Статистические методы анализа качества
Обзор методов статистического обеспечения качества. Применение семи традиционных японских методов анализа качества. Разработка идеи статистического приемочного контроля. Основы и применение математического аппарата, используемого для статистики.
Рубрика | Экономика и экономическая теория |
Вид | методичка |
Язык | русский |
Дата добавления | 18.08.2009 |
Размер файла | 58,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Расслоение применяют и при оценке качества процесса производства с помощью контрольных карт. Так, в случае изготовления продукции на многошпиндельном станке производят расслоение по каждому шпинделю. Для каждого шпинделя строят х- карту или х- карту; по ним отслеживают изменение настройки во времени, выявляют правильность настройки каждого шпинделя, строят кривые распределения и делают заключение. См. также пример 4.1.2.
3. ОЦЕНКА ВОСПРОИЗВОДИМОСТИ ПРОЦЕССА
3.1 Понятие воспроизводимости процесса
Целью системы управления процессом является принятие экономически верных решений, связанных с выработкой оптимальных воздействий. Это требует введения критериев, позволяющих количественно оценить полезность мероприятий.
На рис. 3.1.а процесс находится в статистически неуправляемом состоянии (последовательным временным отсчетам соответствуют распределения случайной величины с различными параметрами). В результате организационных мероприятий (устранение особых причин) процесс приведен в статистически управляемое состояние (рис. 3.1.b). Однако продукция не соответствует запросам потребителя, так как часть изделий лежит вне поля допуска. Положение процесса, показанное на рис. 3.1.с должно удовлетворить и производителя, и потребителя: процесс статистически управляем и находится в поле допуска.
Количественно охарактеризовать качество производства в общем случае возможно путем расчета с помощью формул для вычисления вероятности процента несоответствий, оказавшихся вне поля допуска.
Достаточно часто в производстве наблюдаются процессы, статистические свойства которых соответствуют нормальному закону распределения случайных величин.
Однако на практике для оценки качества производства пользуются понятием воспроизводимость. Так как 99,7% значений нормальной случайной величины попадает в интервал 6у, то доля несоответствующих изделий тесно связана с взаимным расположением этого интервала и поля допуска. Коэффициенты, характеризующие это расположение, называются индексами воспроизводимости.
Воспроизводимость процесса определяется как полный размах присущей стабильному процессу изменчивости, оцениваемой как интервал, длиной шесть стандартных отклонений (6s). Количественно привязка данного понятия к конкретным условиям настройки процесса (разброс и центрированность относительно поля допуска) оценивается индексами воспроизводимости Ср, Cpk.
При интерпретации воспроизводимости процесса с помощью указанных индексов примем следующие предположения:
* индивидуальные измерения соответствуют нормальному распределению;
* процесс статистически управляем;
* конструкторской целью является центр поля допуска (здесь рассматривается вариант двустороннего симметричного допуска).
3.2 Расчет индексов воспроизводимости
Определим структуру индексов и порядок их вычисления.
Индекс воспроизводимости Ср показывает, как соотносятся ширина поля допуска и изменчивость статистически устойчивого процесса, то есть, можно ли ожидать, что разброс контролируемого параметра окажется в границах поля допуска.
Индекс Ср равен отношению ширины поля допуска к полному размаху присущей стабильному процессу изменчивости.
Введем обозначения:
НГД - нижняя граница поля допуска,
ВГД - верхняя граница поля допуска,
Д - ширина поля допуска.
Вычисление индекса воспроизводимости Ср проводится по формуле:
Ср = Д/6у. Здесь А = ВГД - НГД.
Иллюстрация введенных обозначений показана на рис. 3.3.
Случай 1 (базовый). Показан на рис. 3.3.а. В фиксированное поле допуска укладывается 6s процесса, т.е. Д = 6s (Ср = 1). При этом настроенный на центр поля допуска процесс содержит 0,27% несоответствий.
Случай 2 (рис. З.З.Ь). Пусть 6s, < Д. Тогда Ср > 1 и число несоответствий окажется весьма малым.
Случай 3 (рис. З.З.Ь). Пусть 6s, > Д, соответственно С < 1. Изменчивость процесса велика и число несоответствий превзойдет порог 0,27%.
а)С,=1; Ь)Ср<1,Ср>1
Итак, при зафиксированном поле допуска эффективность действий по управлению процессом, направленных на снижение изменчивости (уменьшение s), ясно и понятно характеризуется ростом индекса Ср. Считаются общепринятыми следующие оценки процесса с помощью Ср:1) Ср < 1 - неудовлетворительно,
2) 1,00 < Ср < 1,33 - удовлетворительно,
3) Ср > 1,33- хорошо.
