Энергоэффективные материалы ограждающих конструкций

Исследование строения, химического состава, физических и механических свойств бетона и железобетона. Уход за свежеуложенным бетоном. Изучение визуальных и геометрических характеристик кирпича. Влажность древесины и свойства, связанные с ее изменением.

Рубрика Строительство и архитектура
Вид реферат
Язык русский
Дата добавления 08.02.2014
Размер файла 841,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рисунок 4.3 -- Схема испытания кирпича на сжатие: 1, 3 -- верхняя и нижняя плиты гидравлического пресса, 2 -- половинки кирпича, 4 -- растворные швы

5. Древесина. Основные свойства и характеристики

Древесина -- материал, сохранивший природную физическую структуру и химический состав, получаемый из поваленных деревьев, хлыстов и (или из их частей) путём поперечного и (или) продольного деления [7].

5.1 Химический состав древесины

Древесина состоит преимущественно из органических веществ (99% общей массы). Элементный химический состав древесины разных пород практически одинаков. Абсолютно сухая древесина в среднем содержит 49% углерода, 44% кислорода, 6% водорода, 0,1-0,3% азота. При сжигании древесины остаётся её неорганическая часть -- зола. В состав золы входят кальций, калий, натрий, магний и другие элементы [8].

Перечисленные химические элементы образуют основные органические вещества: целлюлозу, лигнин и гемицеллюлозы [8].

Целлюлоза -- природный полимер, полисахарид с длинной цепной молекулой. Формула целлюлозы (C6H10O5)n, где n -- степень полимеризации, равная 6000-14000. Это очень стойкое вещество, нерастворимое в воде и обычных органических растворителях (спирте, эфире и др.), белого цвета. Пучки макромолекул целлюлозы -- тончайшие волоконца называются микрофибриллами. Они образуют целлюлозный каркас стенки клетки. Микрофибриллы ориентированы преимущественно вдоль длинной оси клетки, между ними находится лигнин, гемоцеллюлозы, а также вода [8].

Лигнин -- полимер ароматической природы (полифенол) сложного строения; содержит больше углерода и меньше кислорода, чем целлюлоза. Именно с этим веществом связан процесс одревеснения молодой клеточной стенки. Лигнин химически нестоек, легко окисляется, взаимодействует с хлором, растворяется при нагревании в щелочах, водных растворах сернистой кислоты и её кислых солей [8]. Гемицеллюлозы -- группа полисахаридов, в которую входят пентозаны (C5H8O4)n и гексозаны (C6H10O5)n. Формула гексозанов на первый взгляд идентична формуле целлюлозы. Однако степень полимеризации у всех гемицеллюлоз гораздо меньше и составляет 60-200. Это свидетельствует о более коротких цепочках молекул и меньшей стойкости этих веществ по сравнению с целлюлозой [8].

Кроме основных органических веществ, в древесине содержится сравнительно небольшое количество экстрактивных веществ (таннидов, смол, камедей, пектинов, жиров и др.), растворимых в воде, спирте или эфире [8].

5.2 Физические свойства

5.2.1 Внешний вид

Он характеризуется следующими свойствами: цветом, блеском, текстурой и макроструктурой [8].

Под цветом древесины понимают определённое зрительное ощущение, которое зависит, в основном, от спектрального состава отражённого ею светового потока. Цвет -- одна из важнейших характеристик внешнего вида древесины. Его учитывают при выборе пород для внутренней отделки помещений, изготовлении мебели, музыкальных инструментов, художественных поделок и т.д. [8].

Окраска древесины зависит от породы, возраста дерева, климата района произрастания. Древесина может изменять цвет при выдержке под влиянием воздуха и света, при поражении грибами, а так же при длительном нахождении под водой. Тем не менее, цвет многих пород настолько характерен, что может служить одним из признаков при их распознавании [8].

