Эксплуатация и наладка систем теплогазоснабжения и вентиляции

Классификация систем теплоснабжения. Профилактическое обслуживание газопроводов. Канальная и бесканальная вентиляция. Общие требования в контролю параметров микроклимата. Основные приборы и средства контроля наличия вредных веществ и пыли в воздухе.

Рубрика Строительство и архитектура
Вид учебное пособие
Язык русский
Дата добавления 15.03.2010
Размер файла 7,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Тройники или кресты применяют для устройства ответвлений от газопровода в одну или две стороны. Они могут быть проходными и переходными. У проходных тройников диаметры ствола равны диаметрам ответвлений. У переходных тройников диаметр ответвления меньше диаметра ствола и они выполняются размерами от 8050 до 900800 мм. Тройники следует устанавливать в ограниченном количестве, так как в них происходят большие потери давления газа.

Переходы изменяют диаметр газопроводов. На практике их часто изготавливают из труб путем вырезки клиньев и сваркой остальных частей. Наибольшее распространение имеют переходы, изготовленные из листовой стали, с одним или двумя продольными швами.

Фланцевые соединения применяют для установки различной арматуры и аппаратуры. Качество фланцевых соединений зависит от подготовки уплотнительных поверхностей, поэтому на каждом фланце делается не менее двух уплотнительных канавок. Недостаток их сильная утечка газа. Герметичность фланцевых соединений обеспечивается различными прокладочными материалами, наибольшее применение имеют паранитовые прокладки толщиной 3--5 мм. Перед установкой паранита для придания прочности и плотности его необходимо подержать в растительном масле.

Арматура газопроводов. В процессе эксплуатации газовых сетей и сооружений часто возникает необходимость в прекращении или изменении потока газа. Для этих целей на газопроводах устанавливается запорная арматура: задвижки, краны, гидравлические затворы и вентили.

Все эти запорные устройства должны обеспечивать герметичность отключения на длительное время, быстроту отключения и включения, надежность в обслуживании и минимальные сопротивления потоку газа.

Выполнить эти требования поможет правильный выбор запорной арматуры для отдельных участков и сооружений. Так, в газопроводах среднего и высокого давления преимущественно устанавливают задвижки, на газопроводах низкого давления, помимо задвижек, устанавливают и гидрозатворы, на газопроводах диаметром до 80 мм, прокладываемых внутри помещений - краны.

Наиболее распространенный вид запорной арматуры - краны и задвижки. Регулирование потока газа или полное его прекращение достигается путем изменения затвора вдоль уплотняющих поверхностей. Это достигается вращением штока, который может быть выдвижным и невыдвижным. При установке задвижек в колодцах целесообразно применять задвижки с выдвижным шпинделем, так как они удобны в обслуживании и по ним легко определяется степень открытия задвижки.

На газопроводах низкого давления преимущественно устанавливают чугунные задвижки, а на газопроводах среднего и высокого давления - стальные. Задвижки запорный шибер в виде двух дисков с впрессованными в них уплотнительными кольцами. В нижней части задвижки подвижный клин соединен с дисками через шток. При открытии задвижки шток тянет шибер вверх и открывается проход для газа. При закрытии шибер опускается, плотно прижимает диск к корпусу задвижки. Плотность прилегания штока и крышки обеспечивает сальник. Шток задвижек вращается при помощи маховика или ключа с квадратным отверстием. У больших задвижек для вращения маховика применяют различные виды зубчатых червячных или пневматических передач. На рис. 2.3 представлены наиболее распространенные типы задвижек с выдвижным и невыдвижным шпинделем.

Недостаток задвижек в том, что они не всегда обеспечивают полную герметичность отключения. Объясняется это тем, что в нижней части их корпуса собираются различные мелкие твердые частицы в виде пыли и грязи, которые, занимая определенный объем, не дают дискам плотно сесть на свое место и в результате задвижки не дают полного отключения. Кроме того, при эксплуатации задвижек с неплотным открытым проходным сечением диск под действием потока газа, особенно на газопроводах среднего и высокого давлений, истирается и тем более не может гарантировать надежную герметичность. Вот почему установка задвижек должна быть ограничена.

Рис. 2.3. Типы задвижек: а - с выдвижным шпинделем, б - с невыдвижным шпинделем, в - с выдвижным шпинделем и с разрезным клином

Установка задвижки в колодце показана на рис. 2.4. Колодцы должны быть водонепроницаемыми, однако на практике, особенно в местах высоким уровнем грунтовых вод, они часто заливаются водой.

Наличие воды в колодце крайне недопустимо, так как быстро портится и выходит из строя установленная в нем арматура, кроме того, вода, заполняя колодец, значительно сокращает объем колодца, что может привести к созданию взрывной концентрации при незначительных утечках газа.

Учитывая недостатки газовых колодцев, на газопроводах диаметром до 100 мм при транспортировке осушенного газа устраивают небольшие колодцы--приямки с установкой арматуры в верхней части, что обеспечивает ее обслуживание с поверхности земли (рис. 2.5). В таких колодцах используют краны, имеющие значительное преимущество перед задвижками. Особенно удобны в эксплуатации краны с принудительной смазкой, обеспечивающие полную герметичность, даже при содержании в газе различных примесей. Один из новых типов кранов со смазкой под давлением показан на рис. 2.6.

Рис.2.4. Установка задвижек в газовом колодце: 1, 5 - газопроводы, 2 - компенсатор, 3 - задвижка, 4 - шток, 6 - фланец, 7 - болт

Гидравлические затворы представляют собой стальной горшок с отростками для присоединения к газопроводу при сварке. Через верхнюю часть горшка проходит трубка диаметром 25 мм, нижняя часть которой скошена для увеличения ее площади и предотвращения засорения. Трубка выводится под ковер и закрывается дюймовой пробкой. При установке гидравлических затворов в нижних точках газопровода они могут выполнять 4 сборника конденсата и запорного устройства.

При использовании гидравлических затворов в качестве запорных устройств необходимо, чтобы высота плеча была на 200 мм больше, чем максимальное рабочее давление в газопроводах. Понятно, что для газопроводов среднего и высокого давления гидравлические затворы не пригодны, так как высота запирающего столба возрастает настолько, что гидрозатвор становится неконструктивным.

Для отключения подачи газа отворачивается пробка на стояке и через него заливается в горшок вода или другая жидкость, уровень которой будет зависеть от давления газа в газопроводе. Уровень воды можно замерить металлическим прутиком, опущенным через трубку. Для возобновления подачи газа жидкость из гидрозатвора (рис. 2.7, а) удаляется ручным насосом или мотонасосом. Такая относительная сложность и длительность работ по заливу и откачке воды - основной недостаток этих затворов.

