Прикладной системный анализ: сетевой анализ и календарное планирование проектов, метод прогнозного графа

Сущность и понятие сетевого анализа. Виды графов: сетевые, стрелочные, вершинные. Логические взаимосвязи в стрелочном графе. Анализ критического пути с применением графов. Выполнение проекта с минимальными издержками и метод построения прогнозного графа.

Рубрика Экономико-математическое моделирование
Вид книга
Язык русский
Дата добавления 09.03.2009
Размер файла 145,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Операции

Время, дней

Число человек, требуемое для выполнения операции

A

B

C

D

E

F

G

H

-

-

-

A

C

B,E

C

F,G

3

6

7

8

4

3

10

3

1

1

2

2

1

2

2

1

Ввиду необходимости срочного выполнения работ на других участках, "ТРАСТ" может выделить только четырех человек для проведения работ на автомобильной стоянке. Определим, сколько времени займет проведение работ и как следует распределить рабочих. Предположим, что каждый из рабочих может выполнять любую операцию.

Решение

Предположив, что все операции начинаются в наиболее ранний срок, построим соответствующий график "рабочей силы". После этого можно составить календарный план выполнения операций, удовлетворяющий ограничению на количество работников. Сначала построим сетевой граф и определим критический путь.

4

1 3 5 6

2

Рис. 21. Стрелочный граф для примера 11

- наиболее ранний - наиболее поздний

срок события, срок события (стандартные сроки, дней)

Время выполнения проекта в целом, если не принимать во внимание обеспечение ресурсами, составляет 20 дней. Критический путь выглядит следующим образом: С - G - Н.

В предположении, что выполнение всех операций начинается в наиболее ранние сроки, посмотрим график Ганта и соответствующий график ресурса. График Ганта отражает распределение резерва времени на момент окончания каждой операции. С его помощью мы можем определить, какие операции выполняются одновременно и по каким операциям можно изменить календарный план их выполнения таким образом, чтобы эти изменения не привели к задержке выполнения проекта в целом.

операции рабочая сила

5 10 15 20 день

Рис. 22. График Ганга для примера 11
Из графика ресурса следует, что лимит, равный четырем рабочим, превышается, когда выполнение операции D попадает в промежуток между 3 и 11 днями осуществления проекта. Пересмотреть календарный план и полностью удовлетворить потребности в рабочей силе, соответствующие операции D, нельзя. Для выполнения критических операций С и D требуются два человека, поэтому операция D не может быть начата в течение 17 дней, т.е. до тех пор, пока не закончится выполнение остальных некритических операций.
Если операцию D отложить на 12 дней, то в дни с 12 по 14 потребность в рабочих все еще будет превышать их наличие: в эти дни будут выполняться операции G(2 человека), F(2 человека) и (2 человека). В этом случае придется либо привлечь к работе: одного рабочего дополнительно на указанный период, либо отложить операцию D до момента, когда будет завершена операция F, т.е. до 14-го дня. При последнем варианте будет иметь место задержка в выполнении проекта, равная двум дням. Таким образом, его продолжительность возрастает с 20 до 22 дней.

Потребности

в рабочей силе 5

для наиболее ранних 4 4 Наличие рабочих

сроков начала операций 3

2

1

5 10 15 20 Дни

Рис. 23. График ресурса для примера 11, соответствующий наиболее ранним срокам начала выполнения операций.

Заключение

Сетевой анализ используется при разработке и планировании проектов. Он предполагает разбиение проекта на отдельные виды работ или операции. Логическая взаимосвязь между операциями изображается с помощью сетевого графа. На основе значений сроков выполнения операций производится расчет общей продолжительности проекта, возможных сроков начала и окончания каждого вида работ и определяются операции, принадлежащие критическому пути.

Операции в сетевых графах можно изображать либо с помощью стрелок, либо с помощью узлов. Альтернативным методом изображения сети операций является график Ганта, в котором используется шкала времени.