Индекс воспроизводимости Срк характеризует настроенность процесса на центр поля допуска.
Индекс равен отношению разности между средним процесса и ближайшим пределом поля допуска к половине присущей стабильному процессу изменчивости.
Введем обозначения:
Dвгд=ВГД-(Хср)ср
Dнгд=(Хср)ср-НГД
Dmin=min(Dвгд,Dнгд)
Zвгд=Dвгд/s
Zнгд=Dнгд/s
Zmin=min(Zвгд,Zнгд)
Тогда индекс воспроизводимости Срк вычисляется по формуле:
Cp=Z/3.
Заметим, что для одностороннего поля допуска формулы определения индекса сходны, но при этом Zmin равно Zвгд или Zнгд в зависимости от случая расположения границы поля допуска.
Промежуточный расчет величин Z при вычислении Срk удобен тем, что позволяет при необходимости оперативно оценить по таблицам стандартного нормального распределения количество единиц продукции, которые могут оказаться вне поля допуска.
Простейший анализ формулы для вычисления Cpk, показывает, что при постоянном стандартном отклонении процесса качество процесса улучшается с ростом индекса. Между тем для управления процессом недостаточна оценка только одного этого индекса.
На рис. 3.4 показаны варианты расположения управляемого процесса в поле симметричного допуска.
Введем в рассмотрение параметр ?, связывающий отклонение центра настройки процесса от центра поля допуска и характеризующий этим эффективность управления настройкой. Согласно схеме на рис. 3.4
d = 0,5D - d.
Управление процессом должно быть направлено на уменьшение 5. При этом число несоответствующих изделий уменьшится, качество процесса улучшится, достигая оптимального значения при ?=0.
Индексы Ср и Cpк удобно рассмотреть совместно, учитывая их связь с помощью отношения Cpк=Cp--D/3s. Из выражения видно:
* величина Срk не превосходит величины Ср
* при d == О получим Cpk = Ср
Область возможных значений Срk лежит ниже прямой Срk = Ср. Отсюда следуют простые рассуждения. При оптимальной настроенности процесса на середину допуска число экземпляров несоответствующей продукции связывается с величиной Ср и не может быть уменьшено.
Таким образом, общий алгоритм управления процессом при заданном поле допуска реализуется в виде итерационного процесса, состоящего из последовательно реализуемых шагов, удовлетворяющих направлению:
s > 0, Cpk -> Ср.
4. ИСПОЛЬЗОВАНИЕ СТАТИСТИЧЕСКИХ МЕТОДОВ АНАЛИЗА ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ
Рассмотрим применение вышеизложенных статистических методов контроля качества производственных процессов на нескольких примерах.
4.1 Контроль технологической точности
Пример 4.1.1. Производится контроль технологической точности станка после среднего ремонта.
Тип станка: токарный одношпиндельный станок (фирмы FICSHER).
Вид обработки детали: обработка внешнего диаметра вала коробки передач (модель 2108).
Эскиз, поясняющий схему обработки: см. рис. 4.1.1.
Особенности протекания технологического процесса с точки зрения особых причин: стабильный участок работы.
Конкретные числовые характеристики технологического процесса (по спецификации):
* диаметр 25.3;
* допуск на обработку 0.1;
* верхний предел допуска 25.35;
* нижний предел допуска 25.25.
Первичное представление результатов: таблица, содержащая массив данных, полученных в результате измерения 70 обработанных деталей.
Результаты замеров:
25.297 25.300 25.279 25.282 25.294 25.300 25.301 25.304 25.282 25.292 25.292 25.298 25.294 25.300 25.284 25.290 25.285 25.290 25.284 25.290 25.286 25.292 25.288 25.296 25.290 25.300 25.298 25.303 25.292 25.300 25.289 25.300 25.282 25.288 25.290 25.294 25.287 25.292 25.283 25.288 25.290 25.294 25.280 25.288 25.279 25.282 25.300 25.301 25.274 25.285 25.290 25.280 25.292 25.294 25.300 25.290 25.296 25.280 25.283 25.278 25.288 25.280 25.288 25.284 25.296 25.280 25.290 25.288 25.302 25.284
n=70; max= 25.304; min = 25.274; R=0.03.