Блеск -- это способность древесины направленно отражать световой поток. Наибольшим блеском из отечественных пород отличается древесина дуба, бука, белой акации, бархатного дерева; из иноземных -- древесина атласного дерева и махагони (красного дерева) [8].

Текстурой называется рисунок, образующийся на поверхности древесины вследствие перерезания анатомических элементов (годичных слоёв, сердцевинных лучей, сосудов) [8].

Для оценки качества древесины по внешнему виду используют такие характеристики, как ширина годичных слоёв и содержание поздней древесины.

Ширина годичных слоёв -- число слоёв, приходящихся на 1 см отрезка, отмеренного по радиальному направлению на торцевой поверхности образца.

Содержание поздней древесины определяется соотношением (в процентах) между суммарной шириной зон поздней древесины и общей протяжённостью (в радиальном направлении) участка измерения, включающего целое число слоёв [8].

5.2.2 Влажность древесины и свойства, связанные с ее изменением

Для количественной характеристики содержания воды в древесине используют показатель -- влажность. Под влажностью древесины понимают выраженное в процентах отношение массы воды к массе сухой древесины:

W=(m-m0)/m0·100,

где m - начальная масса образца древесины, а m0 -- масса образца абсолютно сухой древесины [8].

Измерение влажности осуществляется прямыми или косвенными методами. Прямые методы основаны на выделении тем или иным способом воды из древесины, например высушиванием. Эти методы простые, надёжные и точные, но имеют недостаток -- довольно продолжительную процедуру. Этого недостатка лишены косвенные методы, основанные на измерении показателей других физических свойств, которые зависят от содержания воды в древесине. Наибольшее распространение получили кондуктометрические электровлагомеры, измеряющие электропроводность древесины. Однако и эти способы имеют свои недостатки: дают надёжные показания в диапазоне от 7 до 30% и лишь только в месте введения игольчатых контактов [8].

Различают две формы воды, содержащейся в древесине: связанную и свободную. Связанная вода находиться в клеточных стенках, а свободная содержится в полостях клеток и межклеточных пространствах. Связанная вода удерживается в основном физико-химическими связями, изменение её содержания существенно отражается на большинстве свойств древесины. Свободная вода, удерживаемая только механическим связями, удаляется легче, чем связанная вода, и оказывает меньшее влияние на свойства древесины [8].

При испытаниях с целью определения показателей физико-механических свойств древесины её кондиционируют, приводя к нормализованной влажности. Если нет особых примечаний, то показатель равен 12%.

На практике по степени влажности различают древесину:

· мокрую, W>100%, длительное время находившуюся в воде;

· свежесрубленную, W=50-100%, сохранившую влажность растущего дерева;

· воздушно-сухую, W=15-20%, выдержанную на открытом воздухе;

· комнатно-сухую, W=8-12%, долгое время наход-ся в отапливаемом помещении;

· абсолютно-сухую, W=0, высушенную при температуре t=103±2°C.

Уменьшение линейных размеров и объёма древесины при удалении из неё связанной воды называется усушкой. Удаление свободной воды не вызывает усушки. Чем больше клеточных стенок в единице объёма древесины, тем больше в ней связанной воды и выше усушка [8].

Усушка древесины не одинакова в разных направлениях: в тангенциальном направлении в 1,5 - 2 раза больше, чем в радиальном [8].

Под полной усушкой, или максимальной усушкой Bmax понимают уменьшение линейных размеров и объёма древесины при удалении всего количества связанной воды [8].

Формула для вычисления полной усушки, %, имеет вид:

Bmax=(amax-amin)/amax·100,

где amax и amin -- размер (объём) образца соответственно при влажности, равной или выше предела насыщения клеточных стенок и в абсолютно-сухом состоянии, мм (мм3) [8].

Полная линейная усушка древесины наиболее распространённых отечественных пород в тангенциальном направлении составляет 8-10 %, в радиальном 3-7 %, а вдоль волокон 0,1-0,3 %. Полная объёмная усушка находится в пределах 11-17 % [8].

