Улучшение теплового и гидравлического режима системы теплоснабжения п. Победа г. Хабаровска
Тепловой и гидравлический расчет пластинчатых водонагревателей. Основные направления по экономии энергоресурсов в системе теплоснабжения. Определение и уточнение тепловых нагрузок. Перевод системы теплоснабжения на централизованное теплоснабжение.
Рубрика | Строительство и архитектура |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 13.08.2009 |
Размер файла | 3,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
напор - в зависимости от расчетного давления в тепловой сети и требуемого давления в присоединяемых системах потребления теплоты.
По расходу G=150 м3/час и требуемому напору H=55 м выбран насос марки К45/55 в количестве четырех штук (один резервный).
При выборе смесительных насосов для системы отопления, устанавливаемых в соответствии с пунктом 3.4 5 [18] на перемычке между подающим и обратным трубопроводом, следует принимать:
напор - на 2-3 метра более потерь в системе отопления;
подачу насоса по формуле:
(2.1)
где Gdo расчетный максимальный расход воды на отопление из тепловой сети, м3/час;
u - коэффициент смешения (для параметров 125-70 и 95-70 равен 1,2)
По напору 5 м и расходу 132 м3/час выбран насос марки ЦНШ-80 с частотой вращения 2000 об./мин. в количестве трех (один резервный).
3. Автоматизация теплового и гидравлического режима ЦТП
3.1 Цели и задачи автоматизации
Средства автоматизации (контроль, автоматическое регулирование, защита оборудования, блокировка и сигнализация) теплового и гидравлического режима ЦТП запроектированы в целях:
- безопасной работы;
- сокращения численности обслуживающего персонала;
- экономии теплоты и электроэнергии;
- учета отпущенной тепловой энергии и холодной воды.
Уровень автоматизации технологической схемы выбран в зависимости от технологических требований и экономической целесообразности.
Задачи автоматизации ЦТП:
- местный контроль параметров (температура и давление теплоносителя в подающем и обратном трубопроводе, на перемычке, до и после теплообменных аппаратов);
- регулирование подачи теплоты на отопление и горячее водоснабжение;
- пуск и остановка оборудования;
- регулирование давления;
- учет тепловой энергии и холодной воды;
- блокировка оборудования;
- сигнализация о рабочем состоянии оборудования (рабочая и аварийная);
3.2 Принципы работы локальных схем автоматики
Приборы первого уровня автоматизации работают по общепринятым правилам. При включении и отключении насосного оборудования предусмотрена блокировка работы электродвигателей повысительно-циркуляционных и подмешивающего насосов. Резервные насосы сблокированы с основными насосами по принципу “начало работы резервного оборудования при отключении основного”.
Регулирование температуры в подающем трубопроводе горячего водоснабжения осуществляется с помощью клапана на подающем трубопроводе сетевой воды к теплообменнику второй ступени. При повышении температуры в подающем трубопроводе горячего водоснабжения выше требуемой происходит прикрывание клапана сетевой воды на теплообменник второй ступени. При понижении температуры происходит обратный процесс.
Приготовление теплоносителя для системы отопления производится с помощью трехходового смесительного клапана по графику регулирования в зависимости от температуры наружного воздуха. При повышении температуры на подающем и обратном трубопроводе системы отопления происходит увеличение подмеса воды из обратного трубопровода. При понижении соответствующих температур в подающем трубопроводе системы отопления происходит уменьшение подмеса воды из обратного трубопровода.
Защита системы отопления от повышения давления производится установкой регулирующего клапана, настроенного на поддержание давления в системе отопления не более 6 кг/см2. Клапан, с регулированием давления «после себя», при увеличении давления сверх установленного, прикрывается, тем самым, понижая давление. При понижении давления происходит открытие клапана, сопротивление клапана уменьшается и за счет этого давление после клапана возрастает.
Аналогичный клапан установлен и на вводе водопровода к теплообменнику горячего водоснабжения.
3.3 Приборы и средства автоматизации
Приборы и средства автоматизации принципиальной схемы ЦТП представлены в таблице 3.1.
Таблица 3.1 - Приборы и средства автоматизации
4. Организация строительного производства
По заданию на дипломное проектирование в разделе организация строительного производства необходимо разработать проект производства работ на реконструкцию участка теплосети участке Руднева 33-45 в составе: календарный план производства работ, графики поступления на объект строительных конструкций и потребности в рабочих кадрах, технологические схемы с описанием последовательности и метода работ.
Монтажная схема и продольный профиль участка теплосети приведен в на листе 5 графической части дипломного проекта.
4.1 Определение объемов земляных работ
При разработке траншей с наклонными стенками для определения объема земляных работ вычисляют площади поперечного сечения на пикетах и используют формулу Мурзо:
(4.1)
где Fср - средняя площадь поперечного сечения, м2;
m - крутизна откоса, по [11,17] для суглинка равна 0,5;
h1, h2 - глубина траншеи в начале и конце участка, берется из продольного профиля сети;
L - длина расчетного участка;
Средняя площадь поперечного сечения Fср определяется по формуле:
(4.2)
где b - ширина траншеи по низу, принимается в зависимости от размера канала при подземной канальной прокладке;
hср - полусумма глубин траншеи в начале и конце участка.
Расчеты по (4.1-4.2) сведены в таблицу 4.1.