Вторичное представление результатов: интервальная таблица частот (в верхней строке указаны левые границы интервалов, в нижней строке - количество деталей, диаметр которых попадает в данный интервал):
25.272 |
25.276 |
25.280 |
25.284 |
25.288 |
25.292 |
25.296 |
25.300 |
25.304 |
25.308 |
|
0 |
2 |
11 |
9 |
9 |
15 |
9 |
12 |
3 |
0 |
Расчет статистических характеристик процесса:
х = 25.2902; у = 0.0073; поле рассеяния' 0.0469. Контрольная Х-карта: см. рис. 4.1.3: НКГ = 25.268; ВКГ = 25.312.
Расчет индексов воспроизводимости: Ср=2.13.
Поле рассеяния значений согласно СТП 37.101.9504 3-96 принимается равным w = k x s,
где х, - результат измерений. s - стандартное отклонение.
k - поправочный коэффициент зависящий от объема выборки причем его величина такова, что поле рассеяния оказывается в большинстве случаев несколько шире, чем 6s
Анализ экспериментального и расчетного материала:
* контрольная х-карта диаметра обработанных деталей, расположение гистограммы показывают, что процесс статистически управляем; это же подтверждает и значение индекса воспроизводимости Ср =2.13, свидетельствующее о практическом отсутствии несоответствий при обработке продукции;
* контрольная х-карта и расположение гистограммы относительно поля допуска показывают, что процесс смещен от центра поля допуска в направлении нижнего предела допуска, следовательно, есть возможность улучшения процесса с помощью смещения наладки на 0.0098 к середине поля допуска.
Выводы: вероятный брак равен 0%; технологическая точность обеспечивается; требуется смещение наладки, равное 0.0098.
Заключение: станок в работу утверждается с условием подналадки. Примечание. Так как контрольная карта не показывает критической ситуации, можно обойтись без подналадки. Содержательный анализ технологического процесса показывает, что в результате износа инструмента произойдет требуемая коррекция размера.
Пример 4.1.2. Производится контроль технологической точности станка с целью аудита.
Тип станка: специальный круглошлифовальный однокамневый станок (фирмы TOYOТA).
Вид обработки детали: обработка внешних диаметров шатунных шеек коленвала (модель 2108).
Эскиз, поясняющий схему обработки: см. рис.4.1.4.
Особенности протекания технологического процесса с точки зрения особых причин: стабильный участок работы.
Конкретные числовые характеристики технологического процесса (по спецификации):
* ход (шатунной шейки коленвала) 71 мм;
* допуск на обработку 0.15 мм;
* верхний предел допуска 71.05;
* нижний предел допуска 70.90.
Первичное представление результатов: таблица, содержащая общий массив данных, полученных в результате 80 замеров четырех шатунных шеек по параметру хода.
Результаты замеров:
70.900 70.900 70.880 70.880 70.900 70.900 70.870 70.880 70.900 70.880
70.880 70.900 70.890 70.870 70.900 70.910 70.890 70.880 70.880 70.900
70.940 70.930 70.900 70.930 70.900 70.890 70.900 70.940 70.950 70.930
70.900 70.930 70.940 70.900 70.930 70.940 70.920 70.900 70.910 70.930
70.950 70.960 70.930 70.940 70.940 70.930 70.940 70.930 70.980 70.960
70.930 70.950 70.970 70.940 70.960 70.940 70.930 70.940 70.930 70.970
70.960 70.920 70.890 70.910 70.910 70.920 70.910 70.900 70.870 70.890
70.870 70.910 70.900 70.890 70.920 70.930 70.900 70.900 70.890 70.940
n=80; max= 70.98; min = 70.87; R=0.11
Вторичное представление результатов: интервальная таблица частот (в верхней строке указаны левые границы интервалов, в нижней строке - количество измеренных значений, попадающих в данный интервал):
70.860 |
70.870 |
70.880 |
70.890 |
70.900 |
70.910 |
70.920 |
|
0 |
4 |
7 |
7 |
18 |
6 |
4 |
|
70.930 |
70.940 |
70.950 |
70.960 |
70.970 |
70.980 |
70.990 |
|
13 |
11 |
3 |
4 |
2 |
1 |
0 |
Расчет статистических характеристик процесса:
к = 70.916; поле рассеяния 0.117; смещение наладки 0.059. В данном случае не рассчитывается о, так как рассматриваются сразу 4 параметра хода четырех шатунных шеек.
Расчет индексов воспроизводимости: Ср=1.28; Ср,=0.27. Контрольная х-карта: см. рис. 4.1.6: НКГ = 70.857; ВКГ= 70.975.