Усушка древесины учитывается при распиловке брёвен на доски (припуски на усадку), при сушке пиломатериалов и т.д. [8].

Внутренние напряжения возникают в древесине без участия внешних нагрузок. Они образуются в результате неодинаковых изменений объёма тела при сушке -- сушильные напряжения, пропитке и в процессе роста дерева.

Полные сушильные напряжения удобно как совокупность двух составляющих -- влажностных и остаточных напряжений [8].

Влажностные напряжения вызваны неоднородной усушкой материала. В поверхностных зонах доски, где влажность ниже, чем в центре, из-за стеснения свободной усушки возникают растягивающие напряжения, а внутри доски -- сжимающие. Остаточные напряжения обусловлены появлением в древесине неоднородных остаточных деформаций. Остаточные напряжения в отличие от влажностных не исчезают при выравнивании влажности в доске и наблюдаются как во время сушки, так и после её полного завершения [8].

Если растягивающие напряжения достигают предела прочности древесины на растяжение поперёк волокон, появляются трещины. Так появляются поверхностные трещины в начале сушки и внутренние в конце сушки [8].

Изменение формы пиломатериалов и заготовок при сушке, а также выпиловке и неправильном хранении называется короблением. Чаще всего коробление происходит из-за различая усушки по разным структурным направлениям. Различают поперечную и продольную покоробленность. Продольная покоробленность бывает: по кромке, по пласти и крыловатость [8].

Рисунок 5.1 -- Виды покаробленности древесины: а -- по пласти(простая), б -- продольная по пласти(сложная), в -- продольная по кромке, г -- поперечная, д -- крыловатость

Коробление может возникать при механической обработке сухих пиломатериалов: при несимметричном строгании, ребровом делении из-за нарушения равновесия остаточных напряжений [8]. Способность древесины вследствие её гигроскопичности поглощать влагу (пары воды) из окружающего воздуха называется влагопоглощением. Влагопоглощение практически не зависит от породы. Способность к поглощению влаги является отрицательным свойством древесины. Сухая древесина, помещённая в очень влажную среду, сильно увлажняется, что ухудшает её физико-механические характеристики, снижает биостойкость и т.д. Чтобы защитить древесину от влияния влажного воздуха, поверхность деревянных деталей и изделий покрывают различными лакокрасочными и плёночными материалами [8].

Увеличение линейных размеров и объёма древесины при повышении в ней содержания связанной воды называется разбуханием. Разбухание происходит при выдерживании древесины во влажном воздухе или воде. Это -- свойство, обратное усушке, и подчиняется, в основном, тем же закономерностям. Полное разбухание, %, вычисляют по формуле:

amax=(amax-amin)/amin·100,

где amax и amin -- размер (объём) образца соответственно при влажности, равной или выше предела насыщения клеточных стенок, и в абсолютно сухом состоянии, мм (мм3). Так же, как и усушка, наибольшее разбухание древесины наблюдается в тангенциальном направлении поперёк волокон, а наименьшее -- вдоль волокон [8].

Разбухание -- отрицательное свойство древесины, но в некоторых случаях оно приносит пользу, обеспечивая плотность соединений (в бочках, чанах, судах и т.д.) [8].

Способность древесины увеличивать свою влажность при непосредственном контакте с капельножидкой водой называется водопоглощением. Максимальная влажность, которой достигает погруженная в воду древесина, складывается из предельного количества связанной воды и наибольшего количества свободной воды. Очевидно, что количество свободной воды зависит от объёма полостей в древесине, поэтому, чем больше плотность древесины. Тем меньше её влажность, характеризующая максимальное водопоглощение.

Способность древесины поглощать воду, а также другие жидкости имеет значение в процессах варки древесины для получения целлюлозы, при пропитке её растворами антисептиков и антипиринов, при сплаве лесоматериалов и в других случаях [8].