В большинстве проектов определенные виды работ могут быть выполнены в более сжатые сроки, однако, это требует дополнительных затрат. Соответствующие показатели называются критическими сроками и критическими затратами. Они могут использоваться при составлении календарных планов реализации проектов за "минимальное время" или с "минимальной стоимостью".

Сроки выполнения операций могут быть подвержены влиянию неопределенности. В этом случае для анализа проекта можно использовать метод оценки и пересмотра проектов (РЕRТ), основанный на предпосылке об аппроксимации сроков выполнения операций р-распределением с минимальным значением а, наиболее вероятным значением m и максимальным значением b. Ожидаемая продолжительность операции в методе РЕRТ рассчитывается по следующей формуле:

, а соответствующая дисперсия равна

Продолжительность выполнения проекта имеет нормальное распределение, среднее значение которого равно сумме значений ожидаемых сроков выполнения операций, принадлежащих критическому пути. Дисперсия данного нормального распределения есть сумма дисперсий критических операций. Распределение времени выполнения проекта в целом используют в расчетах вероятности завершения проекта к заранее заданному сроку.

В анализ проектов можно включить также вопросы, связанные с наличием и распределением ресурсов. Для определения направлений пересмотра календарного плана выполнения операций и достижения конкретной цели применяются графики Ганга и графики ресурсов.

Упражнения

Упражнение 1

Компания с ограниченной ответственностью "МR" разрабатывает строительный проект небольшого масштаба. Основные операции проекта, соответствующие им непосредственно предшествующие операции и время их выполнения приведены в таблице:

операция

Непосредственно предшествующая операция

Продолжительность, недель

A

B

C

D

E

F

G

-

-

A,B

B

C

D

E,F

4

6

7

3

4

5

3

Требуется:

1. Дать иллюстрацию проекта с помощью стрелочного сетевого графа.

2. Определить критические операции и общую продолжительность выполнения проекта.

Упражнение 2

Используя данные упражнения 1:

1. Дать иллюстрацию проекта с помощью вершинного графа;

2. На основе графа, построенного в п.1, определить влияние на ход выполнения проекта задержки операции D на четыре недели.

Упражнение 3

В Чартерском Институте подготовки специалистов по принятию количественных решений (СIQDМ) действует ежегодная программа чтения лекций сотрудникам института. Подготовка программы на следующий год ведется сотрудниками ректората института, начиная с осени предыдущего года. Эта программа содержит детальные сведения о лекторах и их лекциях, а также список членов института. Ниже перечислены операции, входящие в процесс подготовки программы, с указанием соответствующих непосредственно предшествующих операций.

Операция

Носредствен-но предшест-вующая операция

Стан-дартное время, дней

Крити-ческое время, дней

Дополни-тельные издежки, руб.

А Выбор дат проведения лекций

В Назначение лекторов и согласование лекционных тем

С Подготовка для программы рекламных материалов

D Обновление списка студентов, обучающихся заочно

Е Подготовка списка оплачиваемых сотрудников

F Распечатка программы и списка членов на принтере

G Корректировка напечатанных программы и списка членов

Н Печать и раскладка программы по экземплярам

I Получение распечатанного на компьютере списка адресов членов института

J Рассылка программы

-

A

-

-

D

B,C,E

F

G

E

H,I

5

20

15

15

30

10

10

15

5

5

5

10

10

5

25

5

5

10

2

2

-

100

150

200

50

100

50

75

50

50

Если в процессе подготовки программы будет занято стандартное число сотрудников ректората, соответствующее штатному расписанию, то, как было оценено, каждая операция будет выполнена в указанные выше стандартные сроки. При этом предполагается, что управленческий персонал работает 5 дней в неделю. Сколько существует возможность принять на работу несколько временных работников дополнительно в помощь основному персоналу на этот период. Продолжительность выполнения операций в этих условиях определяется критическими сроками, значения которых, а также соответствующие значения дополнительных издержек, связанных с выполнением операций в критические сроки, указаны выше. Для простоты расчетов предполагается, что все операции могут быть выполнены только либо в стандартные, либо в критические сроки.