Таблица 4.1 Ведомость объемов земляных работ
№ уч. |
Рабочая отметка |
Полусумма рабочих отметок
|
Поправка
|
Расчетная площадь поперечного сечения Fср., м2 |
Длина участка L, м |
Объем работ, Vр, м3 |
|
1 2 3 4 5 6 7 8 9 |
1,30 2,10 1,85 1,81 1,87 1,14 1,30 2,00 1,40 |
1,70 1,97 1,83 1,84 1,50 - 1,65 1,7 |
0 0 0 0 0 - 0 0 |
7,99 9,79 8,84 8,91 6,75 - 7,67 7,99 |
33 40 52 80 69 - 39 22 |
264 392 460 713 465 - 299 176 |
|
ИТОГО |
335 |
2769 |
При подсчете объема грунта отвала выброшенного грунта необходимо учитывать, что при разработке грунт разрыхляется и поэтому его объем увеличивается, что характеризуется коэффициентом первоначального разрыхления.
С течением времени грунт постепенно уплотняется и разрыхленность его становится меньше первоначальной, что характеризуется коэффициентом остаточного разрыхления - Ко.р.
Объем грунта, необходимого для засыпки траншеи определяется по формуле:
(4.3)
где Vо.з. - объем грунта обратной засыпки, м3;
Vр - объем траншеи по геометрическим обмерам (расчетный);
Vс - объем сооружения, м3;
Ко.р. - коэффициент остаточного разрыхления.
Объем грунта, подлежащего выгрузке на транспорт:
(4.4)
где Vтр. - объем отвозимого грунта, м3
Объем работ по подчистке дна траншеи до проектной отметки определятся по формуле:
(4.5)
где Vр.д. - объем ручной доработки; b - ширина траншеи по дну; m - крутизна откоса выемки; hр.д. - глубина доработки (принята 0,1м); L - длина траншеи, м.
Определенные объемы земляных работ сведены в таблицу 4.2.
Таблица 4.2 - Баланс земляных масс
Наименование работ |
Объем грунта, м3 |
|||
Выемка |
Насыпь |
Транспорт |
||
Механизированная разработка грунта в траншее |
2769 |
2087 |
682 |
|
Ручная доработка |
103,8 |
|||
Обратная засыпка |
2087 |
4.2 Подбор оборудования для производства строительно-монтажных работ
В комплект машин для производства земляных работ входят экскаваторы, автосамосвалы и бульдозеры. Этим комплектом машин выполняются работы по отрывке траншеи, отвозе избыточного грунта, засыпке после завершения в ней монтажных работ.
Для разработки траншеи и котлованов наиболее часто используются одноковшовые экскаваторы ёмкостью 0,15 - 1,0 м3, оборудованные обратной лопатой или драглайном.
При определении требуемых параметров экскаваторов необходимо построить поперечное сечение траншеи в наиболее заглубленном месте (Рис 4.1).
Рис. 4.1 - Схема определения размеров отвала грунта и радиуса выгрузки экскаватора
Требуемый радиус выгрузки экскаватора обуславливается необходимостью устройства отвала грунта определенных размеров. Наиболее предпочтительной схемой движения экскаватора является перемещение экскаватора по оси траншеи.
Поперечное сечение отвала определяется по формуле:
(4.6)
где Fтр. - поперечного сечения траншеи, м2; Fс - площадь поперечного сечения укладываемых коммуникаций, м2; Кпр. - коэффициент первоначального разрыхления грунта в долях единицы.
Размеры отвала грунта:
(4.7)
(4.8)
где bотв. - ширина траншеи по дну, м;
hотв. - высота отвала, м;
- угол откоса свежевысыпанного грунта в градусах (45).
,
Требуемый радиус выгрузки определяется:
(4.9)
где а - берма траншеи (не менее 0,5м)
Высоту выгрузки принимаем hотв.+ 0,5м = 3,94 м
Выбираю экскаватор ЭО-33-22А (обратная лопата) с вместимостью ковша 0,4 м3.
Для монтажа деталей и конструкций систем теплогазоснабжения используют стреловые самоходные краны на автомобильном, пневмоколесном и гусеничном ходу.
На выбор типа крана оказывают влияния грунтовые условия, размеры поперечного сечения траншеи и масса монтируемых элементов. При этом необходимый вылет крюка крана при монтаже сборных элементов тепловых сетей определяется по формуле:
(4.10)
Где dн - наружный диаметр труб (включая все виды изоляции), м;
Z - расстояние между трубопроводом и наиболее выступающей частью крана, принимается равной 0,8 - 1м
Масса наиболее крупного (железобетонный блок сборных железобетонных камер) элемента составляет 5,2 т.
Выбираю кран КС-4561 и трубоукладчик ТГ-61.
Подбор бульдозера осуществляется исходя из среднего расстояния перемещения грунта из отвала в траншею. Ориентировочно её можно принимать равным расстоянию между осями траншеи и отвала. Подбираю бульдозер Д3-9, с расстоянием перемещения до 5м.
Технические характеристики бульдозера:
тип отвала: неповоротный
длина отвала: 2,56 м
высота отвала: 0,8 м
мощность: 75 л.с.
управление: гидравлическое
4.3 Основные решения по производству работ
4.3.1 Метод производства работ
1. Для производства работ в данном дипломном проекте применяется поточный метод. При поточном методе однородные процессы выполняются последовательно, а разнородные параллельно. Этот метод характеризуется минимальным потреблением ресурсов и небольшой продолжительностью монтажных работ.
2. Электроэнергия необходима для освещения, так как некоторые работы производятся во вторую смену
3. Вода необходима для работников объекта и для гидравлических испытаний тепловой сети
4. Кислород на строительной площадке требуется для резки металла
5. Количество бытовок для нужд рабочих - 4шт. (одно помещение на 10 рабочих).