Анализ экспериментального и расчетного материала:
* Контрольная карта, а также расположение гистограммы показывают, что процесс не является статистически управляемым, так как имеется выход за верхнюю контрольную границу (49-я точка). Кроме того, имеет место выход процесса за границы поля допуска, что говорит о большой вероятности брака (22.5%). Двухпиковый тип гистограммы, а особенно вид контрольной карты указывают на необходимость расслоения данных, то есть рассмотрения хода каждой шейки по отдельности.
* Большая разница в индексах воспроизводимости процесса (Ср« = 0.27 < Ср = 1.28 ) свидетельствует о том, что процесс смещен относительно центра поля допуска (по расчетам на 0.059 мм в направлении нижнего предела допуска) и, следовательно, может быть улучшен.
Расслоение данных дало следующие результаты.
1-я шейка:
Интервальная таблица
70.86 |
70.87 |
70.88 |
70.89 |
70.90 |
70.91 |
7092 |
|
0 |
9 |
0 |
2 |
8 |
1 |
0 |
n=20, max=70.91; min=70.87; R = 0.04.
х = 70.89; а = 0.012; поле рассеяния 0.076; смещение наладки 0.086-Ср=1.9б.
2-я шейка:
Интервальная таблица
70.88 70.89 70.90 70.91 |
70.92 |
70.93 |
70.94 |
70.95 |
|
0162 |
0 |
6 |
5 |
0 |
n=20; max= 70.95; min = 70.89; R=0.06. х = 70.921; у = 0.018; поле рассеяния 0.118; смещение наладки 0.055;
С-1.27.
3-я шейка:
Интервальная таблица
70.92 70.93 |
70.94 |
70.95 |
70.96 |
70.97 |
70.98 |
70.99 |
|
0 6 |
8 |
0 |
3 |
2 |
1 |
0 |
n=20; max= 70.98; mm =70.93; К =0.05. х = 70.946; у = 0.016; поле рассеяния 0.1; смещение наладки 0.029;
Ср=1.49.
4-я шейка:
Интервальная таблица
70.84 70.86 70.88 |
70.90 |
70.92 |
70.94 |
70.96 |
70.98 |
|
024 |
11 |
1 |
1 |
1 |
0 |
n=20; max= 70.96; min = 70.87; R=0.09.
х = 70.907; о = 0.022; поле рассеяния 0.139; смещение наладки 0.069 Ср=1.075.
Выводы.
1. Сравнение статистических характеристик для отдельных шеек показывает, что наихудшие параметры имеет 4-ая шейка (поле рассеяния 0.139; С-= 1.075). Это указывает на необходимость проведения профилактического ремонта левого зажимного патрона.
2. Так как центральная линия на контрольной карте смещена относительно заданного номинального значения хода 71 мм, то требуется наладка станка, так, чтобы центр настройки совпадал с номинальным (или серединой поля допуска).
3. Из гистограмм и контрольной карты видно, что в настоящее время наилучшая наладка по исследуемому параметру на 3-ей шейке, поэтому на ней требуется наименьшая подналадка.
4. Необходимо добиться, чтобы все статистические параметры для всех четырех шеек были близки по своим значениям, то есть находились на одной линии, а поля рассеяния отличались незначительно.
4.2. Использование диаграмм Парето
Для наиболее успешного устранения несоответствий в готовой продукции по результатам контроля строятся диаграммы Парето. Приведем пример такой диаграммы, показывающей распределение дефектов в цехе 46 за период с 01.01.95 no31.12.95.
Группа деталей - Генератор
Код дефекта Наименование дефекта Кол-во Сумма
%
1 Не работает регулятор 852 42
2 Нет цепи обм. воз 291 56
3 Шум, магнитный шум 249 68
5 Утоплена клемма 61. 155 75
12 Нет цепи центра эв. 107 79
8 Клинит ротор 88 84
6 Замыкание диодов 52 86
4 Пробиты диоды 41 88
13 Замыкает 11 89
7 Не закреплен шкив 8 90
11 Прочие дефекты 196 100
Всего 2050
Устранение дефектов 1, 2, 3 даст возможность существенно повысить качество данного узла, следовательно, прежде всего надо сосредоточить усилия на выявлении причин этих несоответствий и внедрению мероприятий по их преодолению.
5. МАТЕМАТИЧЕСКИЕ ОСНОВЫ СТАТИСТИЧЕСКИХ МЕТОДОВ
5.1 Случайная величина. Общие определения
Случайная величина - это величина, измеряемая в исследуемых экспериментах, исходы которых заранее не известны и зависят от случайных причин.
