Математична модель транспортної системи підприємства

Керування транспортною системою. Задачі планування незалежних транспортних потоків. Модель нижнього рівня - оптимізація транспортних потоків на транспортних мережах окремих видів транспорту. Побудова імітаційної моделі та аналіз результатів прогону.

Рубрика Экономико-математическое моделирование
Вид дипломная работа
Язык украинский
Дата добавления 24.07.2009
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

g1:=4

V1:=g1*x^3

P3:= -1/b3*(a*x^2)

b3:=2

g2:=3

V3:=g2*x^3

S1:=40

X1:=S1*P1*V1*t

S3:=23

X3:= S3*P3*V3*t

B1:=Y3-X2-X3+Y4

На останньому з рівнів -С утворюваної моделі, за умови рівнянні балансу типу X3-Y4, програмний модуль буде виглядати в такий засіб

FLOAT S1,S2,P1,P2,V1,V2,C1

b4:= 3

P4:= -1/b4*(a*x^2)

g4:=3

V4:=g4*x^3

C1:= X3-Y4

Y4:= S4*P4*V4*t

На моделі рис.4.2, позначені контактні площадки, вона служать для побудови такого рівня імітаційної моделі і здійснюють передачу перемінних на цей рівень при необхідності декількох перемінних. Отже, модель, подана на мал.1,може бути розвиті і доповнена до необхідного обсягу і рівня складності. Спроможність до розвитку і є особливістю імітаційних моделей, утворюваних у середовищі Stratum.

Рис. 4.3 Частина незалежної імітаційної моделі, рівень А

Ілюстрація роботи фрагмента імітаційної моделі,зображеного на рис.4.2, приведена на рис.4.3. а на рис.4.3, подана графічна візуалізація уявлення функцій (1,4,5), розділів., і ілюстрація залежності залишків продукції на рівні А в залежності від часу. Розглядався випадок відсутності вантажопотоків на інші рівні.

Рис. 4.4 Візуалізація результатів при роботі одночасно всієї моделі.

На рис.4.4 подана візуалізація отриманих рішень загальної моделі транспортної системи підприємства. Хибою пакета в цілому, служить відсутність ефективного автомасштабування. Тому для великих багаторівневих моделей припадає подавати результати прогону фрагментами.

Рис. 4.5 Візуалізація фрагмента результатів прогону загальної моделі

Звертає на себе увага лінійний характер зміни залишків на рівні обслуговування А,У,С и явно нелінійний характер обсягів вантажоперевезень. Це попередньо дає можливість оцінити можливість зміни залишків перевезеної продукції на складах.

Рис. 4.6 Графіки, що ілюструють роботу імітаційної моделі на однім прогоні

Модуль програми двомірного "осцилографа", службовець для візуалізації отриманих результатів призводь нижче. Модуль написаний на специфічній мові Stratum і є розробкою автора роботи.

STRING WindowName

FLOAT Height,Width

FLOAT local ret

FLOAT nosave Offset,Offset,Scale,Scale

FLOAT x,y,Control,PrintValue,PrintValue,Reset,buffer

COLORREF Color

FLOAT _enable

Установка значень змінних виконувалася у вікні, по таблиці, рис.4.7, що варіюються перемінні виділяються автоматично червоним кольором. Автоматично вказується тип змінних.

Рис. 4.7- Установка значень змінних

Після установки перемінних він ініціалізується на зазначеному модулі, для такого модуля процедура установки перемінних повторюється.

Ієрархію встановлених модулів Stratum покажемо на мал. 6. Вона характеризує місце модуля в структурній схемі верб відомій мірі послідовність обчислень приведеної моделі. У верхній частині знаходяться три іміджі Stratum Class_72, а потім OSCSpace 2D, що реалізують візуалізацію обчислень і останніми іміджі типу Numberlend.

Рис.4.8 Ієрархія спроектованої моделі

Ієрархію цілком відповідає структурі проекту.

4.3 Аналіз результатів прогону імітаційної моделі

Аналіз результатів прогону імітаційної моделі достатньо обсяжний і потребує дуже великих витрат часу і засобів. Тому зупинимося на найбільше цікавих із них, що мають можливий вплив на виробничий процес на аналізованому машинобудівному підприємстві.

У першу чергу роздивимося можливу залежність вантажопотоків на наявні або виникаючі виробничі запаси.

На рис. 4.9 подано графік залишків вантажу при наявності двох вантажопотоків, це відповідає нижньому рівню С прийнятої моделі.

