится сталкиваться с формами, образованными прерывистыми ограждениями, в частности не перекрытыми сверху. Эту область энергопроявлений формы еще предстоит изучать. В этой связи переход от одних энергоструктур к другим, в зависимости от масштаба и мощности проявлений, может быть представлен как непрерывная картина, обладающая единством принципа построения, где малые энергообразования одних форм, связанных со своим уровнем крупности или цельности объекта в виде сложившейся формы, могут образовывать на другом, более крупном уровне новые формы и соответствующие им энергообразования. В целом вся картина энергопроявлений образует энергоматрицу архитектурных и градостроительных форм, изучение которой может явиться ключом к пониманию композиционной роли архитектурных форм как важного энергоинформационного явления. В заключение попробуем представить сводную энергоматрицу ячеистой параллелепипедной структуры жилого дома как сочетание микроструктур в макроструктуре.

Целостная картина поля может быть рассмотрена как система зон энергоактивности квазиформ макросистемы дома и микросистем помещений в сочетании с полями излучения формы по ребрам ячеистой структуры конструкций, направленных как внутрь, так и наружу. Возникает необходимость количественных оценок и взаимосогласований напряженности полей и размеров формы на основе составленной качественной модели. Сочетание количественно-качественных характеристик позволяет говорить о возникновении энергоинформационной теории элементарных архитектурных форм на основе параллелепипеда. Принимая за основу поля пирамиды и параллелепипеда, в нашей работе мы впервые предложили атлас зон энергоактивности полей простых архитектурных форм. В процессе его разработки поля форм, характерных для жилой застройки, были сначала спрогнозированы, а затем эта гипотеза была проверена экспериментальным путем. Эксперимент проводился несколькими операторами биолокации, и затем результаты были откорректированы приборными исследованиями напряженности естественного электромагнитного поля по вторичным признакам трещиноватости и частичным разрушениям материалов и конструкций зданий, а также по заболеваниям и искривлению стволов деревьев, находящихся в зоне действия объема здания. В ходе исследования установлены зоны энергоактивности в интерьерах и внешнем пространстве зданий, соответствующие принципам энергоматриц. Практическая проверка проводилась в натуре на придомовом участке, в шахтах лестниц и лифтов, в квартирах. Установлено также, что в зонах пересечения архитектурных форм полями (смена знака эпюры напряженности поля) наиболее проявляются разрушения конструкций. Так, в арках кирпичных зданий трещиноватость проявляется по диагонали от центра арки вверх.

В зонах повышенной интенсивности поля на выпуклых углах, особенно высоких зданий, чаще обрушивается кладка и цоколи. Деревья, посаженные при благоустройстве реконструируемых зданий, формой ствола описывают эквинапряженную линию объемного поля здания, причем чем дерево ближе к зданию, тем сильней проявляется этот эффект.

Аналогично можно рассмотреть и другие формы второго порядка -- овальные залы, перистили, сводчатые нефы базиликальных зданий. На этой основе создан атлас эниопроявлений архитектурных форм от простейших или элементарных до сложных композиций. Он неполон, это лишь основа топологического каталога форм, но для архитектурного творчества это необходимо, без этого трудно ответственно осознавать роль применяемых в проекте решений. Для завершения проводимого анализа форм необходимо рассмотреть и класс сложных и сложнейших форм -- третьего и более высоких порядков. Этот класс форм образуется сложным структурным сочетанием нескольких разнообразных форм, и их полевые характеристики не приводятся к явному виду. Очевидна их информационная насыщенность, их роль в композиции чаще всего доминанта. В реконструируемой застройке культовых зданий мы часто встречаемся с формами третьего порядка. Одной из наиболее популярных форм является луковичный купол . Он может «садиться» на барабан или шатер. Исследования показывают, что эниоэпюра внешнего поля имеет также лукообразную форму, но неравномерно обтекающую купол. Топологическая основа включает три входящие формы: цилиндр, сферу (чаще сплющенную), усеченную снизу, и конус. Сложение эпюр напряженностей полей этих фигур образует суммарную картину, соответствующую полю всей сложной формы. Бочечное покрытие имеет эпюру сходного вида, но отражающую линейное образование формы луковичной образующей.

Обратим также внимание на сходство рассмотренной полевой структуры с формой пламени свечи и обтеканием круглого экрана потоком. Всюду наблюдается каплевидность сечения, напоминающая аэродинамические ситуации обтекания тел воздушным потоком. Есть основания считать, что здесь общие физические основы. Капля является оптимальной пространственной формой невозмущенной энергии в пространстве, защищенном круглым экраном.