Различают два вида случайных величин:
* дискретная - случайная величина, принимающая конечное или счетное множество значений х, ... , хn каждое с некоторой вероятностью pi,..., р,. Дискретная случайная величина задается законом распределения, устанавливающим однозначное соответствие между возможными значениями случайной величины и их вероятностями;
* непрерывная - случайная величина, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Непрерывная случайная величина характеризуется плотностью вероятности -непрерывной функцией, такой что вероятность попадания случайной величины Х в интервал (а;Ь) равна
Пример 6.1. На контроль поступило несколько партий деталей. Контролируется размер отверстия. Диаметр отверстия - это непрерывная случайная величина, количество нестандартных деталей в каждой партии -дискретная случайная величина.
Генеральной совокупностью называется весь набор однородных объектов, изучаемых относительно некоторого качественного или количественного признака. Число всех изучаемых объектов N называется объемом генеральной совокупности.
Выборка - это та часть генеральной совокупности, элементы которой подвергаются статистическому обследованию. Число n вошедших выборку элементов называется объемом выборки.
Выборки бывают бесповторные, когда отобранный (и статистически обследованный) объект в генеральную совокупность не возвращается, и повторные, когда отобранный элемент после обследования возвращается в генеральную совокупность.
Чтобы результаты, полученные при изучении выборки, можно было достаточно уверенно распространить на всю генеральную совокупность, выборка должна быть репрезентативной (представительной). При статистическом контроле это достигается путем правильного выбора метода отбора исследуемых объектов. В зависимости от поставленных целей применяют следующие способы сбора данных:
* Простой случайный отбор, когда выбор объектов осуществляется из всей генеральной совокупности случайным образом. Этот способ применяется, например, при выборочном контроле партии деталей на соответствие некоторому стандарту.
* Типический отбор, когда объекты отбираются не из всей генеральной совокупности, а из каждой ее "типической" части. Например, если однотипные детали изготавливаются на нескольких станках, то отбор производится из продукции каждого станка в отдельности.
* Механический отбор, когда генеральную совокупность делят на столько групп, сколько объектов должно войти в выборку, и из каждой группы выбирают один объект. При этом следует внимательно следить, чтобы не нарушалась репрезентативность выборки. Например, если отбирают каждый двадцатый обтачиваемый валик, причем сразу же после замера производят замену резца, то отобраны окажутся все валики, обточенные затупленными резцами. Если исследуемый параметр зависит от остроты резца, то следует устранить совпадение ритма отбора с ритмом замены резца, например, отбирать каждый десятый валик из двадцати обточенных.
* Серийный отбор, когда объекты отбирают из генеральной совокупности не по одному, а "сериями", и обследуются все элементы каждой серии. Этот вид отбора применяют тогда, когда обследуемый признак колеблется в разных сериях незначительно, например, если изделия изготавливаются большой группой станков-автоматов, то сплошному обследованию подвергают продукцию только нескольких станков. Для получения более достоверных результатов при этом можно менять наборы "серий", то есть в разные дни обследовать разные группы станков.
При применении статистических методов управления качеством для построения контрольных карт обычно используют мгновенные выборки.
Мгновенная выборка - это выборка, взятая из технических соображений таким образом, что внутри нее вариации (то есть изменения) могут появляться только как следствие случайных (общих) причин. Возможные вариации между такими выборками, как правило, определяются неслучайными (специальными) причинами. В производстве мгновенная выборка должна быть сформирована из данных, собранных в короткий отрезок времени в однородных условиях (материал, инструмент, окружающая среда, один и тот же станок или оператор и т.п.).
При сборе данных применяют различные формы регистрации информации. Наиболее часто используют вариационные ряды, таблицы, а также контрольные листки.
Вариационный ряд - запись результатов измерений какой-либо случайной величины в виде последовательности чисел. Таким образом, получается одномерный массив чисел, обработка которого обычно начинается с его упорядочения и предполагает использование вычислительной техники. Эта форма регистрации информации наименее удобна для получения оперативных результатов и чаще всего применяется при использовании автоматических датчиков, напрямую соединенных с ЭВМ.
Таблица - представление данных в виде двумерного массива чисел, в котором элементы строки или столбца отражают состояние исследуемого признака при определенных условиях. Например, пусть некоторый параметр измеряется четыре раза в день на протяжении рабочей недели. Тогда результаты удобно занести в таблицу
День недели 9.00 11.00 14.00 16.00
понедельник
вторник
среда
четверг
пятница
Такая таблица позволяет учесть и рассчитать изменение исследуемого параметра как в течение дня - по строкам, так и в различные дни - по столбцам.