Плотность. Это свойство характеризуется массой единицы объёма материала, и имеет размерность в кг/м3 или г/см3 [8].

а) Плотность древесинного вещества сд.в. -- плотность материала клеточных стенок, равная:

сд.в. = mд.в./Vд.в.,

где mд.в. и Vд.в. -- соответственно масса, г, и объем, см3, древесинного вещества [8].

Этот показатель равен для всех пород 1,53 г/см3, поскольку одинаков химический состав клеточных стенок древесины [8].

б) Плотность абсолютно сухой древесины с0 равна:

с0=m0/V0,

где m0, V0 -- соответственно масса и объём древесины при W=0%.

Плотность древесины меньше плотности древесинного вещества, так как она включает пустоты (полости клеток и межклеточные пространства, заполненные воздухом) [8].

Относительный объём полостей, заполненных воздухом, характеризует пористость древесины П:

П=(V0-Vд.в.)/V0·100,

где V0 и Vд.в. -- соответственно объём образца и содержащегося в нём древесинного вещества при W=0%. Пористость древесины колеблется в пределах от 40 до 80% [8].

в) Плотность влажной древесины:

сw= mw/Vw,

где mw и Vw -- соответственно масса и объём древесины при влажности W. Плотность древесины зависит от её влажности. При влажности W<Wпн плотность изменяется незначительно, а при увеличении влажности выше Wпн наблюдается значительный рост плотности древесины [8].

г) Парциальная влажность древесины с`w характеризует содержание (массу) сухой древесины в единице объёма влажной древесины:

с`w=m0/Vw,

где m0 -- масса абсолютно сухой древесины, г или кг; Vw -- объем, см3 или м3, древесины при данной влажности W [8].

д) Базисная плотность древесины выражается отношением массы абсолютно сухого образца m0 к его объёму при влажности, равной или выше предела насыщения клеточных стенок Vmax:

сБ=m0/Vmax.

Этот основной показатель плотности, который не зависит от влажности, широко используется для оценки качества сырья в деревообработке, целлюлозно-бумажной промышленности и в других случаях [8].

По плотности древесины при 12% влажности породы делят на 3 группы: с малой (Р12<540), средней (550<P12<740) и высокой (P12>740)плотностью древесины [8].

Проницаемость характеризует способность древесины пропускать жидкости или газы под давлением.

Водопроницаемость древесины вдоль волокон значительно больше, чем поперёк волокон, при этом у древесины лиственных пород она в несколько раз больше, чем у хвойных [8].

5.2.3 Теплофизические свойства

Показателем способности древесины аккумулировать тепло является удельная теплоёмкость С, представляющая собой количество теплоты, необходимое для того чтобы нагреть 1 кг массы древесины на 1 0С и имеет размерность Дж/(кг·К). Удельная теплоёмкость для всех пород одинакова и для абсолютно сухой древесины составляет , где t -- температура. С увеличением влажности теплоёмкость увеличивается [8].

Теплопроводность л -- свойство, характеризующее интенсивность переноса тепла в материале. Вследствие пористого строения древесины теплопроводность невысока. С увеличением плотности теплопроводность древесины возрастает. Так как теплопроводность воды при одинаковой температуре в 23 раза меньше теплопроводности воздуха, теплопроводность древесины в сильной мере зависит от влажности, увеличиваясь, с ее возрастанием. С увеличением температуры теплопроводность древесины возрастает, причем это увеличение в большей мере выражено у влажной древесины. Теплопроводность древесины вдоль волокон значительно больше, чем поперек волокон [8].

Температуропроводность характеризует способность древесины выравнивать температуру по объёму. Коэффициент температуропроводности б характеризует скорость распространения температуры внутри тела при нестационарных тепловых процессах (нагревании, охлаждении). Размерность его м2/ч. Между тремя основными теплофизическими характеристиками существует следующая зависимость: б =л/сс [8].