Требуется:

1. Изобразить данный проект с помощью сетевого графа.

2. Определить общее время, требуемое для подготовки и рассылки программы, при условии, что временные работники не будут приняты на работу в этот период. Какие операции являются критическими?

3. Каково влияет на общую продолжительность проекта тот факт, что время, необходимое, мое для получения рекламных материалов, было оценено неправильно, и на самом деле данная операция занимает 30 дней?

4. Каково значение возможного наименьшего срока, к которому можно закончить подготовку и рассылку программы? Какова минимальная дополнительная стоимость завершения проекта к этому сроку?

Упражнение 4

Компания с ограниченной ответственностью "Верикс" выполняет заказ, полученный от ее потребителя. Необходимая информация приведена ниже

Операция

Непосредст-венно предшест-вующие операции

Срок, дней

Стоимость для ожидаемой продолжительности, руб.

Оптимистический

Наиболее вероятный

Пессимистический

A

B

C

D

E

F

G

H

-

-

-

A

B

C

D,E

G,F

3

4

4

5

2

10

3

1

4

7

5

6

2,5

10,5

4

2

5

10

6

7

6

14

5

9

1000

1400

2000

1200

900

2500

800

300

Косвенные издержки, связанные с выполнением проекта, составляют 300 руб. в день. В контракте, заключенном с потребителем, оговорено, что если заказ не будет выполнен в течение 15 дней, сумма штрафа составит 100 руб. за каждый последующий день.

Требуется:

1. Построить сетевой граф. Каково ожидаемое значение времени выполнения всего проекта? Каково значение соответствующей стоимости?

2. Какой путь в графе является критическим? Прокомментируйте продолжительности некритических путей.

3. Какова вероятность того, что проект будет завершен без выплаты штрафов?

Упражнение 5

Компания "Гомер" намерена учредить дочернюю издательскую компанию. В нижеследующей таблице приведены необходимые операции, их взаимозависимости и продолжительность.

операция

Непосредственно

предшествующая операция

Продолжитель-ность, недель

A

B

C

D

E

F

G

H

I

J

-

A

A

A

B

D

D

G

C,E,F

G,I

3

4

2

6

3

2

4

7

5

3

Требуется:

1. Определить ожидаемое время выполнения проекта в целом.

2. В предположении, что для выполнения каждой операции в установленные сроки требуется один человек, определить скорректированную ожидаемую продолжительность проекта при условии, что в распоряжении компании для выполнения данной работы имеются только два человека, каждый из которых может выполнить любую из операций.

Упражнение 6

Администрация компании "Сатурн" собирается реализовать исследовательский проект по изучению характеристик нового продукта. Итогом выполнения проекта должен быть отчет, содержащий рекомендации по выпуску нового продукта. Ниже приведены операции, которые необходимо осуществить в процессе выполнения исследовательского проекта.

Требуется:

1. Построить сетевой граф, отражающий приведенные выше операции и их взаимосвязи. Определить критический путь и наименьшую продолжительность выполнения проекта.

2. В предположении, что началом выполнения проекта служит нулевой момент времени, а каждая операция начинается с наиболее раннего срока, построить график, изображающий потребности в персонале на любой момент времени.

3. Администрация компании приняла решение, что на выполнение изложенного проекта в любой момент времени будет выделено не более 9 человек персонала. Опишите, как следует выполнять проект в данных условиях за наименьшее время. В течение какого количества недель в выполнении проекта будут участвовать все 9 человек персонала?