Контрольный листок - стандартный бланк, на котором заранее напечатаны контрольные параметры, чтобы можно было легко и точно записать Данные измерений. При правильно разработанном типе контрольного листа данные не только очень просто фиксируются, но и автоматически упорядочиваются для последующей обработки и необходимых выводов. Для обработки результатов статистических наблюдений их удобно оформлять в виде таблицы частот.
Статистическое распределение - таблица частот, в которой указаны значения случайной величины n, и соответствующие частоты, показывающие, сколько раз в выборке встретилось данное значение случайной величины.
Для получения интервальной таблицы частот (интервального вариационного ряда) весь диапазон измеренных значений случайной величины Х делят на k равных интервалов (а,, tt,,,) и подсчитывают количество {и} значений случайной величины, попавших на соответствующий интервал. Кроме того, в таблице указывают также величину х, - середину i'-oro интервала.
Интервальная таблица частот
Номер интервала / Интервал (а,,а,,) Середина интервала
X, Частота п,
1 (а,, а,) X1 N1
2 (а,, а,) X2 N2
k (ak.ai) Xi Nk
Здесь n1, + n2 ... + ni= n - объему выборки.
Первичная обработка результатов статистических наблюдений заключается в графическом представлении собранной информации. Обычно для этого строят гистограммы.
Для построения гистограммы на оси абсцисс отмечают границы интервалов - точки а,, ..., ai-1 . Над каждым интервалом строится прямоугольник площадью п, (очевидно, если длина каждого интервала h, то высота этого прямоугольника n/h ). Получившаяся ступенчатая фигура называется гистограммой частот. При этом площадь гистограммы частот равна объему выборки п. Отрезок [а, аn,] назовем основанием гистограммы.
Аналогично строится и гистограмма относительных частот - ступенчатая фигура, состоящая из прямоугольников, площади которых равны n/h, то есть общая площадь гистограммы относительных частот равна 1.
6.2 Числовые характеристики случайных величин
Поведение любой случайной величины определяется ее распределением, средним значением и разбросом относительно этого среднего значения.
Средними значениями случайной величины являются ее
* математическое ожидание - среднее арифметическое всех значений случайной величины;
* мода - значение случайной величины, которое встречается чаще всего, то есть имеет наибольшую частоту;
* медиана - такое значение случайной величины, которое оказывается точно в середине упорядоченного вариационного ряда, то есть, если все
зафиксированные значения случайной величины расположить в порядке возрастания, то слева и справа от медианы окажется одинаковое число точек. При этом, если число наблюдений нечетно (n=2k+l), то в качестве медианы берут среднюю точку хk-1,, а если число наблюдений четно (n=2k), то медиана - это центр среднего интервала (хi.хk-1,), то есть ;X=(xi+Xk+1)/2.
Разброс случайной величины относительно средних значений характеризуется дисперсией или средним квадратическим отклонением (с.к.о.) - мерой рассеяния распределения относительно математического ожидания. При этом с.к.о. - это корень квадратный из дисперсии. Наибольший разброс случайной величины определяется размахом выборки, то есть величиной интервала, в который попадают все возможные значения случайной величины.
В математической статистике говорят о статистических оценках параметров распределения. Статистические оценки бывают точечные (определяемые одним числом) и интервальные (определяемые двумя числами -концами интервала). Точечные оценки дают представление о величине соответствующего параметра, а интервальные характеризуют точность и достоверность оценки.
Предположим, что в результате наблюдений получены n значений случайной величины Х : x1; , ... , xn . Для вычисления точечных оценок параметров распределения пользуются формулами:
среднее квадратичное отклонение s = v/5 ; (6.2.8)
Пример 6.2. Пусть в результате наблюдений получены следующие значения случайной величины X: (5; 6; 3; 6; 4; 5; 3; 7; 6;7;5;6).
Упорядоченный вариационный ряд: 3, 3,4, 5, 5, 5, 6, 6, 6, 6, 7, 7.
Таблица частот статистическое распределение:
X 3 4 5 6 7
2 1 3 4 2
Вычислим все числовые характеристики случайной величины хmin = 3; xmax = 7; медиана 5- x=(X6+X7)/2 = (5 + 6)/2 = 5,5;
мода Х = 6 , так как это значение встречалось чаще всего (n = 4);
выборочное среднее х = (2 3+1 4+3 5+4 6+2 7)/12 = 5,25 ;
размах R = 7 - 3 = 4 ;
выборочная дисперсия .S= D =(1/11) (2(3 - 5,25)2+ 1(4-5,25)2+ + 3 (5 - 5.25)2 + 4 (6 - 5,25)2 +2 (7 - 5,25)2) = 15/11 = 1,84 ;
среднее квадратичное отклонением s = 1,36 .