6. Для строительно-монтажных работ требуется место для складирования материалов (изоляции, труб и т.д.). Количество мест складирования:
лотки на строительной площадке складируются на высоте 1,8м в 2-а ряда по горизонтали и по вертикали. Количество мест складирования считаю исходя из условия: максимальный вылет у крана применяемого на строительной площадке 7м, т. е., находясь на одном месте кран может уложить порядка 12 лотков. Следовательно:
Nобщ./12 = n [шт]. 721/12 = 60 шт.
Где Nобщ. - общее количество лотков
n - количество мест складирования.
На строительной площадке под лотки должно быть отведено 60 мест. В одной кладке 12 лотков.
Площадь складирования лотков составляет:
Площадь одного лотка - 0,9*3 = 2,7м2. Суммарная площадь необходимая для складирования лотков - 695м2.
Площадь складирования труб:
принимаю, количество труб укладываемых возле бровки траншеи из расчета, что вылет стрелы крана составляет 7м, а длина одной трубы 11м, 6 штук. Следовательно:
Lобщ. / 66м = l [шт]. 1594/66 = 24 шт.
где Lобщ. - общая длина всех труб привозимых на строительную площадку
l - количество мест складирования труб
Следовательно на строительной площадке нужно 24 места под трубы.
4.3.2 Определение трудоемкости строительно-монтажных операций
Расчет трудоемкости ручных и механизированных строительно-монтажных процессов, а также затрат машинного времени производится по ЕниР.
Трудоемкость работы в чел.-дн. определяется по формуле:
(4.9)
где Нвр. - норма времени на единицу работы, чел.-час;
V - объем работы в единицах измерения (принято в ЕНиР);
8 - продолжительность рабочей смены, ч.
Результаты расчетов приведены в приложении Г
4.4 Расчет основных технико-экономических показателей
Продолжительность монтажа теплосети - 16 дней
Вся трудоемкость составила - 159,5,01 чел/дн.
Средняя производительность по строительству составила - 105 %
Трудозатраты на монтаж теплосети - 145,01 чел/дн.
Максимальное количество работников - Nmax. - 15 человека
Среднее количество работников - Nср. - 8,56 человека
Коэффициент механизации производства - К = 0,09
4.5 Контроль качества производства работ
Приемку в эксплуатацию законченных строительством тепловых сетей производят в соответствии со СНиП III-3-76 и 111-30-74. Вновь построенные трубопроводы принимают в эксплуатацию комиссии в составе представителей заказчика, подрядчика и управления тепловых сетей (технадзора), а при непосредственном водоразборе и представителя санитарно-эпидемиологической службы. Трубопроводы с горячей водой (t>115°С) принимают в эксплуатацию в соответствии со СНиП III-30-74. Трубопроводы с рабочим давлением 0,07--1,6 МПа (0,7--16 кгс/см2) и температурой свыше 115°С принимают в эксплуатацию с учетом «Правил устройства и безопасности эксплуатации трубопроводов пара и горячей воды» без регистрации теплопроводов в органах Госгортехнадзора.
Сдаче в эксплуатацию законченного строительством всего объекта или его части (которая может самостоятельно эксплуатироваться) предшествует промежуточная приемка отдельных его частей или видов работ в процессе строительства. Промежуточной приемке, оформляемой соответствующими актами, подлежат: разбивка трассы, устройство оснований траншей и котлованов; укладка трубопроводов; сварка трубопроводов и закладных частей сборных конструкций, антикоррозионное покрытие труб; монтаж строительных конструкций; заделка и омоноличивание стыков, тепловая изоляция трубопроводов дренажные устройства; гидроизоляция строительных конструкций; устройство электрозащиты; растяжка П-образных компенсаторов; ревизия и испытание арматуры; сальниковые компенсаторы; засыпка траншей и котлованов; очистка внутренней поверхности груб, укладка футляров; промывка трубопроводов; гидравлическое или пневматическое испытание.
Состав актов на скрытые работы:
проверка уклона трубопроводов
проверка внутренней поверхности труб (определяется просвечиванием)
наружная поверхность труб (качество очистки)
антикоррозионное покрытие (материал)
тепловая изоляция (материал, толщина, корка)
строительная конструкция прокладки (№ чертежа)
Приемку в эксплуатацию теплопроводов осуществляют рабочие комиссии (от заказчика).
5. Экономика
5.1 Основы ценообразования строительной продукции в условиях рынка
Механизм формирования цен на строительную продукцию базируется на нормативных методах. Сметная стоимость строительной продукции на территории Российской Федерации определяется на основе МДС 81-1.99.
Сметная стоимость строительно-монтажных работ (СМР) сумма денежных средств для осуществления строительства в соответствии с проектной моделью.
Сметная стоимость является основой для определения размера капитальных вложений, финансирования строительства, формирования договорных цен на строительную продукцию, расчетов за выполненные подрядные работы.
В составе дипломного проекта выполнен локальный сметный расчет на реконструкцию участка квартальной тепловой сети.
Локальная смета составлена на основе сметно-нормативной базы, введенной в действие с 1.01.1984 г.
Для определения сметной стоимости СМР в ценах 2001 г. использован базисно-индексный метод. Расчетные индексы по видам работ к базе 1984 г. по состоянию на 1.04.2001 г. (Данные РегиоСтройИнформ).
По локальному сметному расчету определены все затраты, связанные с выполнением СМР, которые включают прямые затраты, накладные расходы и сметную прибыль. При разработке локальной сметы учитывались по сборникам ЕРЕР открытые и закрытые расценки. По открытым расценкам дополнительно учитывались на материальные ресурсы по СНиП IV-4-84 и прейскуранту 06-08 (оптовые цены на железобетонные и бетонные изделия и конструкции).