Рис.4.9- Залишок вантажів на рівні С прийнятої моделі

Графік свідчить про лінійно залежність розміри залишку від х.

Т.ч. це характеризує той факт, що функція вартісного потенціалу при невеликих змінах мало впливає на накопичення запасів у прийняте моделі і не є керуючим чинником. Це говорить про те, що модель або повинна бути доповнена на іншому рівні або є нечуйним до зазначеного чинника.

Рис.4.10- Зміна залишку вантажу при статечній функції вартісного потенціалу, n=7

У цьому випадку, ми зштовхуємося із ситуацією, коли залишок різко зростає тільки при наявності достатньо великого шляху доставки вантажів. При менших шляхах його просто практично немає. Т.ч., використання імітації дозволило зазначити шляху зменшення залишків на проміжних складах.

Рис.4.11 Зміна функції вартісного потенціалу, при n=3

Графік, рис.11, характеризує зменшення складських запасів при визначеному виді вартісного потенціалу, що дозволяє зробити висновку про засіб скорочення запасів на проміжних складах.

Більш цікавим і актуальним є питання, як ростуть запаси згодом.

На рис.4.12 приведений графік залежності графік залежності залишку вантажу на рівні С від часу .

Рис. 4.12 Графік залежності залишків вантажу від часу на рівні С

Залежність носить сугубо лінійний характер. Це свідчить про накопичення залишків протягом часу функціонування системи. Цей результат є показовим і свідчить про необхідність керування процесом доставки і відправлення вантажів. Такий висновок є закономірним, тому що "прогон" імітаційних моделей служить в основному для основи прийняття правильних управлінських рішень як виробничого так і невиробничого характеру.

ВИСНОВКИ

В роботі проаналізовано стан досліджень в галузі транспортних систем та потоків. Приведені моделі транспортних систем різного призначення.

Проаналізовано моделі систем транспорту різного використання. Розлянуто транспортні потоки, як однопродуктові так і багатопродуктові. Проаналізовані моделі потоків. Приведені засоби оптимізації, а також звісні моделі.

Розроблено математичну модель транспортної системи підприємства з використанням теорії потенціалу. При цьому було встановлено, що:

Має місто факт залежності розміру вантажопотоку від цінового потенціалу;

Розміру вантажопотоку залежить від його щільності;

Встановлено вид залежності розміру вантажопотоку від швидкості його ;

Встановлені вирази для обчислювання залишку вантажу на кожному з рівнів.

Спроектовано імітаційну модель транспортної системі підприємства на базі програмного пакету Stratum. На основі прогону моделі получена візуалізація, яка може бути використана при оперативному керуванні підприємством.

Встановлено характер зміни і накопичення залишків на кожному з транспортно-виробничому рівнів.

Зрівняння за фактичними значеннями залишків на рівні С показали адекватність імітаційної моделі. Відхилення не перевищували 15-20% від розрахункового значення.

Проведене зрівняння розрахункових значень залишків з фактичним показало адекватність розробленої моделі.

СПИСОК ЛІТЕРАТУРИ

1 Зельдович Я.Б., Мышкис А.Д. Элементы математической физики. Наука. М.: 2000. 351 с.

2 Джефферсон Г., Свирлс Б. Методы математической физики. М.: Мир. 2001. 311 с.

3 Шеннон Р.Ю. Имитационное моделирование систем- искусство и наука. М.: Мир, 1998. - 237с.

4 Соломатин Н.А и др. Имитационное моделирование в оперативном управлении производством. М.: Машиностроение 1994.- 459 с.

5 Вавилов А.А. Имитационное моделирование производственных систем. Берлин. 1998. - 560с.

6 Вентцель Е.С. Исследование операций. М.: Советское радио.1992. - 550 с.

7 Х. Таха. Введение в исследование операций. М.: Мир. 1995. Т1. 479 с., Т2. 496 с.

8 Програмний пакет "Stratum" 2000-2001.Modeling Laboratory.РЦИ ПГТУ.

9 Резер С.М., Шкультин И.В., Ловецкий С.Е., Бузюк М.А. АСУ взаимодействием видов транспорта. М.: Транспорт, 2003.

10 Ловецкий С.Е., Меламед И.И., Плотинский Ю.М. Модели и методы решения задач маршрутизации на транспортной сети.- В кн.: Итоги науки и техники. Организация управления транспортом. М.: ВИНИТИ, 1999, т3,с.55-112.