К преимуществам гидрозатворов можно отнести простоту их устройства и герметичность затвора, хотя при аварийном повышении величины давления в сетях не исключена возможность выброса воды, к недостаткам -- полное прекращение подачи газа при не своевременной откачке воды или конденсата. Очень неудобно пользоваться гидравлическими затворами при присоединениях вводов и ответвлений к действующим газопроводам, так как в этих случаях гидравлические затворы заливаются водой и газопровод невозможно продуть от места врезки до ввода. Этот недостаток ликвидирован на гидравлических затворах нового типа.

Новый тип гидрозатвора (рис. 2.7, 6) видоизменен за счет установки дополнительной продувочной трубки диаметром 40 мм, к которой в верхней части приваривается отвод диаметром 20 мм с резьбой для муфты с пробкой. Дюймовая трубка для откачки воды проходит через продувочный стояк и в верхней части приваривается к нему. Плечи гидрозатвора приваривают к газопроводу на разных уровнях, что обеспечивает одновременное отключение газопровода и продувку через него газа. Для этого достаточно залить водой только часть гидрозатвора и вывернуть пробку для продувки газовоздушной смеси.

Рис. 2.5. Установка кранов в мелком колодце: 1 - отвод, 2 - кран, 3 - прокладка, 4 - болт с гайкой

Рис. 2.6. Кран со смазкой и опрокинутым расположением пробки:

1 - смазочный болт, 2 - шпиндель, 3 - смазочная камера, 4 - пробка, 5 - смазочные канавки

Конденсатосборники. Конденсатосборник устанавливают в низших точках газопроводов для сбора и удаления воды, В зависимости от влажности транспортируемого газа они могут быть двух видов: для влажного газа большей емкости и для сухого газа меньшей емкости.

Конденсатосборники могут быть низкого, среднего и высокого давлений. Конденсатосборники низкого давления (рис. 2.8) представляют собой емкость или, как часто называют, горшок, снабженный трубкой диаметром 1. Как и у гидрозатвора, эта трубка выводится под ковер и заканчивается муфтой и пробкой. Через эту трубку удаляется конденсат, продувается газопровод, замеряется давление газа. При необходимости трубку можно использовать для замера величины блуждающих токов путем определения разности потенциалов труба-грунт.

Рис. 2.8. Конденсатосборник низкого давления: 1 - корпус; 2 - трубка; 3 - подушка под ковер; 4 - ковер малый; 5 - пробка; 6 - муфта

Конденсатосборники среднего (рис. 2.9) и высокого давлений по конструкции несколько отличаются от конденсатосборников низкого давления. В этих конденсатосборниках установлена дополнительная защитная трубка и кран на внутреннем стояке. Под действием давления газа конденсат, имеющийся в горшке, отжимается во внутреннюю трубку вод определенным напором (в зависимости от величины давления газа) автоматически откачивается.

Рис. 2.9. Конденсатосборник среднего давления: 1 - корпус, 2 - кожух, 3 - внутренняя трубка, 4 - муфта, 5 - болт, 6 - гайка, 7 - прокладка, 8 - пробка, 9 - ковер большой,10 - головка, 11 - подушка

В старых конструкциях конденсатосборников зимой конденсат замерзал в верхних местах трубки, что порой сопровождалось разрывом стояков. В современных конструкциях конденсатосборников возможность исключается, так как газ через отверстие в верхней части внутреннего стояка производит противодавление на конденсат и тот под действием своего веса опускается вниз. При открытии крана на внутреннем стояке противодавление прекращается, и конденсат выходит на поверхность. Чем больше давление в газопроводе, тем быстрее и лучше будет опорожняться конденсатосборник.

Компенсаторы. Как подземные, так и надземные газопроводы при изменении температуры окружающей среды изменяют свою длину.

Так, например, стальной газопровод длиной в 1 км при увеличении температуры на 1°С удлиняется на 12 см. Под действием температурных изменений возникают различные усилия, которые могут привести к изгибу или растяжению газопроводов.

В процессе эксплуатации газопроводов величина изменения температуры может достигать несколько десятков градусов, что вызывает напряжение в несколько сотен атмосфер. Поэтому для предотвращения разрушения газопровода необходимо обеспечить свободное перемещение.

Устройствами, обеспечивающими свободное перемещение труб, являются компенсаторы. Они бывают тарельчатые, линзовые и лирообразные.

На подземных газопроводах наибольшее распространение получили линзовые компенсаторы (рис.2.10). Компенсатор имеет волнистую поверхность, изменение длины которого предохраняет газопровод от воздействия температурных деформаций. Кроме того, компенсаторы при установке их рядом с задвижками или другими видами запорных и регулирующих устройств не только предохраняют арматуру, но и обеспечивают возможность свободного демонтажа фланцевой арматуры и замены прокладок.

Необходима установка компенсаторов при наличии чугунной арматуры в колодцах и на гидрозатворах, укладываемых по мостам и эстаках. В колодцах компенсаторы устанавливают в свободном состоянии, чтобы обеспечить их полную компенсирующую способность.

Гнутые П-образные и линзовые компенсаторы изготавливаются из бесшовных труб и устанавливаются вместе с кранами и задвижками в мелких колодцах.

Рис.2.10. Линзовый компенсатор: 1 - гайка, 2 - тяга, 3 - полулинза, 4 - кронштейн, 5 - царга, 6 - рубашка, 7 - кронштейн, 8 - патрубок

2.5 ЭКСПЛУАТАЦИЯ И РЕМОНТ ГАЗОПРОВОДОВ.

2.5.1 ЗАЩИТА ГАЗОПРОВОДОВ С ИСПОЛЬЗОВАНИЕМ ИЗОЛЯЦИИИ

Изоляционные покрытия и их характеристика. Подземные газопроводы защищают от коррозии двумя способами: пассивным и активным. Пассивный заключается в изоляции газопроводов, при активном методе, помимо изоляции, применяют также электрические методы защиты.

В качестве противокоррозионной изоляции используют битумные, битумно-резиновые и полимерные материалы.

Противокоррозионные покрытия не должны проводить электрический ток, должны иметь необходимую механическую прочность и хорошую прилипаемость (адгезию), не подвергаться разрушению от биологических воздействий, быть эластичными и водонепроницаемыми и т. д.

В зависимости от степени коррозионности грунтов применяются три типа изоляции: нормальная, усиленная и весьма усиленная. Выбор типа изоляции производится по табл. 2.3.