К формам высших порядков относятся также гиперболоиды, сложные раковины и, естественно, архитектурные обломы и ордера. Все они поддаются исследованию с целью получения эпюр полей формы сложением эпюр входящих простых форм.

3.6 Применение эниологии форм

С точки зрения патогенности полевые эффекты архитектурных форм проявляются:

1. Как катализатор (усилитель) патогенного воздействия от других факторов при существенном отличии напряженности поля от фоновой.

2. Как источник вредного воздействия:

-- в зонах повышенной напряженности (или высокого градиента) поля формы, как правило, при значительных размерах архитектурного объекта;

-- в зонах направленного воздействия концентрических конусоидальных и пирамидальных форм;

-- в зонах пересечения излучений нескольких форм значительных размеров, где происходит суммирование равнозначных эффектов.

Целесообразно в ходе проектирования или предпроектного анализа исследовать воздействия форм, в том числе по эпюрам, и с учетом этой информации определять потенциальные зоны энергоинформационного, а в его составе и патогенного риска. Те же задачи решаются при проектировании нового строительства при реконструкции зданий и сооружений жилой среды. В зданиях исследуются как эффекты внешнего воздействия, так и полевые эффекты в помещениях. Архитектор может фактически управлять энергоинформационным микроклиматом через форморегулирование в пространстве. В число патогенных эффектов могут быть включены стрессовые ситуации, провоцируемые архитектурным решением. Стрессогенным фактором принято считать такие формообразования, полевые воздействия которых приводят к явной или потенциальной деформации полевых образований человека. Ассоциативный опыт человека заставляет его реагировать на стрессогенный фактор еще с момента первой зрительной фиксации такой формы, как бы примеряя ее на себя. Такие ситуации возникают при недостаточных высотах и неудачных формах коммуникационных пространств и в их числе арок, проемов, порталов, дверей. Похожий эффект провоцируется «замаскированными» входами в здания, пешеходными дорогами и проходами, не ведущими непосредственно ко входам, нависающими низко конструкциями и т. п. Это порождает психологический дискомфорт, чувство опасности, что как следствие вызывает неадекватность поведенческих реакций.

Для повышения комфортности необходимо использовать архитектурные формы пространства зданий и сооружений, не нарушающие энергоинформационные свойства планируемых процессов жизнедеятельности. Рекомендуется использовать пластику ограждающих поверхностей для формирования необходимого эффекта. В качестве примеров приведем отдельные рекомендации, касающиеся некоторых конкретных ситуаций:

--следует использовать средства архитектурной пластики для акцентирования входов в здание, при этом не следует использовать выступающую пластику балконов или параллелепипедные ниши, создающие стрессогенный эффект;

--постель в алькове прямоугольной формы следует располагать головой к торцу алькова, чем обеспечивается снятие избытка энергии от головы и подпитка двигательных энергоцентров организма во время сна;

--в прямоугольных и трапециевидных эркерах не целесообразно размещать рабочее место со столом, так как в этом случае за счет отбора энергии падает эффективность работы, стимулируется повышенная усталость, напротив, размещенное там место отдыха обеспечит снятие излишка возбуждения; для этой же цели место индивидуального отдыха может быть расположено в углу помещения;

--для уменьшения оттока энергии и снятия излишка напряжений в конструкциях вогнутые углы могут быть скруглены или отделаны архитектурными профилями;

--в общественных зданиях в зальных пространствах для сохранения комфортного энергоинформационного микроклимата места деятельности небольших групп могут пластически выделяться в отдельные функциональные зоны в виде лоджий, лож, балконов, ниш с соответствующей планируемым процессам формой. Управление энергетикой микроклимата зданий с помощью архитектурной пластики позволяет в ряде случаев снизить неблагоприятность полевых воздействий или использовать их с целью достижения наиболее благоприятного эффекта.

3.7 Опыт полевого подхода к построению ордеров

С ордерами начинающий архитектор сталкивается еще при подготовке в высшую архитектурную школу. А на втором курсе он уже должен их знать обстоятельно. В основном педагоги предлагают их вызубрить. Заучиваются на память сложные очертания каждого ордера и отдельных деталей, пропорции в долях ордера. Архитекторы выучиваются чертить и рисовать волюты, ионики, акантовые листья, триглифы, модульоды карнизов. Однако что двигало древним зодчим Эллады, остается, как правило, тайной, а сам процесс заучивания -- мукой. Деревянный прототип мало объясняет пластику деталей ордеров, он лишь объясняет самый общий конструктивный подход.