11 Черкасский Б.В. Быстрый алгоритм построения максимального потока в сети.- М.: ВИНИТИ? 1999.

12 Моисеенко Г.Е. Декомпазиционный метод решения задачи планирования объёмов перевозок.- М.: Наука,1987.

13 Диниц Е.А. Алгоритм решения задачи о максимальном потоке в сети. М.: Машиностроение 1988.

14 Бурков В.Н., Кондратьев В.В., Молчанова В.А., Щепкин А.В. Модели и механизмы функционирования иерархических систем.- АиТ,1997.

15 Нагаев Б.В. Модель составления развозок грузов.-Ижевск: Удмуртия 1994.-320 с.

16 Мухачева Э.А. Транспортная задача на сети с дополнительными ограничениями.-Экономика и мат.методы,1995.-280 с.

17 Позамантир Э.И. Учёт неравномерности перевозок грузов при планировании транспорта. М.: Транспорт,1994.-250 с.

18 Савин В.И. Оптимизация работы автотранспорта. М.: Транспорт,1994.-280с.

19 Артынов А.П., Скалецкий В.В. Автоматизация процессов планирования и управления транспортными системами.-М.: Наука.1995.

20 Васильева Е.М., Левит Б.Ю., Лившиц В.Н., Нелинейные транспортные задачи на сетях-. М.: Финансы и статистика, 2006.-104с.


Подобные документы

  • Загальна характеристика підприємства, аналіз виконання плану перевезень та планування показників діяльності. Оптимізація грузоперевезень за допомогою транспортної задачі. Використання мереженого планування та симплекс-методу для рішення даної задачі.

    дипломная работа [1,5 M], добавлен 20.11.2013

  • Розробка оптимізаційної моделі бюджету доходів та витрат на прикладі ВАТ "ІнГЗК". Теоретичні аспекти застосування моделі транспортної задачі в економічних процесах. Економічна і математична постановки транспортної задачі та методи її розв'язання.

    курсовая работа [585,1 K], добавлен 19.04.2011

  • Математична модель задачі лінійного програмування, її вирішення за допомогою симплекс-методу. Побудова екстремумів функцій в області, визначеній нерівностями, за допомогою графічного методу. Математична модель транспортної задачі та її опорний план.

    контрольная работа [241,7 K], добавлен 28.03.2011

  • Побудова математичної моделі плану виробництва, який забезпечує найбільший прибуток. Розв’язок задачі симплекс-методом, графічна перевірка оптимальних результатів. Складання опорного плану транспортної задачі. Пошук екстремумів функцій графічним методом.

    контрольная работа [286,4 K], добавлен 28.03.2011

  • Математичні моделі послідовностей часових інтервалів між подіями у потоках Пуассона та Ерланга. Приклади різних моделей потоків подій в транспортних системах. Експоненціальний закон розподілу інтервалів між сусідніми подіями в пуассонівському потоці.

    контрольная работа [345,0 K], добавлен 08.12.2014

  • Математична модель задачі лінійного програмування та її розв’язок симплекс-методом. Опорний план математичної моделі транспортної задачі. Оптимальний план двоїстої задачі. Рішення графічним методом екстремумів функції в області, визначеній нерівностями.

    контрольная работа [290,0 K], добавлен 28.03.2011

  • Складання математичної моделі задачі. Побудова симплексної таблиці. Розв’язок задачі лінійного програмування симплексним методом. Рішення двоїстої задачі та складання матриці. Знаходження графічним методом екстремумів функцій, визначеній нерівностями.

    контрольная работа [239,0 K], добавлен 28.03.2011

  • Побудова математичної моделі плану перевезення зерна на елеватори, який мінімізує транспортні витрати. Розв’язок задачі симплексним методом. Знаходження графічним методом екстремумів функцій, визначеній нерівностями. Порядок рішення транспортної задачі.

    контрольная работа [326,2 K], добавлен 28.03.2011

  • Оптимальне з витрати палива керування лінійними об’єктами. Основні способи синтезу квазіоптимальних систем керування. Математична модель динамічної системи у просторі станів та у вигляді передаточної функції. Знаходження оптимального закону керування.

    контрольная работа [1,9 M], добавлен 24.06.2015

  • Проект асортименту виробів для швейної фабрики, характеристика їх різновидів; економіко-математична модель задачі оптимізації розподілу випуску продукції у часі; визначення оптимального набору тканин різної ширини, оптимізація надходження продукції.

    контрольная работа [49,5 K], добавлен 20.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.