Для расчета приняты рекомендуемые нормы накладных расходов и сметной прибыли. Сметный расчет выполнен на основе исходных данных.
На основе сметного расчета в составе сметной документации сформирована договорная цена. Принятая заказчиком и подрядчиком договорная цена может быть пересмотрена по согласованию сторон. За итогом договорной цены показывается отдельной строкой сумма НДС.
5.2 Локальная смета на реконструкцию квартальной теплотрассы
Для формирования локальной сметы использованы следующие исходные данные:
Наименование объекта - Хабаровские тепловые сети (п. Победа, ул. Руднева № д. 33-45)
Территориальный район строительства - X (ЕРЕР-84, приложение 2)
Районный коэффициент к заработной плате - 1,3 (ЕРЕР-84, приложение 8)
Накладные расходы на СМР - 25,8 % (по установленным нормативам)
Сметная прибыль - 8 % (по установленным нормативам)
Коэффициент перехода от суммы накладных расходов к затратам труда - 0.0092
Доля заработной платы в составе накладных расходов - 0.18
Коэффициент перехода от заработной платы машиниста к затратам труда - 1,29
Индекс перехода от цен 1984 года к ценам 2001 года - 26,5
Объем работ принят в соответствии с конструктивными решениями по технологическим схемам. Локальная смета на реконструкцию квартальной теплотрассы приведена в приложении Д. Договорные цены реконструкцию квартальной теплотрассы приведены в таблице 5.1.
Таблица 5.1 - Ведомость договорных цен
Заказчик (генподрядчик) ____________________________
Генподрядчик (субподрядчик) ________________________
Составлена на основе локального сметного расчета и является приложением к договору подряда (субподряда) № 1 от 15.06.2001 г.
На реконструкцию участка тепловой сети
Ведомость свободной (договорной) цены на 357713 рублей
№ сметы |
Наименование объекта работ и затрат |
Сметная стоимость |
Договорная цена, т.руб. |
|||
Строительных работ, т.руб. |
Монтажных работ, т.руб. |
Прочие, т.руб. |
||||
1 |
Реконструкция квартальной теплотрассы. Строительно-монтажные работы. |
- |
259,212 |
- |
259,212 |
|
Прочие работы, относящиеся к деятельности подрядных (15%) |
- |
- |
38,882 |
38,882 |
||
ИТОГО |
259,212 |
38,882 |
298,094 |
|||
НДС (20%) |
59,618 |
|||||
ИТОГО с НДС |
357,713 |
Руководитель предприятия (организации) заказчика
Руководитель генподрядной (субподрядной) монтажной организации
5.3 Расчет годовых эксплуатационных затрат
5.3.1 Общие положения по расчету годовых эксплутационных затрат
В своей деятельности предприятие руководствуется принципами хозяйственного расчета в основу которого положена самоокупаемость. Основным показателем работы предприятия является себестоимость тепловой энергии. Снижение себестоимости можно достигнуть применением наиболее актуальных технологий в строительстве, эксплуатации, снижении тепловых потерь, применением автоматизированных систем управления, подготовкой квалифицированного персонала.
Годовые эксплутационные затраты одна из важных статей расходов.
При работе тепловой сети, в процессе её эксплуатации, возникают следующие затраты:
(5.1)
где Ст.э. - затраты на тепловую энергию
Са - амортизационные отчисления на полное восстановление первоначальной стоимости
Ск.р. - затраты на капитальный ремонт
Ст.р. - затраты на текущий ремонт
Сфзп - фонд заработной платы
Ссн. - отчисления на социальные нужды
Супр. - отчисления на управление, охрану труда и технику безопасности
(5.2)
Т - тариф на тепловую энергию бытовых потребителей
Q - годовой расход тепловой энергии
Тарифы на тепловую энергию введены в действие с 01.02.2001г. на основе решения региональной энергетической комиссии Хабаровского края.
5.3.2 Расчет и смета годовых эксплуатационных затрат
Исходные данные к расчету годовых эксплуатационных затрат
годовой расход тепловой энергии системы теплоснабжения Q=21803 Гкалл/год
тариф на тепловую энергию Т = 195 руб/Гкалл+20%НДС=259,212 руб./Гкалл
сметная стоимость СМР по системе теплоснабжения - 259,212 тыс.руб
норма амортизационных отчислений в процентах (%) от сметной стоимости СМР - 4%
нормы затрат на капитальный ремонт в процентах (%) от сметной стоимости СМР - 2%
нормы затрат на текущий ремонт в процентах (%) от сметной стоимости СМР - 1.2%
количество обслуживающего персонала - 2 слесаря III разряда
должностной оклад - 2100 руб.
районный коэффициент - 1.3
дальневосточная надбавка - 1.3
премия к должностному окладу - 20%
единый социальный налог - 35,6%
норма отчислений на управление, охрану труда и технику безопасности - 30%
Результаты сведены в таблицу 5.2.
Таблица №5.2 - Смета годовых эксплутационных затрат
Элементы затрат |
Затраты, руб\год |
Проценты |
|
Затраты на тепловую энергию |
5101902 |
96,56 |
|
Амортизационные отчисления |
11411 |
0,21 |
|
Затраты на текущий ремонт |
3423 |
0,06 |
|
Затраты на капитальный ремонт |
5705 |
0,10 |
|
Отчисления от ФЗП |
96768 |
1,83 |
|
Отчисления на социальные нужды |
35320 |
0,66 |
|
Отчисления на управление, охрану труда и технику безопасности |
29030 |
0,54 |
|
Всего |
5286656 |
100,00 |
Себестоимость тепловой энергии составляет:
Основные технико-экономические показатели проекта сведены в таблицу 5.3.