Таблица 2.3

Применяемые типы изоляции

Минимальная годовая величина удельного сопротивления в Ом/м

Степень коррозионной активности грунта

Рекомендуемые защиты

Более 100

От 20 до 100

От 10 до 20

От 5 до 10

Менее 5

Низкая

Средняя

Повышенная

Высокая

Весьма высокая

Нормальная изоляция для газопроводов низкого давления из труб с толщиной стенки не менее 5 мм и усиленная для стальных газопроводов

Усиленная изоляция

Весьма усиленная изоляция

Весьма усиленная изоляция и активная защита

То же

Из табл. 2.3 видно, что защита газопроводов зависит от коррозионной активности грунта. Однако газопроводы, прокладываемые через различные преграды (водные, железнодорожные, автострады и т. д.) и в районах с опасностью повреждений блуждающими токами, независимо от коррозионности грунтов, должны иметь весьма усиленную изоляцию. Поэтому в городах и населенных пунктах в основном применяются усиленная и весьма усиленная изоляции, даже при низкой коррозионности грунтов.

Таблица 2.4

Толщина различных типов изоляции

Толщина изоляции

Толщина в мм

нормальная

усиленная

весьма усиленная

Битумная с минеральным заполнителем и усиливающей оберткой ………………

3

6

9

Битумно-резиновая с бризолом и гидроизолом ……………………………..

-

5,5

8,5

Пластмассовая лента с учетом толщины слоя клея …………………………………

0,12-0,3

0,4-0,6

0,4-0,8

В табл. 2.4 приведены толщины различных типов изоляции. Изоляция из пластмассовых лент имеет различные пределы толщины, они зависят от технологии производства и свойств применяемых материалов.

Таблица 2.5

Характеристика и состав битумных типов изоляции

Типы изоляции

Последовательность слоев

Минимальная толщина в мм

Типы битумной изоляции

Нормальная

Грунтовка

Битумное покрытие

Крафт-бумага

3

Усиленная

Грунтовка

Битумное покрытие

Гидроизол

Битумное покрытие

Крафт-бумага

6

Весьма усиленная

Грунтовка

Битумное покрытие

Гидроизол

Битумное покрытие

Гидроизол

Битумное покрытие

Крафт-бумага

9

Типы битумно-резиновой изоляции

Нормальная

Грунтовка

Битумно-резиновая мастика (3 мм)

Крафт-бумага

3

Усиленная

Грунтовка

Битумно-резиновая мастика

Бризол (1,5 мм)

5,5-6

Весьма усиленная

Грунтовка

Битумно-резиновая мастика (3 мм)

Бризол (1,5 мм)

Битумно-резиновая мастика (2,5 мм)

Бризол (1,5 мм)

8,5-9

Характеристика и состав битумной и битумно-резиновой изоляции приведены в табл. 2.5. Первым слоем изоляции является грунтовка, ее применяют для улучшения прилипаемости битумной изоляции к телу газопровода. Грунтовка представляет собой раствор битума в бензине в соотношении 1 : 3 по объему. Для приготовления грунтовки необходимо куски битума марки IV или смеси битумов марок III и V загрузить в котел и разогреть до температуры 200 °С, после чего расплавленный битум охлаждается до 80 °С, вливается тонкой струей в бензин и перемешивается.

Вливать бензин в битум категорически запрещается, так как это может привести к несчастным случаям!

Для повышения прочности изолирующего покрытия в битум добавляют различные наполнители: каолин 12--20% по весу, цемент, мелкий асбест и т. д. Такая смесь называется битумной мастикой.

При температурах наружного воздуха +5°С и ниже добавляют пластификаторы (соевое масло, зеленое масло) до 3% по весу, что придает битумной мастике пластические свойства.

Указания по выбору типа изоляции в зависимости от коррозионности грунта и характеристики газопровода приведены в табл. 2.6.

Таблица 2.6

Указания по выбору типа изоляции

Коррозионная активность грунтов и характеристика участков газопроводов

Тип изоляции

Газопроводы в грунтах с низкой и средней коррозионной активностью

Газопроводы в грунте с повышенной и высокой коррозионной активностью

Участки газопроводов в грунтах с низкой и средней коррозионной активностью на вводах во дворы и здания

Газопроводы в грунте с весьма высокой коррозионной активностью

Участки газопроводов в грунте с повышенной и высокой коррозионной активностью на вводах во дворы и здания, а также на пересечениях с железнодорожными и трамвайными путями, автомагистралями

Участки газопроводов на подводных переходах через реки и каналы, на затапливаемых поймах рек, в болотах. Участки явно выраженной опасностью повреждения блуждающими токами

Нормальная

Усиленная

То же

Весьма усиленная

То же

То же

Для увеличения прочности изолирующего покрытия применяют усиливающие обертки бризол, гидроизол и различные стеклоткани. Бризол готовят из битума с дроблением вулканизованной резины, гидроизол представляет собой толстый слой бумаги из асбеста с добавлением до 20% целлюлозы, пропитанной нефтяным битумом.

Для защиты изоляции от солнечных лучей и стекания применяют защищающую обертку, обычно из крафт-бумаги. Хранят ее в сухом помещении и в случае увлажнения до накладки на битумное покрытие просушивают.

Выполнение изоляционных работ. Изоляция газопроводов производится в следующей последовательности. Газопровод очищается до металлического блеска от загрязнений и ржавчины. Для очистки применяют трубоочистные машины или специальные щетки. Затем на газопровод наносится грунтовка толщиной 0,1--0,2 мм и после ее высыхания битумная эмаль. Эмалью покрывают в несколько слоев толщиной по 1,5 мм, после чего на горячую мастику накладывают усиливающую обертку. Оберткой из крафт-бумаги обертывают трубу по спиральной ленте так, чтобы она прилетала плотно без морщин и складок.

В последнее время получили широкое распространение различные пластмассовые изоляционные покрытия (полихлорвиниловые, полиэтиленовые и др.), которые выпускаются в виде липкой ленты шириной 450 мм и толщиной до 0,5 мм.

Работы по изоляции газопроводов полностью механизированы, ручной способ применяется только при изоляции отдельных стыков и участков газопровода.

Контроль за качеством изоляции. При проверке качества изоляции труб необходимо произвести:

- наружный осмотр изоляции путем проверки гладкости и равномерности покрытия и отыскания поврежденных участков;

- проверку толщины изоляционного покрытия не реже, чем через каждые 100 м и не менее четырех точек по окружности трубы;

- проверку прилипаемости изоляционного покрытия к трубе и слипаемости усиливающих оберток с битумной мастикой. Эту проверку надо проводить в сомнительных местах путем надреза изоляции двумя сходящимися под углом 60° линиями и отдиранием изоляции от трубы. Если изоляция хорошая, то очень трудно отодрать изоляцию от тела трубы и усиливающий материал от битума;

- сплошную проверку качества изоляции специальными приборами. Так, например, если проверяемый газопровод не уложен в траншею и не засыпан, то пользуются дефектоскопом, а если газопровод уже уложен в траншею и присыпан, то испытывается на проскок искры через изоляцию.