Стройную и логичную картину более 20 лет назад предложил профессор МАРХИ М. С. Бернштейн, преподаватель сопромата, которая показывает пластику ордеров с позиций эпюры сил, возникающих в конструкции ордера. Эту идею разовьем с позиций полевого подхода. Первым и предельно логичным в ряду ордеров является дорический ордер. Он представляет идею передачи равномерно распределенной нагрузки покрытия через антаблемент в форму сосредоточенной нагрузки в колонне с последующим превращением ее опять в равномерно распределенную на стилобате. Действующую в столбе колонны сосредоточенную силу в плане можно считать точкой. Равнонапряженная линия поля этой силы опишет круг, поэтому он и является образующей плана колонны. Вертикально стоящий цилиндр не будет устойчив и прочен -- эпюры его поля форм создадут напряженную ситуацию у головы и основания. Чтобы препятствовать этому, древние греки превращают столб в форму, основой которой становится усеченный конус. Стекающие по его поверхности потоки образуют выпуклую эниоэпюру; точно так же выпучится колонна, если будет пластичной, мягкой. Это и есть энтазис -- скругление ствола колонны. Можно предположить, что каннелюры организуют сток энергопотоков струями, для чего им была придана форма полукруглого канала. Вместе с этим увеличивается периметральная поверхность, а стало быть, уменьшаются удельные полевые характеристики -- растет прочность.

Наверху, чтобы предохранить архитрав, уложена квадратная плита -- абака. Через нее начинается сосредоточение нагрузки на колонну.

Пластичный верх ствола начал бы конически сплющиваться по эпюре сил, а непластичный -- разрушаться и выкрашиваться. Таким образом, предопределяется появление усеченного конического элемента -- эхина. Он тоже отражает и пластику нагрузки и эниоэпюру поверхностной энергии. Проявляется это в форме сплошной скоции -- вспученной округлой образующей. В общем виде ордер состоялся. Так же можно проанализировать фриз, другие части ордера. Все это можно было бы считать надуманным, притянутым, но уж слишком много совпадений для случайного. Скорее можно говорить о закономерном. В дальнейшем форма эхина меняется, приближается к тору. Уже в ионическом ордере эхин имеет торообразную форму. Но главное отличие ионического ордера в том, что капитель дополнилась волютами, а пропорции ствола удлинились.

Если ионическую капитель рассматривать как фильтр или демпфер, защищающий колонну от силового энергопотока, то волюты являются местами турбулентного срыва с высокой интенсивностью, и тем самым они регулируют выравнивание энергопотока на колонне.

Образование волют проследить нетрудно: достаточно взять тонкую фольгу и, проложив между балкой и стволом, нагрузить. Свободные края начнут сворачиваться вниз, образуя спираль в сечении.

Еще проще логика коринфской капители, где коническое «ведро» эхина в три ряда обвязано окантовыми листьями, которые отгибаются по тому же принципу, что и волюты . Вывод напрашивается сам собой -- в основу идеологии ордеров были положены принципы энергоинформобмена. Именно этот факт и предопределил их долгую жизнь в разных странах и в разные эпохи.

Хорошо видна пластика, повторяющая эниоэпюры, ордер как бы вылеплен из пластичного материала

Любопытен характер развала колоннады, что соответствует эпюре поля всего объема

Заключение

Никому, кроме архитектора, не дано связать в едином решении функцию и энергоинформационные свойства среды, где эта функция протекает. Только он, формируя пространственные ограничения, собственно и создает микроклимат нашего окружения. Так было всегда, должно происходить и сейчас. Выделение из архитектурной деятельности отдельных направлений играет лишь вспомогательную роль. Ответственным за окончательный результат должен оставаться архитектор, на то он и «архи», то есть главный. Основной задачей архитектурного, равно как и градостроительного проектирования остается организация пространства для функций жизнедеятельности. Подключение к функциональным задачам технологов и гигиенистов может способствовать лишь уточнению и детализации процессов и требований к ним. Как только здесь наступает ясность, главная роль архитекторов проявляется во всей полноте ответственности за создаваемое решение. В первую очередь, это эргономический аспект: выявление потребного пространства для планируемого протекания функциональных процессов. Удивительно, что архитекторы до сих пор не составляют эргономограммы функций, как это делают при проектировании транспортных средств, начиная с автомобильных и кончая космическими.