Замечание. Современная вычислительная техника, используя специальные пакеты прикладных программ, позволяет получить значения выборочной средней и дисперсии сразу же после введения данных выборки (наблюдаемых значений исследуемой случайной величины)
6.3 Типовые теоретические распределения случайных величин
Характер поведения случайной величины определяется ее распределением. Зная тип распределения случайной величины и его числовые характеристики, можно прогнозировать, какие значения будет принимать случайная величина в результате наблюдений, то есть можно делать определенные выводы обо всей генеральной совокупности.
Наиболее часто встречается нормальное (гауссовское) распределение. Это связано с тем, что разброс характеристик качества обусловлен суммой большого числа независимых ошибок, вызванных различными факторами, а согласно центральной предельной теореме Ляпунова в этом случае случайная величина имеет распределение, близкое к нормальному.
Нормальное распределение описывает непрерывную случайную величину, поэтому его задают плотностью вероятности/С.^. Плотность вероятности нормального распределения имеет вид:
Параметр и определяет точку максимума, через которую проходит ось симметрии графика функции, и указывает среднее арифметическое значение случайной величины, s показывает разброс распределения относительно среднего значения, то есть определяет "ширину" колокола (расстояние от оси симметрии до точки перегиба графика
Для удобства подсчета вероятностей любое нормальное распределение с параметрами а и у преобразуют к стандартному (нормированному) нормальному распределению, параметры которого а = 0, s = 1, то есть плотность
Значения функции f(х) можно найти в справочных таблицах или получить, используя готовые компьютерные программы.
Другим часто встречающимся в технике распределением непрерывной случайной величины является закон Рэлея. Он описывает распределение погрешностей формы и расположения поверхностей (биение, эксцентриситет, непараллельность, неперпендикулярность и т.п.), когда эти погрешности определяются радиусом кругового рассеяния н а плоскости.
Если на плоскости задана система координат Оху, то точка с координатами (х,у; отстоит от начала координат на расстояние координат х и у - нормально распределенная случайная величина, то г - случайная величина, имеющая распределение Рэлея. Плотность вероятности этого распределения:
Для дискретных случайных величин наиболее распространенным является биномиальное распределение. Биномиальный закон распределения описывает вероятность того, что в выборке объема п некоторый признак встретится ровно k раз. Точнее, пусть проводится п независимых испытаний ("опытов"), в каждом из которых признак может проявиться ("успех опыта") с вероятностью р. Рассмотрим случайную величину Х - число "успехов" в данной серии испытаний. Это дискретная случайная величина, принимающая значения О, 1,... , п, причем вероятность того, что Х примет значение, равное k, то есть что ровно в k испытаниях будет зафиксирован исследуемый признак, вычисляется по формуле
Формула (6.3.13) называется формулой Бернулли, а закон распределения случайной величины X, задаваемый этой формулой, называется биномиальным, Параметрами биномиального распределения являются число опытов n и вероятность "успеха" р. Но так как нас интересуют среднее значение и разброс случайной величины относительно своего среднего значения, то отметим, что для биномиального распределения математическое ожидание т > up . а дисперсия >прц .
Биномиальный закон описывает в самой общей форме осуществление признака в повторной выборке (в частности, появление несоответствий).
Например, пусть в партии из N деталей ровно М имеют внешний дефект (неравномерность окраски). При контроле из партии извлекается деталь, фиксируется наличие либо отсутствие дефекта, после чего деталь извращается обратно. Если эти действия проделаны n раз, то вероятность того, что при этом k раз будет зарегистрирован дефект, вычисляется по формуле:
Если же извлеченная деталь не возвращается обратно (или все п деталей вынимаются одновременно), то вероятность того, что среди вынутых п деталей окажется ровно k с дефектом равна
В этом случае случайная величина Х - количество несоответствующих деталей в выборке задается гипергеометрическим законом распределения. Этот закон описывает осуществление признака в бесповторной выборке.
Когда N очень велико по сравнению с п (то есть объем генеральной совокупности по крайней мере на два порядка больше объема выборки), то несущественно, какая проводится выборка - бесповторная или повторная, ТО есть в этом случае вместо формулы (6.3.16) можно использовать формулу (6.3.15).
При больших значениях п формула Бернулли (6.3.13) заменяется формулой
которая фактически совпадает с формулой (6.3.1), то есть с нормальным законом распределения, параметры которого а = пр. s = npq.