Таблица №5.3 - Основные технико-экономические показатели проекта
Наименование показателей |
Единицы измерения |
Количество |
|
Годовая производительность Часовая производительность Сметная стоимость Договорная цена Эксплуатационные затраты |
Гкал/год. т/ч. руб. руб. руб. |
21803 31,64 259212 357712 5286656 |
5.4 Основные направления по экономии энергоресурсов в системе теплоснабжения
Тепловые сети являются весьма дорогостоящими сооружениями, на их строительство и эксплуатацию затрачиваются значительные средства. В связи с повышением требований к чистоте воздушного бассейна городов и поселков крупные тепловые станции стали сооружать за пределами городской черты на значительном расстоянии от районов теплового потребления. Это вызывает необходимость строительства протяженных транзитных магистралей, что в свою очередь требует увеличения капитальных затрат. Бесперебойная и экономичная работа систем централизованного теплоснабжения зависит главным образом от качества строительства тепловых сетей и от того, насколько правильно осуществляется их техническая эксплуатация.
Основным фактором снижения стоимости строительства тепловых сетей является применение новых эффективных конструкций и материалов, прогрессивных методов строительства при комплексной механизации строительно-монтажных работ.
Стратегия теплосбережения основана на трех основных направлениях: учете тепла, тепло аудите и регулировании теплопотребления.
Для этого необходимо:
Большое внимание уделять вопросам экономии топливно-энергетических ресурсов. Переходить на независимые схемы присоединения потребителей, внедрять телемеханику и создавать АСУ систем теплоснабжения. Применять приборы учета воды и тепловой энергии, обеспечивать теплоснабжение города в оптимальных экономических режимах. Оперативно выявлять и устранять отказы в работе оборудования, ликвидировать утечки в тепловых сетях и подвалах здания, переходить на установку счетчиков горячей воды. Введение теплосчетчиков дает возможность теплосети более эффективно организовать процесс распределения тепла и его потребления. Обобщая опыт работы теплосети с абонентами имеющими приборный учет полученного тепла, для дальнейшего успешного внедрения теплосчетчиков и реализации программы энергосбережения необходимо обеспечить проведение комплекса мероприятий организационного, технического и научного плана. В результате расход воды у потребителей резко сокращается.
Строительство тепловых сетей необходимо выполнять используя современные конструкции теплопроводов с изоляцией из пенополиуретана в полиэтиленовой оболочке, это позволит на порядок сократить тепловые потери по сравнению с традиционными конструкциями
6. Охрана труда и окружающей среды
"Охрана труда в строительстве" является прикладной технической наукой, которая выявляет и изучает производственные опасности и профессиональные вредности и разрабатывает методы их предотвращения или ослабления с целью устранения производственных несчастных случаев и профессиональных заболеваний рабочих, аварий и пожаров.
Главными объектами исследования являются человек в процессе труда, производственная среда и обстановка, взаимосвязь человека с промышленным оборудованием, технологическими процессами, организация труда и производства. Опираясь на выводы классических и инженерных наук, охрана труда разрабатывает систему мероприятий, постоянно повышающих уровень безопасности труда в строительстве.
Методологической основой "Охраны труда в строительстве" является научный анализ условий труда, технологического процесса строительного производства, применяемых и получаемых строительных материалов и конструкций с точки зрения возможности возникновения в процессе строительства и эксплуатации зданий и сооружений, опасностей и вредностей. На основе такого анализа определяют опасные участки производства, выявляют возможные опасные ситуации и разрабатывают меры их предупреждения и ликвидации. Эти вопросы рассматриваются в динамике, в развитии, чтобы обеспечить дальнейший прогресс в охране труда. В основе дисциплины во всех её разделах заложено профилактическое начало.
6.1 Техника безопасности
Правила и нормы по технике безопасности направлены на защиту организма человека от физических травм, воздействия технических средств используемых в процессе труда. Они регулируют поведение людей, обеспечивающее безопасность труда с точки зрения устройства и размещения машин, строительных конструкций, зданий, сооружений и оборудования.
На строительных объектах используют самые различные виды строительных машин и механизмов. Основными строительными машинами являются краны, экскаваторы, подъёмники. Использование машин облегчает труд человека. Однако, в ряде случаев работа этого оборудования связана с производственной опасностью.
Строительные машины по сравнению с другими машинами работают в наиболее тяжёлых и неблагоприятных условиях. Безопасность при их эксплуатации, монтаже, демонтаже и перевозке зависит от состояния самой машины, вспомогательных устройств и приспособлений, рабочей площадки, а также перерабатываемых или перемещаемых материалов и грузов.
Безопасность строительных машин, производственного оборудования обеспечивается правильным выбором принципов их действия, кинематических схем, конструктивных решений, рабочих тел, параметров рабочих процессов, использованием различных защитных средств. Нужно стараться, чтобы защитные устройства позволяли решать несколько задач одновременно и по возможности конструктивно совмещались с машинами и агрегатами, являясь их составной частью. Корпуса машин, механизмов должны обеспечивать не только ограждение опасных элементов, но и способствовать снижению уровня их шума и вибрации. Особо важное значение в обеспечении надёжности имеет прочность конструктивных элементов. Прочность характеризует способность конструкции сопротивляться внешним воздействиям без разрушения и значительных деформаций. Большое значение в обеспечении надёжной работы машин и механизмов имеет наличие необходимых контрольно-измерительных приборов и устройств автоматического управления и регулирования. При установке передвижных, свободно стоящих строительных машин и механизмов должна быть обеспечена их устойчивость как при работе, так и в нерабочем состоянии. Устойчивость любой строительной машины является необходимым условием безопасной её эксплуатации. Устойчивость стационарных машин обеспечивается за счёт правильной их установки на надёжное основание в строго горизонтальном и вертикальном положениях. Устойчивость самоходных кранов и машин характеризуется коэффициентом устойчивости, равным отношению суммарного момента всех удерживающих сил к суммарному моменту опрокидывающих сил относительно точки опрокидывания. При проектировании строительных машин и механизмов необходимо предусмотреть применение защитных устройств или устройств, исключающих возможность контакта человека с опасной зоной. Оградительные устройства применяют для изоляции систем привода машин и агрегатов, ограждения токоведущих систем.