Рисунок 5.2 -- Зависимость б древесины от влажности: 1 -- вдоль волокон, 2 -- в радиальном, 3 -- в тангенциальном направлении

Температуропроводность зависит главным образом от влажности древесины и в меньшей степени от температуры. С увеличением влажности температуропроводность древесины падает; это объясняется тем, что температуропроводность воздуха значительно больше, чем воды. На диаграмме (рисунок 5.2) показано влияние влажности на температуропроводность древесины сосны в трех направлениях. На диаграмме, кроме того, видно, что температуропроводность вдоль волокон значительно больше, чем поперек волокон, а между температуропроводностью в радиальном и тангенциальном направлениях разница оказывается очень небольшой. С повышением температуры температуропроводность древесины возрастает. Чем выше плотность древесины, тем ниже температуропроводность [8].

5.2.4 Акустические свойства

Одно из этих свойств -- звукопроводность, показателем которой являются скорость звука. Скорость звука хзв, м/с, в древесине можно определить по формуле:

хзв=(E/с)Ѕ,

где Е -- динамический модуль упругости, Н/м2; с -- плотность древесины, кг/м3 [8].

Другой важный показатель, характеризующий способность древесины отражать и проводить звук -- акустическое сопротивление, Па·с/м:

R=p/хзв.

5.3 Механические свойства

Применение древесины в качестве конструкционного материала обусловлено способностью сопротивляться действию усилий, т.е. механическими свойствами [8].

Различают следующие свойства древесины, проявляющиеся под воздействием механических нагрузок: прочность -- способность сопротивляться разрушению, деформативность -- способность сопротивляться изменению размеров и формы, технологически и эксплуатационные свойства [8].

Показатели механических свойств древесины определяют обычно при следующих видах испытаний: растяжении, сжатии, изгибе и сдвиге. Поскольку древесина -- анизотропный материал, т.е. материал с различными свойствами в разных направлениях, указывают направление действия нагрузок: вдоль или поперек волокон (в радиальном или тангенциальном направлении) [8].

Из-за сопротивления древесины внешним нагрузкам в ней возникают внутренние силы. Эти силы, отнесённые к единице площади сечения (1 см2) называются напряжениями. Максимальное напряжение, предшествующее разрушению тела, называют пределом прочности [8].

Предел прочности определяют на малых, чистых и не имеющих пороках образцах в лабораториях на испытательных машинах. Эти образцы имеют базисное сечение с размерами 20Ч20 мм и должны включать не менее 4-5 годичных слоёв. Некоторые виды испытаний производят на образцах, сечение которых отличается от указанного [8].

5.3.1 Прочность при сжатии

Прочность при сжатии определяется на образцах призматической формы. Схема испытания на прочность при сжатии вдоль волокон показана на рисунке 5.3.

Образец постепенно нагружают до разрушения. Затем по силоизмерителю испытательной машины отсчитывают максимальную нагрузку Рмах, Н. Предел прочности у, МПа, вычисляют по формуле:

уw=Pmax/(a·b),

где (a·b) -- площадь сечения образца, мм2 [8].

В среднем для всех отечественных пород при влажности древесины 12% предел прочности на сжатие вдоль волокон составляет около 50 МПа [8].

Прочность при сжатии поперёк волокон определяется по схеме на рисунке 5.3. Равнодействующая сил, которые либо равномерно распределены по всей поверхности образца, либо по всей ширине, но на части длины его (местное сжатие). И в том, и в другом случаях определяют условный предел прочности. В качестве этого показателя используют предел пропорциональности, т.е. величину напряжений, до которых наблюдают линейную зависимость между напряжениями и деформациями. В среднем для всех пород он составляет 1/10 предела прочности при сжатии вдоль волокон [8].