На рис. 2.11 приведена схема искрового дефектоскопа для контроля изоляции газопроводов. Работы по отысканию мест повреждения изоляции проводятся в следующем порядке: к зачищенному концу газопровода 8 прикрепляется провод высокого напряжения 7. Электрическая цепь дефектоскопа замыкается выключателем 2. Искатель 9 дефектоскопа устанавливается над трубой 8 и перемещается вдоль нее. В местах с плохой изоляцией произойдет искровой пробой и в результате вспыхнет сигнальная неоновая лампа 14, вмонтированная в рукоятку 12. Таким образом, отыскиваются поврежденные места изоляции, которые после исправления снова проверяются

Рис. 2.11. Схема дефектоскопа: 1 - аккумулятор, 2 - выключатель, 3 - катушка, 4 - прерыватель, 5 - конденсатор, 6 - предохранительный зазор, 7, 13 - провода высокого напряжения, 8 - газопровод, 9 - искатель, 10 - изоляция газопровода, 11 - воздушный зазор, 12 - рукоятка дефектоскопа, 14 - неоновая лампочка

Рис. 2.12. Схема искателя повреждений ИПИТ: 1, 6 - электроды, 2 - выключатель, 3 - реле прерывателя, 4 - батарея, 5 - наушники, 7 - газопровод

Принципиальная схема искателя повреждения показана на рис 2.12. Принцип работы прибора заключается в том, что па газопровод 7 подается пульсирующий ток, который стекает с газопровода в грунт в тех местах, где повреждена изоляция. Этот ток возвращается на прибор через заземляющий электрод. В тех местах вокруг газопровода, где ток стекает в грунт, образуется электрическое поле, которое отыскивается с помощью наушников 5 и подключенных к ним двух индикаторных электродов 6, погружаемых по обе стороны газопровода 7. Надежной работе прибора мешают различные помехи (шумы). Поэтому при работе с искателем нельзя становиться на газопровод; газопровод должен быть присыпан на высоту до 30 см, за исключением его концов и явно оголенных участков; присыпку газопровода грунтом необходимо производить за 5--б ч до начала проверки.

2.5.2 ЭЛЕКТРИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ

Для защиты газопроводов от коррозии блуждающими токами применяются электрические дренажи, катодные станции и протекторы.

Электродренажная защита. Дренажная защита наиболее распространенный способ защиты газопроводов от блуждающих токов. Через электродренажные установки осуществляется отвод токов, попавших на газопровод, обратно к источнику. Отвод ведется через специальный проводник, соединяющий газопровод с минусовой шиной подстанции или рельсами электрифицированной дороги.

При отводе тока ликвидируется возможность электрической коррозии, так как прекращается выход токов из газопровода в грунт.

В настоящее время в основном применяют поляризованные дренажи, обладающие односторонней проводимостью (рис. 2.13).

Рис. 2.13. Схема поляризованного дренажа УПДУ-57: 1 - газопровод, 2, 4 - предохранители, 3 - сопротивление, 5, 7 - контакты, 6 - диод, 8 - дренажная обмотка, 9 - выключающая обмотка, 10 - шунт амперметра, 11 - амперметр, 12 - рубильник, 13 - рельс

Принцип работы дренажной установки заключается в следующем: если на газопроводе 1 возникает положительный потенциал по отношению к рельсу 13, то ток пройдет через, предохранитель 2, сопротивление 3, предохранитель 4, диод 6 с обмоткой 9, шунт 10 и рубильник 12 на рельс 13.

Движение тока будет продолжаться до тех пор, пока разность потенциалов не достигнет 1--1,2 в, в противном случае замыкаются контакты 5 и 7 и ток потечет через обмотку 8, а по ответвлению -- к диоду 6 через шунтирующие контакты 5. Если разность потенциалов снизится до 0,1 в, то контакты размыкаются и дренажная цепь разрывается. Если потенциал рельса будет больше потенциала трубы, то диод 6 тока не пропустит.

Катодная защита. Схема действия катодной защиты показана на рис. 2.14. На газопровод 2 накладывается отрицательный потенциал от специального источника постоянного тока 5 и тем самым защищаемый участок газопровода превращается в катодную зону. Путем помещения в грунт старых труб или рельсов и подключением их к положительному источнику постоянного тока через провода 4 поблизости от газопровода создается анодная зона. Таким образом, искусственно создается электрическая цепь и ток течет следующим образом: от положительного полюса источника питания по изолированному кабелю на анодное заземление 6, от анодного заземления ток стекает в грунт и через поврежденные участки 1 газопровода на защищаемый газопровод, а от газопровода по изолированному кабелю на отрицательный полюс источника питания.

Рис. 2.14. Схема действия катодной защиты: 1 - места повреждения изоляции, 2 - газопровод, 3 - точка дренажа, 4 - провода, 5 - источник постоянного тока, 6 - заземление из старых труб

Таким образом, происходит постепенное разрушение не газопровода, а вкопанных в землю старых труб (анода). Однако необходимо отметить, что этот вид за щиты имеет существенные недостатки, -- небольшую зону действия в большие расходы на электроэнергию.

Протекторная защита. Схема действия протекторной защиты показана на рис. 2.15. Принцип ее действия основан на том, что газопроводу путем подключения к нему протекторов, обладающих более отрицательным потенциалом, придается отрицательный потенциал. Таким образом, участок газопровода превращается в катод без постороннего источника тока. Протектор представляет собой цилиндр из магния, алюминия, цинка и их сплавов, в центре которого расположен стальной сердечник в виде стержня или спирали. Сердечник выступает с одного или с обоих концов протектора, что дает возможность соединить их по нескольку штук. Протекторы располагаются на расстоянии до 4,5 м от газопровода. В настоящее время выпускаются протекторы типа МГА (гальванические аноды). Средний срок их службы 8--10 лет, вес 5--7 кг.

Рис. 2.15. Схема протекторной защиты:

1 - газопровод, 2 - контрольный пункт, 3 - проводники, 4 - заполнитель, 5 - протектор

ЭКСПЛУАТАЦИЯ СРЕДСТВ ЗАЩИТЫ

Эксплуатация средств электрозащиты осуществляется специально обученными работниками. На каждую установку необходимо иметь паспорт и журнал контроля работы. В паспорт заносятся техническая характеристика и режим работы этих установок, В журнал необходимо заносить все работы, связанные с осмотром и проверкой установок.