Операция

Описание

Непосредст-венно предшест-вующие операции

Ожидаемое время выполнения, недель

Потребности в персонале

A

B

C

D

E

F

G

H

I

J

Первичные разработки Исследование рынка

Получение технических

стандартов

Создание образца

Подготовка рыночной базы

Расчет стоимости Испытание продукта Выборочный контроль

Оценки цены

Итоговый отчет

-

-

A

A

A

C

D

B,E

H

F,G,I

5

3

2

5

3

2

4

6

2

6

3

2

2

5

3

2

5

4

1

2

Упражнение 7

1 сентября каждого года администрация компании с ограниченной ответственностью "Селком" составляет бюджет на следующий год. Было установлено, что процесс составления бюджета включает в себя следующие этапы (см. таблицу).

Составление бюджета необходимо закончить к концу декабря, таким образом, администрация располагает периодом в 17 рабочих недель.

Требуется:

1. Построить сетевой граф, отражающий последовательность выполнения этапов, включенных в подготовку бюджетов. Можно ли закончить данный процесс в течение 17 недель?

2. Если бы потребовалось сократить время, отведенное на составление бюджетов, на какие этапы следовало бы обратить внимание и почему?

3. Объясните различие между понятиями общего, свободного и независимого резерва времени. Докажите, что свободный резерв времени этапа 1 равен трем неделям, причем две из них - это независимый резерв времени.

Этап

Предшествующие этапы

Время, недель

А Оценка ставок заработной платы

В Разработка прогнозов рынка

С Определение цен продаж

D Составление бюджета для объемов продаж

Е Составление бюджета доходов от продажи

F Составление бюджета расходов по продаже

G Составление бюджета объемов производства

Н Составление бюджета накладных расходов

I Составление бюджета трудовых ресурсов

J Составление бюджета сырья

К Составление бюджета производственных площадей и оборудования

L Выработка прогноза общей прибыли

-

-

-

B

C,D

A,D

D

A

A,G

G

G

E,F,H,I,J,K

2

4

3

3

1

3

6

4

2

3

5

1

Упражнение 8

Некоторый проект включает в себя 10 операций, продолжительность и взаимосвязи которых указаны ниже.

Продолжительность операций F и Н является неопределенной, поскольку на данной стадии её оценка вызывает некоторые затруднения.

Требуется:

1. Построить соответствующий сетевой граф, отражающий взаимосвязи между 10 операциями.

2. Определить минимальное время, требующееся для реализации проекта, не учитывая при этом влияние операций F и Н.

3. Если бы возникла необходимость закончить выполнение проекта за 19 дней, какие ограничения накладывало бы это условие на продолжительность операций F и H?

4. После проведения дальнейших исследований было установлено, что ожидаемыми сроками выполнения операций F и Н являются два дня и один день соответственно. Кроме того, можно предположить, что неопределенность в продолжительности этих двух операций можно аппроксимировать с помощью распределения Пуассона. Исходя из этой информации, найдите вероятность того, что выполнение проекта займет не более 19 дней. В нижеследующей таблице приведены некоторые значения вероятностей, соответствующие распределению Пуассона:

Среднее значение,

Вероятность

0

1

2

3

4 и более

1

2

0,368

0,135

0,368

0,271

0,184

0.271

0,061

0,180

0,019

0,143

Операция

Продолжительность, дней

Непосредственно предшествующие операции

A

B

C

D

E

F

G

H

I

J

6

1

2

1

1

1

4

5

-

A

A

B

D

B

C

F,G

E,H

I

Упражнение 9

Фирма "Джилет" выпускает ряд средств для ухода за волосами и для бритья, включая опасные бритвы. Ее конкурент организовал недавно производство нового вида опасных бритв, которые за последние шесть месяцев приобрели большую популярность на потребительском рынке, что оказало обратное воздействие на объемы продаж фирмы "Джилет". Администрация приняла решение о скорейшем внедрении в производство конкурентоспособной продукции и поручила главному бухгалтеру составить план разработки нового продукта и внедрения его на потребительский рынок.