Рисунок 5.3 -- Схема испытания на прочность при сжатии: а -- вдоль волокон, б -- поперек волокон(радиально), в -- поперек волокон(тангенциально)

Испытания на прочность при растяжении проводятся на образцах другого вида(рисунок 5.4) [8].

Рисунок 5.4 -- Схема испытания на прочность при растяжении

Такая форма образцов обусловлена стремлением обеспечить разрушение в тонкой рабочей части, а не в месте закрепления, под воздействием именно растягивающих напряжений [8].

В среднем для всех пород предел прочности при растяжении вдоль волокон равен 130 МПа, а предел прочности при растяжении поперёк волокон в 20 раз ниже. Поэтому при конструировании изделий из древесины избегают растягивающих нагрузок, направленных поперёк волокон [8].

Для испытания древесины на статический изгиб применяют образцы в форме бруска размерами 20Ч20Ч300 мм [8].

Предел прочности при статическом изгибе, МПа, вычисляют по формуле:

уw=(3/2)·((Pmax·l)/(b·h)),

где Pmax -- максимальная нагрузка, Н; l -- пролет, т.е. расстояние между центрами опор, равный 240 мм; b и h -- ширина (в радиальном) и высота (в тангенциальном) направлениях, мм [8].

Рисунок 5.5 -- Схема испытания на статический изгиб

В среднем предел прочности при статическом изгибе составляет 100 МПа [8].

При испытаниях на сдвиг, к образцу прикладывают две равные и противоположно направленные силы, вызывающие разрушение в параллельной им плоскости. Различают три вида испытаний на сдвиг: скалывание вдоль волокон, скалывание поперёк волокон и перерезание древесины поперёк волокон. Схемы действия сил при этих испытаниях показаны на рисунке 5.6 [8].

Рисунок 5.6 -- Испытания на сдвиг: скалывание: а -- вдоль волокон, б -- поперек волокон; г -- перерезание поперек волокон

Предел прочности при скалывании вдоль волокон определяют по формуле:

Tw=Pmax/(b·l),

где (b·l) -- площадка скалывания, мм2 [8].

Предел прочности при скалывании поперёк волокон в 2 раза меньше, чем предел прочности при перерезании поперёк волокон и в 4 раза больше, чем предел прочности при скалывании вдоль волокон [8].

5.3.2 Деформативность

При кратковременных нагрузках в древесине возникают преимущественно упругие деформации, которые после нагрузки исчезают. До определённого предела зависимость между напряжениями и деформациями близка к линейной (закон Гука). Основным показателем деформативности служит коэффициент пропорциональности -- модуль упругости [8].

Модуль упругости вдоль волокон Е=12-16 ГПа, что в 20 раз больше, чем поперёк волокон. Чем больше модуль упругости, тем более жесткая древесина [8].

С увеличением содержания связанной воды и температуры древесины, жесткость её снижается. В нагруженной древесине при высыхании или охлаждении часть упругих деформаций преобразуется в "замороженные" остаточные деформации. Они исчезают при нагревании или увлажнении [8].

Поскольку древесина состоит в основном из полимеров с длинными гибкими цепными молекулами, её деформативность зависит от продолжительности воздействия нагрузок. Механические свойства древесины, как и других полимеров, изучаются на базе общей науки реологии. Эта наука рассматривает общие законы деформирования материалов под воздействием нагрузки с учётом фактора времени [8].

5.3.3 Эксплуатационные и технологические свойства

Прочность древесины при длительных постоянных нагрузках важно знать в связи с применением её в строительных конструкциях. Показателем этого свойства является предел длительного сопротивления уд.с., который в среднем для всех видов нагрузки составляет примерно 0,5-0,6 величины предела прочности при кратковременных статических испытаниях [8].

Показателем прочности при переменных нагрузках является предел выносливости, средняя величина которого составляет примерно 0,2 от статического предела прочности [8].