Для распределения Пуассона математическое ожидание равно l,Дисперсия также равна l.
На рисунке 6.4 представлены два биномиальных распределения P^(k). У одного п = 30; р = 0,3 - оно близко к нормальному распределению с математическим ожиданием т, = пр =-- 9. У другого п = 30;р = 0,05 - оно близко к распределению Пуассона с математическим ожиданием mk = пр = 1,5.
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ
1. Статистические методы повышения качества (Пер. с англ./ Под ред. С. Кумэ).-М.: Финансы и статистика, 1990.-304с.
2. Статистическое управление процессами (SPC). Руководство. Пер. с англ. (с дополн.). - Н.Новгород: АО НИЦ КД, СМЦ «Приоритет», 1997г.
3. Статистический контроль качества продукции на основе принципа распределения приоритетов/В.А. Лапидус, М.И. Розно, А.В. Глазунов и др.-ВЙ.: Финансы и статистика, 1991 .-224с.
4. Миттаг Х.-И.. Ринне X. Статистические методы обеспечения качества М.: Машиностроение, 1995.-616с.
5. ГОСТ Р 50779.0-95 Статистические методы. Основные положения.
6. ГОСТ Р 50779.30-95 Статистические методы. Приемочный контроль качества. Общие требования.
7. ГОСТ Р 50779.50-95 Статистические методы. Приемочный контроль качества по количественному признаку. Общие требования.
8. ГОСТ Р 50779.51-95 Статистические методы. Непрерывный приемочный контроль качества по альтернативному признаку.
9. ГОСТ Р 50779.52-95 Статистические методы. Приемочный контроль качества по альтернативному признаку.
10. ИСО 9000-ИСО 9004. ИСО 8402. Управление качеством продукции ( пер. с англ.).-М.: Изд-во стандартов, 1988.-96с.
11. ИСО 9000. Международные стандарты.
Подобные документы
Основы статистического контроля качества продукции. Типовые расчеты по курсу теории вероятностей: построение закона распределения и расчет основных характеристик непрерывной случайной величины. Интервальное оценивание параметров генеральной совокупности.
контрольная работа [1,2 M], добавлен 21.01.2016Основы статистического контроля качества продукции. Качество продукции и рыночная экономика. развитие статистических методов сертификации в России. Статистический контроль - это выборочный контроль на научной основе. Планы статистического контроля.
реферат [121,0 K], добавлен 08.01.2009Объективные и эвристические методы определения показателей качества. Статистические и комплексные методы контроля и оценки уровня качества продукции. Применение определенных средств испытаний. Повышение конкурентоспособности национального товара.
реферат [28,1 K], добавлен 21.12.2015Статистические методы регулирования и контроля качества технологических процессов по количественному и по альтернативному признаку. Примеры построения контрольных карт Шухарта и контрольной карты для арифметического среднего с предупреждающими границами.
курсовая работа [1,1 M], добавлен 26.02.2011Определение особенностей формирования и принципов проведения экономико-статистического анализа. Характеристика предприятия и анализ показателей его деятельности. Применение табличного и балансового методов при изучении основных фондов предприятия.
курсовая работа [590,2 K], добавлен 05.08.2011Виды и методы организации контроля качества продукции, система показателей качества. Характеристика предприятия и анализ организации технического уровня качества продукции. Влияние организационных методов на трудоемкость контроля качества продукции.
курсовая работа [261,9 K], добавлен 12.08.2011Рассмотрение форм (отчетность, регистр), методов организации сбора, обработки данных статистического наблюдения, их структурного и содержательного анализа с помощью обобщающих показателей, способов статистического моделирования и прогнозирования.
методичка [3,0 M], добавлен 10.04.2010Методология статистического мониторинга сельского развития и качества жизни. Система основных показателей статистического наблюдения за деятельностью сельхозпроизводителей. Развитие статистики сельского хозяйства в системе государственной статистики.
курсовая работа [44,4 K], добавлен 29.04.2014Применение методов экспертных оценок в решении задач управления производством. Сущность метода Дельфи. Экономические методы диагностики: сравнение, группировка, балансовый и графические методы. Виды бенчмаркетинга, его применение для оценки качества.
контрольная работа [24,4 K], добавлен 10.12.2010Общая характеристика статистического метода оценки риска. Описание основных инструментов его экономического анализа. Алгоритм определения среднего ожидаемого значения прибыли. Обзор актуальных экономико-статистических методов расчета вероятности риска.
реферат [51,8 K], добавлен 12.05.2014