Стационарные ограждения лишь периодически демонтируются для выполнения вспомогательных операций. Такое ограждение может быть полным, когда локализуется опасная зона, или частичным. Подвижное ограждение
представляет собой устройство, сблокированное с рабочим органом машины, вследствие чего оно закрывает доступ в рабочую зону при наступлении опасного момента. Переносные ограждения являются временными. Их используют при ремонтных и наладочных работах для защиты от случайных прикосновений к токоведущим частям, а также от механических травм и ожогов.
6.2 Производственная санитария
В строительстве есть свои специфические особенности, которые требуют определённого подхода к решению санитарно-гигиенических проблем. К этим особенностям относятся: подвижный характер труда строителей, отсутствие постоянных рабочих мест, необходимость в процессе работы постоянно перемещать орудия труда, особый характер продукции труда строителей, значительное разнообразие её видов и форм требуют участия в процессе строительства не отдельных рабочих, а целых производственных коллективов. Это вносит определённые трудности в организацию санитарно-гигиенического обслуживания строителей; совмещение близких по характеру профессий, вызываемое выполнением различных комплексов работ; необходимость использовать в строительстве одного объекта рабочих многих стройуправлений с различной организацией труда; работа в различных климатических условиях на открытом воздухе затрудняет создание нормального микроклимата на рабочем месте. Перечисленные особенности труда строителей требуют определённых форм и методов санитарно-бытового и медицинского обслуживания строек. В условиях строительного производства профессиональные вредности обуславливаются с одной стороны, неправильной организацией и несовершенством трудовых процессов, с другой - условиями окружающей среды.
Заболевания, вызванные вредными условиями труда, называют профессиональными. Факторы, отрицательно влияющие на условия труда, можно разделить на три группы, связанные:
с производственным процессом;
с недостатками в организации труда;
с недостатками в создании санитарно-гигиенических условиях труда.
Вредные производственные факторы по природе действия на организм человека подразделяются на следующие группы: физические, химические, биологические и психофизические.
Группа физических вредных производственных факторов включает повышенную запыленность и загазованность воздуха рабочей зоны, повышенную или пониженную температуру, давление, влажность, скорость движения воздуха, освещенность рабочей зоны, повышенный уровень шума, вибрации, инфразвуковых и ультразвуковых колебаний.
Группа химических вредных производственных факторов по характеру воздействия на организм человека подразделяется на подгруппы: общетоксичные, раздражающие, канцерогенные.
Группа биологических вредных производственных факторов включает биологические объекты, воздействие которых на работающих вызывает заболевание.
Группа психофизических вредных производственных факторов по характеру воздействия подразделяются на подгруппы: физические перегрузки и нервно-психические перегрузки. Физические перегрузки включают статические, динамические и гиподинамию. Нервно-психические перегрузки подразделяют на умственное перенапряжение, монотонность труда и эмоциональные перегрузки.
Перед началом строительства должны проводиться инженерные подготовительные работы, включающие мероприятия производственной санитарии. Одним из важных требований, предъявляемых к строительной площадке с санитарно-гигиенической точки зрения, является оборудование ее санитарно-бытовыми помещениями, пунктами питания, медпунктами, а также правильное расположение их в соответствии со строительным генеральным планом. На территории строительной площадки устанавливают указатели проходов и проездов; в темное время суток площадку следует обеспечивать электрическим освещением. Для защиты работающих на открытом воздухе от неблагоприятных метеорологических условий должны быть предусмотрены, помимо соответствующей спецодежды и защитных приспособлений, помещения для обогрева, тенты, палатки.
В проектах производства работ необходимо предусматривать применение таких технологических процессов, машин и производственного оборудования, которые обеспечивают отсутствие или минимальное выделение в атмосферу и в сточные воды вредных веществ, минимальное образование пыли, шума, вибрации.
6.3 Пожарная безопасность
Мероприятия, при которых исключается возможность пожара и взрыва, а в случае их возникновения предотвращается воздействие на людей опасных и вредных факторов пожара и взрыва и обеспечивается защита материальных ценностей, называют пожарной безопасностью. Возникновение пожаров связано с нарушением противопожарного режима и неосторожным обращением с огнем, что может явиться следствием нарушения мер пожарной безопасности при проектировании и строительстве зданий и сооружений. Нередко причиной пожаров и взрывов бывает неправильная оценка категории взрывопожароопасности производства из-за недостаточной изученности свойств сырья, полуфабрикатов, готовой продукции, определяющих их взрыво и пожароопасные характеристики.
Пожары, как правило, возникают в каком-либо одном месте и в дальнейшем распространяются по горючим материалам и конструкциям. Исключение составляют случаи взрывов производственного оборудования, в результате которых пожары могут возникнуть в нескольких местах.