При проектировании деревянных конструкций в расчётах используют не пределы прочности малых образцов древесины, а в несколько раз меньшие показатели -- расчётные сопротивления. Они учитывают большие размеры элементов конструкций, наличие пороков древесины, длительность действия нагрузки, влажность, температуру и другие факторы [8]. Удельная вязкость характеризует способность древесины поглощать работу при ударе без разрушения и определяется при испытаниях на изгиб. Ударная вязкость у древесины лиственных пород в среднем в 2 раза больше, чем у древесины хвойных пород [8].

Твёрдость характеризует способность древесины сопротивляться вдавливанию более твёрдого тела. Испытания на статическую твёрдость проводят по схеме, показанной на рисунке 5.7 [8].

Рисунок 5.7 -- Схема испытания на статическую твердость

Для испытания на твёрдость используют приспособление, которое имеет пуансон с полусферическим наконечником. Его вдавливают на глубину радиуса. После испытания в древесине остаётся отпечаток, площадь проекции которого при указанном радиусе полусферы составляет 100 мм2. Показателем статической твёрдости образца, Н/мм2, является усилие, отнесенное к этой площади. Статическая твёрдость торцевой поверхности выше, чем боковых поверхностей [8].

Все отечественные породы по твёрдости торцевой поверхности при влажности 12% делят на 3 группы: мягкие (твёрдость 40 Н/мм2 и менее), твёрдые (41-80) и очень твёрдые (более 80 Н/мм2) [8].

Ударную твёрдость определяют, сбрасывая стальной шарик диаметром 25 мм с высоты 0,5 м на поверхность образца, величина которого тем больше, чем меньше твёрдость древесины [8].

Износостойкость -- способность древесины сопротивляться износу, т.е. постепенному разрушению её поверхностных зон при трении. Испытания на износостойкость древесины показали, что износ с боковых поверхностей значительно больше, чем с поверхности торцевого разреза. С повышением плотности и твёрдости древесины износ уменьшился. У влажной древесины износ больше, чем у сухой [8].

Уникальным свойством древесины является способность удерживать крепления: гвозди, шурупы, скобы, костыли и др. При забивании гвоздя в древесину возникают упругие деформации, которые обеспечивают достаточную силу трения, препятствующую выдёргиванию гвоздя. Усилие, необходимое для выдёргивания гвоздя, забитого в торец образца, меньше усилия, прилагаемого к гвоздю, забитому поперёк волокон. С повышением плотности сопротивление древесины выдергиванию гвоздя или шурупа увеличивается. Усилия, необходимые для выдёргивания шурупов (при прочих равных условиях), больше, чем для выдёргивания гвоздей, так как в этом случае к трению присоединяется сопротивление волокон перерезанию и разрыву [8].

Технологическая операция гнутья древесины основана на её способности сравнительно легко деформироваться при действии избегающих усилий. Способность гнуться выше у кольцесосудистых пород -- дуба, ясеня и др., а из рассеянно-сосудистых -- бука; хвойные породы обладают меньшей способностью к загибу. Гнутью подвергают древесину, находящуюся в нагретом и влажном состоянии. Это увеличивает податливость древесины и позволяет вследствие образования замороженных деформаций при последующем охлаждении и сушке под нагрузкой зафиксировать новую форму детали [8]. Для сравнительной оценки качества древесины используют так называемые удельные характеристики механических свойств, т.е. показатели ее механических свойств, отнесенные к единице плотности [8].

Удельная прочность при сжатии и статическом изгибе у хвойных пород выше, чем у лиственных. Значительно выше у хвойных пород и удельная жесткость. По остальным свойствам удельные характеристики у древесины лиственных пород выше, чем у хвойных [8].

Заключение

В данной работе представлен обзор самых часто используемых строительных материалов: бетон, кирпич древесина. Даны их краткие физико-химические характеристики, на основе которых можно провести сравнительный анализ и выделить преимущества одного материала по сравнению с другим.