Существенное проявление полевых эффектов формы, напрямую связанных с образованием пластических решений и физическими размерами, расчленностью, пропорциональным строем, заставляет искать научно обоснованные подходы к оценке энергоинформационных воздействий архитектуры на человека. Задача получения желаемого энергоинформационного эффекта будет состоять из ряда иерархически связанных частных задач, среди которых как ведущие могут быть выделены:

-- нахождение комплексного эниоэффекта, возникающего в результате взаимодействия полей участка и собственно объекта;

-- определение комплексных эниоэффектов функционирующего объекта с учетом эниосвойств архитектуры, пользователей и совершаемых ими действий;

-- определение полевых стабильных свойств объемно-пространственных архитектурных решений градостроительных образований и комплексов как связанных эниосистем, зданий и сооружений и их групп;

-- выявление свойств применяемых пластических решений, декора, цветового решения элементов и на их основе получение желаемых вариантов энергоинформационного микроклимата.

Понятно, что, выполняя только чертежи планов, фасадов, разрезов и даже делая перспективные изображения или макеты, решить эти задачи обоснованно, да еще и доказать эту обоснованность чрезвычайно сложно, но необходимо. И потому в ближайшем будущем архитектурная часть проекта должна будет дополниться важным вспомогательным разделом -- энергоинформационным обоснованием принимаемого архитектурного решения.

Интуиция, опыт, вкус, наметанный глаз зодчего перестанут играть свою главенствующую роль в архитектурном процессе. Эниологическая часть архитектурного проекта расширяет инструментарий архитектора, дает ему уверенность и знания. Более того, возникает предпосылка для расширения палитры решений, новых находок, а стало быть, поднимает на более высокую ступень художественное мастерство зодчего.

Литература:

-Материалы международной научной конференции. Хоста, Сочи, 25-29 августа 2009 г. 388 «Геопатогенные зоны и энергоинформационный обмен в Архитектуре» Цаллагов С.Ф. Професор СКГМИ (ГТУ), Владикавказ

-Лимонад М.Ю., Циганов А.И. «Живые поля архитектуры»


Подобные документы

  • Применение в архитектуре цилиндрических и сферических поверхностей, так как они служат основой сводчатых покрытий зданий. Своды и купола сферической формы являются распространенным видом покрытий в архитектуре. Сложные не регулярного вида поверхности.

    доклад [509,1 K], добавлен 05.04.2009

  • Системы человеческого восприятия. Объемность и форма как основные характеристики объектов в пространстве. Особенности ассоциативного воздействия пространственной формы. Использование геометрических и природных форм в современной архитектуре и интерьере.

    презентация [6,9 M], добавлен 20.04.2015

  • Направления новейшей архитектуры. Интеграция архитектурных объектов и поверхности земли. Идея взаимодействия "человек-природа-архитектура" на уровне формообразования и пространственной организации объекта. Возникновение и развитие лэндформной архитектуры.

    презентация [3,1 M], добавлен 12.12.2015

  • Понятие архитектуры как искусства и науки строить, проектировать здания и сооружения. Архитектурные стили, востребованные в архитектуре, их применение в строительстве. Особенности византийского и готического стилей. Связь развития архитектуры и времени.

    презентация [1,5 M], добавлен 18.05.2015

  • Классификация и виды наиболее распространенных малых архитектурных форм. Садово-парковая мебель, ограды, мостики, вазоны и оборудование. Роль малых архитектурных форм в создании и украшении сада. Декоративное освещение фонтанов, каскадов и водопадов.

    реферат [21,1 K], добавлен 04.06.2015

  • Рассмотрение особенностей тектоники пространственных и природных форм как процесса эстетического освоения конструкций в архитектуре. Характеристика основных принципов выразительности предметных форм - тонического, тектонического и архитектонического.

    реферат [19,9 K], добавлен 21.02.2012

  • Преобладание светских мотивов всех сферах культурной жизни России XVII века, в том числе и в архитектуре. Шатер как одна из самых популярных архитектурных форм того времени. Особенности церковного зодчества. Особенности стиля "московское барокко".

    реферат [51,3 K], добавлен 20.03.2014

  • Особенности языка современной архитектуры. Творческие поиски прогрессивных направлений, принципов и приемов решения формы и содержания в архитектуре. Проявления постмодерна и хай-тека в творчестве новой генерации современных украинских архитекторов.

    презентация [6,6 M], добавлен 05.12.2013

  • Раскрытие содержания философии постмодернизма и оценка её влияния на становление нелинейного стиля как нового архитектурного метода. Новая модель мира и формы её воплощения в архитектурных реалиях нелинейных проектов. Критика нелинейной архитектуры.

    реферат [4,1 M], добавлен 27.04.2015

  • Священные, религиозные и святые здания. Стили храмовой архитектуры. Восточная школа культовой архитектуры. Архитектура Древнего Китая. Религии, оставившие свой след в архитектуре Китая. Основные исторические этапы развития китайской культовой архитектуры.

    реферат [1,7 M], добавлен 25.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.