При разработке генеральных планов промышленных предприятий необходимо: обеспечить безопасное расстояние от границ промышленных предприятий до жилых и общественных зданий; выдержать требуемые нормами противопожарные разрывы между зданиями и сооружениями; сгруппировать в отдельные комплексы родственные по функциональному назначению или признаку взрывопожарной опасности производственные здания и сооружения; расположить здания с учетом местности и направления господствующих ветров; обеспечить территорию предприятия дорогами и необходимым количеством въездом.
6.4 Контроль защитного заземления
Защитное заземление - преднамеренное соединение с землей частей оборудования, не находящихся под напряжением в нормальных условиях эксплуатации, но которые могут оказаться под напряжением в результате нарушения изоляции электроустановки.
Согласно «Правилам устройства электроустановок» сопротивление защитного заземления в любое время года не должно превышать: 10 Ом при мощности трансформатора (генератора) Nтр 100 кВт А; 4 Ом при Nтр 100 кВт А; 0,5 Ом - в установках напряжением выше 1000 В с большими токами замыкания на землю (более 500А).
Необходимо рассчитать заземляющее устройство для заземления электродвигателя серии 4А напряжением U = 380 В в трехфазной сети с изолированной нейтралью при следующих исходных данных: грунт - суглинок с удельным сопротивлением = 100 Ом м; в качестве заземлителей приняты стальные трубы диаметром d = 0,02 м и длиной l = 1,5 м, располагаемые вертикально и соединенные на сварке стальной полосой 40*4 мм; мощность электродвигателя серии А4200М2 U = 30 кВт, n = 3000 мин-1; мощность трансформатора принята 250 кВ А, требуемое по нормам допускаемое сопротивление заземляющего устройства [r3] 4 Ом.
Рисунок 6.1 - Принципиальная схема защитного заземления
По схеме защитного заземления показанного на рисунке 4.1 определяем сопротивление одиночного вертикального заземлителя RB, Ом, по формуле:
где: t - расстояние от середины заземлителя до поверхности грунта, м;
l, d - длина и диаметр стержневого заземлителя, м.
Расчетное удельное сопротивление грунта рассчитывается по формуле:
где: - коэффициент сезонности, учитывающий возможность повышения сопротивления грунта в течении года
Согласно [11] принимаем = 1,7 для I климатической зоны. Тогда:
Определяем сопротивление стальной полосы, соединяющей стержневые заземлители:
где: l - длина полосы, м;
t - расстояние от полосы до поверхности земли, м
Определяем расчетное удельное сопротивление грунта 'расч при использовании соединительной полосы в виде горизонтального электрода длиной 50м. При длине полосы в 50м [11], ' = 5,9. Тогда:
Определяем ориентировочное число n одиночных стержневых заземлителей по формуле:
Принимаем расположение вертикальных заземлителей по контуру с расстоянием между смежными заземлителями равным 2 l. По таблице 3,2 и 3,3 [11] найдем действительные значения коэффициента использования В и Г, исходя из принятой схемы размещения вертикальных заземлителей, В = 0,66, Г = 0,39. Определяем необходимое количество вертикальных заземлителей по формуле:
Вычисляем общее расчетное сопротивление заземляющего устройства R с учетом соединительной полосы:
Заземляющее устройство рассчитано правильно, так как R [r3].
6.5 Расчет прочности грузозахватных устройств
Основным несущим гибким элементом инвентарного канатного стропа является стальной проволочный канат. Наиболее характерными дефектами стропов являются: обрыв проволок, некачественная заплетка концов каната, расплющивание и расплетка прядей, износ проволок и коррозионное повреждение прядей каната,
трещины, расслоения, надрывы и коррозионные раковины на поверхностях подвески, крюка, втулки, ковша, сращивание концов каната с помощью узлов.
Канатные стропы следует изготовлять из цельного каната. Сращивание канатов не допускается. При изготовлении ветвей стропов концы канатов должны заделываться способом заплетки, гильзоклиновым соединением или с помощью алюминиевой втулки.
Грузоподъемность стропа с нормируемым запасом должна соответствовать усилию, которое на него передается от веса поднимаемого груза.
Разрывное усилие каната R, кН, определяют по формуле:
R = S x К
Где: S - нагрузка, действующая на канат, кH.
К - коэффициент запаса прочности.
Стропы рассчитываются с учетом количества ветвей канатов и угла их наклона к вертикали.
Усилие в каждой ветви строп определим по формуле:
Где: n - коэффициент, зависящий от угла наклона, .
Qгр - масса поднимаемого груза, кг.
m - число ветвей каната.
К1 - коэффициент неравномерности нагрузки на ветвь стропа, зависящий от числа ветвей.
Задание: необходимо установить диаметр каната 6х37 при типе касания ТЛК - 0 для строповки груза Qгр = 2000 кг (что соответствует весу груза Qгр = 20кН), число ветвей m = 4, ветви расположены под углом = 45о к вертикали.
Определим усилие в ветви стропа:
S = 1,41 х 20 / (4 х 0,75) = 9,4 кН
Принимаем К = 6 и определим необходимое разрывное усилие:
R = 9,4 х 6 = 56,4 кН
Необходимое ближайшее разрывное усилие S = 66.5 кН, что соответствует канату диаметром 11,5 мм.
В случае уменьшения угла уменьшается усилие S, тогда потребуется канат меньшего диаметра.
Анализ условий труда
Основными особенностями которые отличают производство строительно-монтажных работ от других современных промышленных предприятий, являются:
недостаточный уровень механизации и автоматизации труда, который вызывает необходимость применять значительные физические усилия для выполнения работ;
постоянное перемещение рабочих мест и орудий труда в результате чего, требуется заново решать вопросы безопасности труда;
необходимость совмещения профессий близких по характеру труда.