Обслуживание установок состоит из периодических осмотров и контрольных замеров. Катодные установки осматривают один раз в месяц, а протекторные и дренажные два раза в месяц.

При периодическом осмотре дренажа проверяется:

целостность монтажа, отсутствие различных повреждений, плотность контактов;

наличие предохранителей и их исправность;

состояние контактов реле;

чистка контактов реле, смена предохранителя, очистка дренажа от пыли, грязи и снега.

При осмотре катодной установки проверяется:

наличие тока и напряжение источника питания;

- целостность монтажа установки и отсутствие различных неисправностей;

- плотность контактов.

При профилактическом осмотре протекторной защиты проверяется, плотность контакта и отсутствие различных повреждений

в контактном устройстве.

При периодических контрольных замерах на дренажных установках измеряется:

- величина и направление тока;

- величины и разности потенциала между газопроводом и рельсами, при котором срабатывает дренажная установка, а также определяется средняя величина этой разности. Проверяется так же, разорвется ли цепь дренажа при перемене полярности газопровода относительно рельсов;

- разность потенциалов между газопроводом и землей. Проверяется исправность имеющихся контрольно-сигнальных устройств.

Если в цепи дренажа отсутствует шунт, величину дренажного

тока измеряют переносным шунтом, подключаемым в дренажную цепь параллельно предохранителю или рубильнику.

При периодических контрольных замерах на катодных установках производится:

- измерение величины выходного напряжения;

- измерение величины тока;

- измерение разности потенциалов между землей и газопроводом;

- проверка состояния анодного заземления;

- проверка имеющихся контрольно-сигнальных устройств.

Периодическими контрольными замерами на установках протекторной защиты предусматривается:

- измерение потенциала газопровода относительно земли при включенной и отключенной защите;

- измерение тока, протекающего по цепи протектор -- газоровод;

- измерение сопротивления в цепи протектор -- газопровод.

Если потенциал трубопровода на участке подключения электродов будет меньше минимального защитного потенциала, то проверяется исправность провода между протектором и газопроводом, а также места его соединений с газопроводом и протектором. При уменьшении объема протекторов до 10% от его первоначального объема их заменяют новыми. Кроме того, не реже одного раза в год проверяется эффективность действия протекторной установки.

Все результаты осмотра и контрольных замеров заносятся в специальный журнал.

2.5.3 ЭКСПЛУАТАЦИЯ УСТАНОВОК СЖИЖЕННЫХ ГАЗОВ. ПРОФИЛАКТИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Профилактическое обслуживание баллонных и резервуарных установок производится службой «Горгаз». Профилактическое обслуживание относится к важнейшим мероприятиям, обеспечивающим безопасную эксплуатацию оборудования баллонных и резервуарных установок.

Слесари, за которыми закреплены индивидуальные и групповые баллонные установки и резервуарные установки, обязаны по графикам проверять состояние газового оборудования, уровень и давление в них сжиженного газа.

Перед выходом на объект слесарь должен получить наряд (задание) на работу от мастера (бригада от диспетчера), узнать от него о наличии заявок от потребителей газа. Эти заявки, особенно заявки на устранение утечек газа, выполняются в первую очередь. Слесарь должен иметь при себе исправный набор инструментов, необходимые запасные части и служебное удостоверение.

Основная работа слесаря, обслуживающего газовые приборы баллонных и резервуарных установок:

выявление и устранение утечек газа в арматуре головки резервуара и в местах присоединения баллонов к рампе;

контроль по жидкостному манометру за давлением газа в дворовых сетях или перед газовыми приборами;

настройка регулятора давления на номинальное давление в сети в ЗОО мм вод. ст.;

проверка исправности предохранительных клапанов;

проверка наличия и комплектности противопожарного инвентаря;

проверка по указателю уровня и манометру наличия жидкости в резервуарах и своевременное принятие мер к наполнению их газом;

проверка надежности установки шкафов и, если потребуется, подбивка грунта под брусья и крепление шкафа к стене разъемных хомутов установленного в кухне баллона;

контроль окраски кожухов и ограждений, ящиков для баллонов, наличия действующих замков на дверцах;

проверка мыльной эмульсией (под давлением) плотности соединений на обвязке резервуаров и баллонов, устранение обнаруженных неисправностей;

смазка кранов, прочистка газовых горелок, их регулировка;

замена изношенных деталей газовых приборов;

проверка состояния тяги дымоходов водонагревателей.

Обслуживание подземных газопроводов от групповых установок сжиженного газа производится так же, как и дворовых газопроводов

сетевого газа.

Такие работы, как проверка плотности, устранение утечек и контроль за величиной давления, производятся три раза в месяц.

При накоплении в резервуарах групповых установок тяжелых остатков (что обнаруживается по малому давлению в резервуарах) их необходимо удалить.

Для этого автоцистерну соединяют шлангом, привернутым к наполнительно-сливному штуцеру цистерны, а другим концом к сливному штуцеру подземного резервуара. Переток жидкости происходит за счет увеличения давления паров сжиженного газа в опорожняемом резервуаре. Увеличение давления достигается за счет перепуска паров из соседнего резервуара или группы резервуаров, заправленных до этого сжиженным газом.

Самым серьезным нарушением в работе регулятора давления является замерзание его в зимнее время при наличии влажного газа. В результате в отверстии сопла у входа образуются кристаллы льда. Чем шире сопло в регуляторе, тем труднее оно замерзает, следовательно, замерзать будут небольшие регуляторы.

Для предупреждения замерзания регуляторов необходимо воспрепятствовать попаданию влаги в резервуары. Если регуляторы замерзнут, то необходимо в резервуары ввести метиловый спирт из расчета 1,3 л на 1000 л емкости резервуара (3,3 л спирта на резервуар емкостью 2,5 м3 и 5,7 л на резервуар емкостью 4,4 м3).

В борьбе с замерзанием регуляторов часто прибегают к отогреванию. Замерзшие участки или регулятор следует отогревать горячим полотенцем. Иногда для ликвидации замерзания регуляторов вскрывают входное соединительное устройство и вливают в сопло несколько капель метилового спирта.

Для предупреждения замерзания пружины регулятора следует вводить в верхнюю камеру регулятора небольшое количество глицерина. Чтобы не образовывался лед под клапаном регулятора, можно смазывать его сопло смазками, которые при меняются в авиации для борьбы с обледенением самолетов.

Нарушение работы регулятора может быть вызвано расстройством рычага и неправильной подгонкой частей клапана. Иногда аналогичное нарушение вызывается скоплением краски в дыхательном отверстии верхней полости диафрагмы или если выходное и дыхательное отверстия забиваются грязью.