Первый шаг, предпринятый бухгалтером при разработке этого проекта, состоял в определении основных задач, которые необходимо решить в процессе создания нового продукта. Эти задачи перечислены ниже. Он произвел также оценку времени, которое займет решение каждой задачи, и выявил задачи, которые ей предшествуют.

1. Постройте сетевой граф, отражающий логическую последовательность решения указанных задач, и определите, какой период времени пройдет с момента разработки плана до налаживания серийного выпуска новой продукции (можно предположить, что выпуск продукции на национальном уровне будет иметь место сразу же после составления его плана).

Задача

Время, недель

Предшествующие задачи

А Создание новой продукции

В Создание упаковки

С Подготовка производственных мощностей

D Получение сырья и материалов

Е Выпуск опытной партии продукции

F Упаковка

G Принятие решения о выборе пробного рынка сбыта

Н Упаковка опытной партии

I Поставка продукции на пробный рынок сбыта

J Продажа продукции на пробном рынке сбыта

К Оценка результатов внедрения продукции на рынок

L Планирование выпуска продукции на национальном уровне

8

4

4

2

3

2

1

2

3

4

3

4

-

-

A

A

C,D

B

-

E,F

H,G

I

J

K

2. Рассчитайте значения резерва времени, соответствующие каждой из некритических операций.

3. Время, которое потребуется для выполнения задач А, В, D, К и L, подвержено влиянию неопределенности, поэтому для получения наиболее вероятных значений сроков выполнения этих операций, которые приведены выше, были разработаны следующие оценки оптимистических и пессимистических сроков:

Задача

Оптимистический срок, недель

Пессимистический срок, недель

A

B

D

K

L

5

2

1

2

2

13

6

4

6

8

С учетом приведенной выше информации определите ожидаемое время, которое пройдет до момента серийного выпуска продукции, и вероятность того, что этот период превысит 35 недель (следует ввести предпосылку о том, что продолжительность проекта в целом аппроксимируется нормальным распределением).

2. МЕТОД ПРОГНОЗНОГО ГРАФА

Этот метод предложен академиком В. М. Глушковым на основе обобщения, с одной стороны, упомянутого выше метода Дельфы, а с другой -- метода сетевого планирования и служит для определения вероятности наступления тех или иных событий и оценки вероятного их наступления. Практическую реализацию он получил в методике, разработанной коллективом авторов и утвержденной Госкомитетом по науке и технике Совета Министров СССР.

Метод прошел проверку при прогнозировании развития широкого комплекса научно-технических работ в области технических средств систем обработки информации.

Согласно ему строится сеть взаимосвязанных событий (целей) -- прогнозный граф, служащий основным материалом для выявления и анализа возможных путей решения генеральной цели научно-технической политики в той или иной области, сформулированной исходя из общегосударственных интересов.

Рассмотрим последовательность разработки научно-технического программного прогноза с помощью данного метода.

Прежде всего, составляется перечень конечных целей (набор проблем или типов событий) S1, S2,....,Sm, оценка достижения которых составляет задачу прогноза.

Всем целям априорно ( способом, изложенным ниже ) придаются веса 1, 2,..., k в соответствии с их относительной значимостью для достижения генеральной цели.

Затем составляется предварительный список промежуточных целей Sm+1, Sm+2,..., Sm+n и предварительный граф их соподчиненности. Для этого экспертам в отношении каждой из целей Sl (l=l,2,..,m) задается вопрос: укажите промежуточные цели Sl1 , Sl2,.. ., Slnj, которые было бы полезно достичь для ускорения достижения цели Sl. Здесь nj- означает число промежуточных целей, выдвинутых экспертом j для решения цели l, причем j=1,2,... , Si, где ki -- количество экспертов, оценивающих цель Sl. Для каждой из целей количество промежуточных целей равняется:

kl

ni =? nj

j=1

С расширением списка промежуточных целей такой же вопрос задается в отношении каждой из них, поскольку каждая промежуточная цель в свою очередь является исходной проблемой для промежуточных целей следующего уровня.