Список литературы

1. Домокеев, А.Г. Строительные материалы: учеб./ А.Г. Домокеев. --М.: Высш. школа,1982. - 383 с.

2. Цилосани, З.Н. Усадка и ползучесть бетона / З.Н. Цилосани. - Тбилиси, 1952. - 215 с.

3. Шейкин, А.Е. Структура и свойства цементных бетонов / А.Е. Шейкин, Ю.В. Чеховский, М.И. Бруссер. - М. : Стройиздат. 1979.

4. http://stroykombinat.com/publ/stati/zhelezobeton/3-1-0-1

5. http://ru.wikipedia.org

6. http://www.wood.ru/ru/lpshim.html

7. Корчагина О.А. Материаловедение: оценка качества строительных материалов: лаб. практ./О.А. Корчагина, В.Г. Однолько. -- Тамбов: Изд-во ГОУ ВПО ТГТУ, 2010

Размещено на Allbest.ru


Подобные документы

  • Общие сведения о строительных материалах. Строение и химический состав бетона, его физические и механические свойства. Наиболее известные виды кирпича, его визуальные и геометрические характеристики. Влажность древесины и свойства, связанные с ней.

    презентация [3,2 M], добавлен 19.02.2014

  • Характеристика основных пород древесины: хвойные, лиственные кольцесосудистые и рассеяннососудистые. Особенности строения и макросруктуры древесных материалов, их физико-механических свойств: плотность, влажность, тепло- и звукопроводность, разбухание.

    реферат [71,4 K], добавлен 17.05.2010

  • Значение древесины в обыденной жизни и технике. Механические, физические, химические свойства древесины. Прочность, твёрдость и износостойкость. Абсолютная и относительная влажность древесины. Разбухание древесины, усушка, гигроскопичность, коробление.

    презентация [1,9 M], добавлен 03.05.2015

  • Концепция развития бетона и железобетона, значение этих материалов для прогресса в области строительства. Особенности технологий расчета и проектирования железобетонных конструкций. Направления и источники экономии бетона и железобетона в строительстве.

    реферат [30,2 K], добавлен 05.03.2012

  • Характеристика предварительно напряженного железобетона и его преимущества по сравнению с обычным бетоном. Опеределение и строение древесины. Процесс изготовления минеральной ваты. Основные звукоизоляционные материалы. Назначение строительных растворов.

    контрольная работа [24,9 K], добавлен 12.05.2009

  • Исследование состояния теплофизических свойств ограждающих конструкций зданий. Лабораторные исследования теплозащитных свойств ограждающих конструкций. Математическое моделирование 3-слойной ограждающей конструкции. Расчет коэффициента теплосопротивления.

    дипломная работа [4,2 M], добавлен 20.03.2017

  • Классификация бетона по маркам и прочности. Сырьевые материалы для приготовления бетонов. Суперпластификаторы на основе поликарбоксилатов. Проектирование, подбор и расчет состава бетона с химической добавкой. Значения характеристик заполнителей бетона.

    курсовая работа [52,7 K], добавлен 13.03.2013

  • Механические свойства бетона и состав бетонной смеси. Расчет и подбор состава обычного бетона. Переход от лабораторного состава бетона к производственному. Разрушение бетонных конструкций. Рациональное соотношение составляющих бетон материалов.

    курсовая работа [113,6 K], добавлен 03.08.2014

  • Виды разрушения материалов и конструкций. Способы защиты бетонных и железобетонных конструкций от разрушения. Основные причины, механизмы и последствия коррозии бетонных и железобетонных сооружений. Факторы, способствующие коррозии бетона и железобетона.

    реферат [39,1 K], добавлен 19.01.2011

  • Развитие производства бетона и железобетона. Методы переработки железобетонных и бетонных изделий. Анализ гранулометрических характеристик продуктов электрического взрыва проводников из разных металлов. Проблема утилизации железобетонных конструкций.

    дипломная работа [2,3 M], добавлен 26.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.