Устранение мелких неисправностей, отмораживание и настройка регуляторов производятся на месте их установки. При значительном расстройстве и неисправности регулятора они проверяются на специальных стендах и ремонтируются в мастерских.

2.6 РЕМОНТНЫЕ РАБОТЫ НА ПОДЗЕМНЫХ ГАЗОПРОВОДАХ

Ремонт, проводимый на газопроводах, подразделяется на профилактический (текущий) и капитальный.

Профилактический ремонт проводится периодически по заранее составленному графику, в соответствии с нормами и сроками, приведенными в табл. 2.4.

При профилактическом ремонте производятся: осмотр с использованием бурения скважин газопроводов, устранение причин утечек газа, устранение закупорок, ремонт арматуры и сооружений на газопроводах, ремонт тела трубы и изоляции, пополнение и восстановление технической документации.

Осмотр с использованием бурения скважин проводится для точного определения мест утечек газа, выявленных при проверке колодцев и других сооружений. С этой целью вдоль трассы газопровода через каждые 2 м, а при наличии сварочной схемы газопровода над каждым стыком бурятся скважины. Диаметры скважин обычно составляют 20--ЗО мм, а глубина зависит от расстояния до верха трубы. Если бурят при мерзлом грунте, то скважина должна быть ниже нижней образующей газопровода на 20 см, так как мерзлый грунт не дает распространиться газу вверх. В летних условиях глубину скважин можно уменьшить, т. е. не доводить до верхней образующей на 20 см. Скважины необходимо располагать в шахматном порядке параллельно оси газопровода на расстоянии 300 мм от стенки газопровода. Несоблюдение этих условий может привести к повреждению газопровода и серьезным последствиям.

Наличие газа в скважинах определяется газоанализаторами, а если скважины расположены на расстоянии более З м от зданий, колодцев и других сооружений, то и огнем, так как в этом случае исключается возможность образования взрывоопасной концентрации. Во избежание получения ожогов зажженную спичку надо отвести на расстояние вытянутой руки и только после этого опустить ее в скважину. Наличие газа в скважинах проверяется и различными реактивами, однако эти способы пока не имеют широкого распространения, так как связаны с дополнительными затратами и временем.

В настоящее время скважины бурят специальными пневматическими бурами, электровибраторами, электробурами, перфораторами, а также вручную.

Чаще всего из механических приспособлений для бурения используют электровибратор (рис. 2.17), с его помощью скважина бурится за 1 мин. Особенно удобно бурить им скважины в мягких грунтах, так как его легко извлекать, но при бурении скважин в плотных грунтах возникает ряд неудобств по извлечению клиньев, поэтому приходится механизировать и процесс выемки клиньев из скважин.

Однако сам процесс бурового осмотра, связанный с бурением большого количества скважин, особенно по усовершенствованными дорожным покрытиям, связан с большими неудобствами и затратами. Поэтому в настоящее время изучают возможность определения мест утечек газа без производства буровых работ.

Рис. 2.17. Электровибратор для бурения: 1 - электровибратор, 2 - рукоятка, 3 - оголовок, 4 - патрубок, 5 - шпилька, 6 - клин

По результатам бурового осмотра или другими способами определяется наиболее вероятное место повреждения газопровода. Иногда место повреждения определяется неправильно, а работы по раскопке и засыпке отдельных участков трудоемки и дорогостоящи. Поэтому необходимо тщательно проверить все скважины, путем сравнения определить участок с наибольшей концентрацией газа и только после этого приступить к раскопкам шурфов, длина которых должна составляет 1,5--2 м. Способ устранения утечки газа зависит от вида повреждения и величины давления газа в газопроводе.

Практика показывает, что наиболее распространенные повреждения газопроводов - разрывы стыков стальных труб, неплотности в арматуре, повреждения оголовков стояков конденсатосборников, гидрозатворов, контрольных трубок и коррозия труб.

Разрывы стыков стальных газопроводов устраняются путем сварки катушки длиной не менее 400 мм. Если работы ведутся на газопроводах высокого и среднего давлений, то можно временно установить муфты. Для этого предварительно на стык приваривается металлический бандаж, затем на бандаж надевается разъемная муфта и приваривается. Плотность приваренной муфты проверяется опрессовкой воздухом через пробку, которая в дальнейшем заваривается. Лепестковые муфты (рис. 2.18) применяют также, когда на стыках имеются не только трещины, но и сквозные отверстия в виде пор. Во всех случаях категорически запрещается подварка стыков!

Рис. 2.18. Лепестковая муфта: 1 - газопровод, 2 - муфта

Если на газопроводе обнаружены продольные трещины размером более 0,8 м, необходимо отключить подачу газа и вварить на место трещины катушку требуемой длины. Сварные соединения испытывают на плотность, продувая газ через весь отключенный участок газопровода. Неплотности в арматуре устраняют, заменяя отдельные детали, прокладки, подтягивая болты фланцевых соединений, уплотняя сальник и т. д.

Если дефекты деталей нельзя устранить на месте, то эти детали заменяют новыми. Очень часто меняют задвижки; новую задвижку устанавливают вместе с компенсатором. Конденсатосборники и гидрозатворы, как правило, не ремонтируют, а заменяют новыми.

Одна из наиболее важных задач эксплуатационников -- выявление и устранение различных закупорок в газопроводах. Измеряя давление газа на от дельных участках газопроводов, по перепаду давления определяют место закупорки.

Закупорки могут быть водяные, смоляные, нафталиновые и снежно-ледяные. При водяных и снежно-ледяных закупорках необходимо своевременно откачивать воду из конденсатосборников и гидрозатворов. Если на отдельных участках образуются провесы, заполненные водой, то следует выправить уклон газопровода или установить дополнительные конденсатосборники.

Смоляные и нафталиновые закупорки образуются часто в газопроводах искусственного газа, а при транспортировании влажного газа могут образоваться снежно-ледяные закупорки или, как их часто называют, гидраты. Эти закупорки устраняются заливкой специальных растворителей в газопровод или отогревом места закупорки.

На вводах к домам закупорки устраняют шуровкой газопровода проволокой диаметром до 10 мм или прочисткой ершом. Очень серьезную опасность представляют закупорки из нерастворимых предметов, которые извлекают из газопровода путем его демонтажа или вырезки окна, а иногда, продувая инертным газом под давлением.

Все вышеперечисленные виды ремонтных работ фиксируются в паспорте газопровода. На основании этих данных планируется его капитальный ремонт.