В процессе производства монтажа тепловых сетей на рабочего воздействуют различные вредные факторы. Основными из них являются длительные мышечные напряжения и поднимание тяжестей. Кроме того, при сварке трубопроводов на человека воздействует интенсивное излучение и вредные газовые выделения. При работе с различными пневмоинструментами на рабочей площадке возникает шум. Шум, также возникает в следствии работы вентиляторных установок, компрессоров и сварочных агрегатов. Помимо этого, работа данных устройств вызывает вибрацию.
Для устранения последствий от вредных воздействий связанных с переносом тяжестей и длительных физических напряжений требуется максимально механизировать производство строительно-монтажных работ. Подъем и монтаж арматуры и трубопроводов осуществлять с помощью подъемных механизмов. При работе на высоте более 1 м от уровня земли или пола требуется устройство подмостей, лесов или стремянок, в зависимости от ситуации.
Для обеспечения оптимальных условий работы при сварочных работах необходимо применять светофильтры. Кроме того место проведения сварочных и других огневых работ должно быть обеспечено средствами пожаротушения.
Существенное влияние на рабочих оказывает климат на рабочих площадках. В данном проекте принято, что строительные работы производятся в теплый период. Так как в теплый период года возможны высокие температуры воздуха, при огневых и сварочных работах необходимо предусматривать вентиляторные установки.
Рис 6.2 - Схемы строповки
Список использованных источников
1 СниП 2.04.07 - 86. Тепловые сети. М.; Госкомстройиздат, 1989, - 48 с.
2 СниП 2.01.01 - 82. Строительная климатология и геофизика. М.; Стройиздат, 1983, - 125 с.
3 В.И. Манюк, Я.Н. Каплинский и др. Наладка и эксплуатация водяных тепловых сетей. Справочник. М.; Стройиздат, 1988. - 432 с.
4 А.А. Ионин, Б.М. Хлыбов и др. Теплоснабжение. М.; Стройиздат, 1982. - 336 с.
5 А.А. Николаев. Проектирование тепловых сетей. Справочник проектировщика. М.; Стройиздат, 1965. - 360 с.
6 Н.К. Громов, Е.П. Шубин и др. Водяные тепловые сети. Справочное пособие по проектированию. М.; Энергоатомиздат, 1988, - 376 с.
7 СНиП 2.04.01 - 85. Внутренний водопровод и канализация зданий. М.; Государственный комитет по делам строительства., 1986, - 56 с.
Подобные документы
Расчет системы теплоснабжения района города Волгограда: определение теплопотребления, выбор схемы теплоснабжения и вид теплоносителя. Гидравлический, механический и тепловой расчеты тепловой схемы. Составление графика продолжительности тепловых нагрузок.
курсовая работа [1,6 M], добавлен 07.01.2015Определение тепловых нагрузок района. Регулирование отпуска теплоты в закрытых системах теплоснабжения. Гидравлический расчет водяной тепловой сети. Построение продольного профиля участка теплосети. Разработка системы оперативного дистанционного контроля.
курсовая работа [412,7 K], добавлен 07.05.2014Планировка района теплоснабжения, определение тепловых нагрузок. Тепловая схема котельной, подбор оборудования. Построение графика отпуска теплоты. Гидравлический расчет магистральных трубопроводов и ответвлений, компенсаторов температурных деформаций.
курсовая работа [421,6 K], добавлен 09.05.2012Разработка водяной системы централизованного теплоснабжения жилищно-коммунальной застройки города с 2-х трубной прокладкой тепловых сетей. Определение тепловых нагрузок районов города. Расчет расхода тепла на отопление, вентиляцию и горячее водоснабжение.
контрольная работа [175,4 K], добавлен 07.01.2015Определение расходов тепла на отопление, вентиляцию и горячее водоснабжение, выбор способа регулирования тепловой нагрузки, расчет диаметров магистральных трубопроводов котельной для разработки системы централизованного теплоснабжения жилых районов.
курсовая работа [402,0 K], добавлен 07.01.2011Технико-экономическое обоснование установки автоматизированной котельной, предназначенной для теплоснабжения посёлка Шухободь, Череповецкого района. Расчёт плотности природного газа, тепловых нагрузок. Гидравлический расчет сети. Подбор котлоагрегата.
дипломная работа [3,3 M], добавлен 10.07.2017Разновидности централизованного теплоснабжения зданий. Тепловые нагрузки района города. Построение графиков расхода теплоты. Регулирование отпуска теплоты, определение расчетных расходов теплоносителя. Выбор трассы. Механический расчет теплопроводов.
курсовая работа [1,4 M], добавлен 17.05.2016Расчет максимальных часовых расходов теплоты на отопление и вентиляцию здания. Определение расходов сетевой воды теплоснабжения. Расчет теплообменного аппарата системы отопления. Определение количества секций подогревателя горячего водоснабжения.
курсовая работа [240,6 K], добавлен 06.12.2022Разработка системы отопления здания школы. Объемно-планировочные и конструктивные решения индивидуального теплового пункта. Теплотехнический расчет наружных ограждений, определение теплопотерь в здании. Технология монтажа элементов системы теплоснабжения.
дипломная работа [273,0 K], добавлен 15.02.2017Продолжительность стояния интервалов температуры наружного воздуха согласно климатологическим данным г. Астрахань. Расчёт режимов отопления, теплонасосной установки в режиме системы теплоснабжения. Режим холодоснабжения системы кондиционирования воздуха.
контрольная работа [174,7 K], добавлен 07.02.2013