При капитальном ремонте заменяют поврежденные коррозией участки газопровода, восстанавливают изоляцию на отдельных участках, заменяют арматуру, ремонтируют газовые колодцы и заменяют или устанавливают средства защиты газопроводов от электрической коррозии.

2.7 КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНАЯ АППАРАТУРА

Для контроля работы газорегулирующего оборудования применяют контрольно-измерительные приборы. Этими приборами измеряются давление, температура, разность (перепад) давлений и расход газа. В зависимости от способа передачи показаний приборы разделяются на показывающие, самопишущие и суммирующие. Технические стационарные приборы предназначены для постоянных замеров, а переносные -- для периодических замеров.

Приборы для измерения давления газа. О нормальной работе регуляторной установки можно судить лишь на основе анализа изменения давлений, замеряемых контрольно-измерительными приборами в соответствующих точках. Своевременное обнаружение отклонения замеряемого давления от нормы позволяет принять меры к устранению причин, вызвавших нарушение заданного режима.

Измерение давления газа производится показывающими или регистрирующими манометрами и напоромерами. Манометры для замера начального давления присоединяются к подводящему газопроводу перед входной задвижкой. Манометры для замера конечного давления целесообразно ставить за выходной задвижкой регулятора.

Контроль за работой регуляторной установки заключается в сопоставлении давления на входе и выходе из регулятора.

Степень засоренности фильтра измеряется либо одним манометром с переключающим устройством, либо с помощью дифманометра. При установке манометров для проверки правильности их показаний следует предусматривать трехходовые краны для периодического подключения контрольного прибора. Из-за неблагоприятного влияния газовых завихрений импульсные трубки манометров не следует присоединять к тройникам или крестовинам.

Приборы для измерения расхода газа. Учет расхода газа ведется объемными счетчиками или расходомерами с нормальными диафрагмами. В качестве объемных счетчиков на ГРП используют в основном ротационные счетчики. Измерительное устройство счетчиков работает под действием давления протекающего газа. Суммарный объем газа, прошедшего через счетчик, определяется по числу объемов, вытесненных из измерительной камеры. В настоящее время ротационные счетчики типа РС выпускают на следующие номинальные расходы: 40, 100 250, 400, 600 и 1200 м3/ч.

Любой расход газа, давление которого превышает 0,1 МПа, а также расход больший, чем суммарная пропускная способность двух параллельно работающих ротационных счетчиков при давлении, меньшем, чем 0,1 МПа измеряется методом перепада давления.

2.8 ГАЗОГОРЕЛОЧНЫЕ УСТРОЙСТВА

Рациональное, экономичное и безопасное сжигание газа в различных энергетических установках зависит в первую очередь от правильного выбора и условий установки на агрегате газогорелочного устройства.

Перевод на отопление газом промышленных и котельных агрегатов, ранее работавших на твердом или жидком топливе, значительно повышает их производительность. Применение газа (природного, сжиженного и др.) в ряде отраслей промышленности дает возможность ввести в эксплуатацию новые высокопроизводительные газоиспользующие агрегаты, облегчает автоматизацию процессов нагрева, значительно улучшает технико-экономические показатели.

Поэтому по мере увеличения удельного веса газа в топливном балансе нашего народного хозяйства вопросы рационального использования и экономии этого ценнейшего топлива приобретают все большее значение. Несмотря на кажущуюся простоту сжигания газа, этот процесс может варьироваться в весьма широких пределах, давая для одной и той же установки раз личный эффект.

Опыт показывает, что почти любой котел или любая промышленная установка, переведенная на отопление природным газом, может работать с более высокими показателями.

Основными критериями оценки работы теплотехнического агрегата являются эффективность топливоиспользования и максимальная интенсификация заданного технологического процесса. Например, при проектировании и эксплуатации котельных установок необходимо стремиться к обеспечению максимальной производительности котла и получению наивысшего коэффициента его полезного действия.

Для промышленных печей основной задачей является максимальное ускорение процесса нагрева с соблюдением технологических особенностей и с наименьшим расходом топлива, т. е. также получение наивысшего коэффициента их полезного действия.

Естественно, что эти задачи должны решаться с наименьшими материальными затратами и с соблюдением условий безопасности, надежности работы и т. д.

Выбор способа сжигания газа, организация аэродинамики топки или рабочего объема далеко не безразличны с точки зрения указанных выше показателей, так как свойства и условия формирования факела горящего газа приводят к разным температурным режимам и тепловым эффектам процесса. Поэтому для каждого типа теплотехнической установки, а подчас для каждого конкретного случая должны быть проанализированы и применены наиболее выгодные приемы сжигания газа.

Несомненно, эффективность использования газа не может быть получена только в результате выбора той или иной конструкции горелки, она достигается при правильном решении всего комплекса вопросов, связанных с теплообменом и аэродинамикой установки, начиная от подачи воздуха и газа и кончая удалением продуктов сгорания в атмосферу. Несмотря на исключительное значение начальной стадии процесса, т. е. сжигания газа, очень важно правильно выбрать оборудование при проектировании к квалифицированно эксплуатировать газогорелочные устройства.

В настоящее время для удовлетворения различных требований, как в отношении тепловых нагрузок, так и в отношении давления газа перед горелками и способов смешения его с воздухом применяют многообразные конструкции газовых горелок.

Исходя из способа подачи воздуха, горелки всех конструкций можно классифицировать как:

а) диффузионные (или внешнего смещения);

б) подовые;

в) однопроводные и двухпроводные инжекционные;

г) двухпроводные с принудительной подачей воздуха (смесительные);

д) комбинированные (газомазутные, пылегазовые и т. д.).

По давлению газа перед соплом горелок их делят на:

-- горелки низкого давления -- до 500 мм вод. ст.;

-- горелки среднего давления от 500 мм вод, ст. до 0,3 МПа

-- горелки высокого давления -- свыше 0,3 Мпа

В зависимости от метода сжигания газа горелки бывают факельные и бесфакельные.

Диффузионные горелки применяют редко и в настоящей главе они не рассмотрены.

Наибольшее распространение при газоснабжении коммунально-бытовых и промышленных предприятий получили инжекционные горелки, в которых воздух, необходимый для сжигания газа, подсасывается непосредственно в горелку газовой струей.

В горелках, в которых необходимый для сжигания газа воздух (полностью или частично) подается под давлением, газ можно сжигать как пламенным, так и беспламенным способом.

Комбинированные горелки (пылегазовые, газомазутные и т. д.), работающие по принципу либо инжекционных горелок, либо горелок с принудительной подачей воздуха, применяют редко и главным образом для специальных целей.

Анализируя опыт сжигания газов и, в частности, природного газа у нас и за рубежом, можно считать, что наиболее перспективны в промышленных и энергетических установках инжекционные горелки среднего давления, работающие на давлениях порядка 0,3 --1,0 кГ/см2.

Современные горелки проектируют многосопловыми, с керамическими стабилизаторами горения и лопаточными устройствами, обеспечивающими хорошее перемешивание газовоздушной смеси.

Газовые горелки всех конструкций имеют общие основные элементы: форсунку, смеситель и горелочную насадку со стабилизирующим устройством.

В зависимости от технологических, эксплуатационных и других условий эти элементы могут быть конструктивного различного решения; некоторые из них могут совсем отсутствовать или компоноваться в одной детали.

Все элементы горелок связаны между собой определенными соотношениями, полученными на основании расчета и практических данных.

В инжекционных горелках форсунка, регулятор первичного воздуха, смеситель и горелочная насадка бывают различных форм и сечений. Роль стабилизатора выполняют одно или несколько отверстий или щелей определенных размеров.

Горелки с принудительной подачей воздуха имеют одну или несколько форсунок, смеситель, металлическую или керамическую горелочную насадку со стабилизирующим устройством в виде отверстий определенного размера.

Комбинированные горелки имеют одну или несколько форсунок не только для газа, но и для других видов топлива, смесительное устройство самых разнообразных конструкций (в зависимости от требований) и горелочную насадку со стабилизирующим устройством также самой разной формы.

Все горелки при сжигании газа в условиях, соответствующих открытому пространству (перепад давления равен нулю), должны удовлетворять следующим общим требованиям.

1. Изготовляемые серийно или по отдельным чертежам они должны пропускать необходимое количество газа и обеспечить полноту его сгорания с минимальным избытком воздуха; количество горючих компонентов при неполном сгорании в отходящих продуктах допускается в следующих пределах:

а) для газогорелочных устройств, применяемых в бытовых приборах содержание СО в сухих продуктах горения при не должно быть более 0,05% по объему как без отвода продуктов сгорания в дымоотводящий канал, так и при дымоотводящем канале ;

б) для газогорелочных устройств, применяемых в коммунально-бытовых и промышленных установках, с отводом продуктов сгорания в дымоотводящий канал сумма всех горючих компонентов не должна превышать 1,5%.

2. Регулирование тепловой нагрузки, характеризуемой количеством сжигаемого газа в единицу времени, должно быть легким при достаточно высоком пределе регулирования.

Для газовых горелок различают три вида тепловой нагрузки: номинальную (расчетную), минимальную и максимальную. Минимальная тепловая нагрузка определяется возможностью длительной работы горелки без проскоков пламени на форсунку.

Максимальная тепловая нагрузка определяется возможностью длительной работы горелки без отрыва пламени от горелки.

Отношение величин минимальной и максимальной тепловых нагрузок определяет пределы регулирования горелки. Это отношение должно бы: как правило, не менее 1 : 2 для инжекционных горелок низкого и среднего давления, 1 : 2,5 для диффузионных и по горелок, 1 : 4 для двухпроводных и комбинированных горелок.

3. Обеспечивать устойчивость пламени при максимальной тепловой нагрузке, а также хорошее смешение и полноту сгорания при минимальной тепловой нагрузке. Устойчивость горелки определяется длительностью ее работы без проскоков и отрыва пламени при изменениях теплоты сгорания газа и его давления на от заданных параметров на всех указанных выше режимах. При этом настройка горелки должна оставаться без изменения.


Подобные документы

  • Расчет поступлений тепла и вредных веществ в помещения. Особенности устройства систем вентиляции. Аэродинамический расчет приточной и вытяжной вентиляции. Автоматическое регулирование систем вентиляции. Автоматическая защита оборудования и блокировки.

    дипломная работа [4,0 M], добавлен 01.09.2010

  • Теплозащита зданий и сооружений. Энергоэффективность систем теплогазоснабжения и вентиляции. Информационные технологии в ТГСиВ. Обработка результатов научных исследований. Государственный экологический контроль. характеристика путей решения проблем ТГсВ.

    учебное пособие [250,0 K], добавлен 30.01.2011

  • Суть вентиляции - удаления воздуха из пространства помещения и замены его свежим. Борьба вентиляции с вредными выделениями в помещении: с избыточным теплом, влагой, различными газами вредных веществ и пылью. Развитие искусственных систем вентиляции.

    реферат [405,9 K], добавлен 26.02.2012

  • Металлы и неметаллические материалы, используемые в системах теплогазоснабжения и вентиляции (ТГВ). Способы испытания металлов и сплавов. Изделия и материалы (трубы, арматура), применяемые в системах ТГВ. Характеристика вспомогательных материалов.

    курс лекций [3,5 M], добавлен 08.02.2015

  • Выбор расчетных параметров наружного и внутреннего воздуха. Определение количества вредных выделений для залов. Воздухообмен в остальных помещениях. Расчет жалюзийных решеток и каналов. Основы конструирования систем вентиляции. Калориферная установка.

    курсовая работа [829,9 K], добавлен 24.12.2013

  • Проектирование систем отопления, вентиляции и кондиционирования воздуха в гражданском помещении на примере здания комплексного центра просвещения, культуры и спорта в г. Новосибирске. Расчет параметров для создания заданного микроклимата в помещении.

    курсовая работа [394,6 K], добавлен 20.02.2011

  • Обеспечение оптимального микроклимата как одна из основных задач в процессе организации воздухообмена в животноводческих помещениях. Расчет вентиляции для зданий сельскохозяйственного назначения. Выбор схем приточной и вытяжной систем вентиляции.

    курсовая работа [242,0 K], добавлен 22.11.2010

  • Техническое обслуживание, реконструкция, капитальный ремонт и наладка инженерного оборудования: центральных и индивидуальных тепловых пунктов, систем отопления, горячего водоснабжения с подачей теплоносителя, систем вентиляции; оформление результатов.

    курсовая работа [28,2 K], добавлен 21.10.2011

  • Естественная, механическая, местная и общеобменная вентиляция. Описание систем автоматизации и диспетчеризации процесса регулирования отопления, вентиляции и кондиционирования воздуха. Обоснование принятых систем. Расчёт необходимого объёма воздуха.

    дипломная работа [212,8 K], добавлен 02.05.2015

  • ТЭО систем теплоснабжения. Оптимальная мощность центрального теплового пункта. Выбор оптимальной удельной потери давления в трубопроводах тепловой сети. ТЭО систем газоснабжения. Количество очередей строительства ГРС, мощности газорегуляторного пункта.

    курсовая работа [204,3 K], добавлен 12.02.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.