Определение промежуточных целей для каждой цели Si (i=l, 2,...,m,m+1,...,m+n) продолжается до тех пор, пока не появятся цели, для которых нет соответствующих промежуточных целей (либо проблема решена, либо не может быть решена -- не видно путей ее решения).

В итоге составляется предварительный список промежуточных целей.

Соединяя стрелками каждую из промежуточных целей Sl1 , Sl2,.. ., Slnj, полезных для достижения цели Si (i=l, 2,...,m+n), с этой последней целью, получаем предварительный граф подчиненности. Основой построения его служат логические связи: промежуточные цели Sl1 , Sl2,.. ., Slni -->эксперт Эj (который выдвинул эти промежуточные цели для решения цели Si)----> цель Si.

Графически эти связи изображаются в виде ориентированных дуг, направленных от промежуточных целей к эксперту (выдвинувшему эти цели) и от эксперта к соответствующей исходной проблеме.

Ориентированные дуги графа интерпретируют работы, а вершины графа -- цели экспертов. Таким образом, предварительный граф соподчиненности промежуточных целей; другими словами, множество предварительных предпосылок для всех целей Si (i=l,2, ...,m+n) представляет собой многоуровневую иерархическую структуру с общим числом вершин:

M=m+n+k,

где М -- общее число вершин в графе;

m+n -- число исходных проблем и промежуточных целей;

k -- количество экспертов.

На следующем этапе привлекается широкий коллектив экспертов, который разбивается на относительно небольшие подгруппы для оценки каждой из целей S1, S2,...,Sm+n. Каждому из экспертов, оценивающему цель Si посылается анкета с формулировкой этой цели и списком всех ее предварительных предпосылок. Из этого списка эксперт должен выбрать те цели, достижение которых он считает непременным условием для достижения цели Si(i= 1,2, . . . ,m+n), и дополнить его недостающими на его взгляд целями.

Назовем совокупность всех промежуточных целей, выставленных экспертом j для цели i, предпосылкой ij.

Эксперт оценивает время, необходимое для достижения цели Si при условии, что все цели предпосылки ij уже достигнуты. Эта оценка (обозначим ее через tij), как и в методе Дельфы, предполагает возможность бесконечного значения, т. е. цель никогда не может быть достигнута. Разумеется, в этом случае предпосылка ij предполагается пустой. Кроме того, эксперт дает качественную оценку своей компетентности (применительно к данной цели) и степени уверенности в своем прогнозе. Эти оценки переводятся в весовые коэффициенты ?ij и ?ij, произведение которых ?ij - ?ij = ?ij представляет собой вес данного единичного прогноза.

Эксперту предлагается также назвать фамилии нескольких специалистов, которых он считает целесообразным привлечь для прогноза по событию Si (i=1,2,...,m+n). Те эксперты, фамилии которых были указаны их коллегами, получают добавку ??ij к самооценке своей собственной компетентности ?ij тем большую, чем чаще упоминались их фамилии. Теперь необходимо для каждой цели Si определить предпосылки с набором оценок. В общем это должно выполняться периодически (например, один раз в полтора года).

Заполненные анкеты обрабатываются, строится граф соподчиненности целей. Для любого эксперта j, оценивавшего цель Si, все цели предпосылки ij соединяются стрелками с целью Si аналогично тому, как было описано.

Построенный граф проверяется на отсутствие циклов. Если в нем оказываются петли, то их устраняют, проведя дополнительную работу с экспертами (хотя в ряде случаев можно работать и с неустранёнными петлями). Так в конце концов получается прогнозный граф.

Систематизируя полученный в результате проведения экспертизы массив исходных данных, выявляют адекватные условия, объединяют некоторые условия в одно, а также искусственно заземляют часть условий в графе, после чего начальные данные и связи в графе кодируются для машинной обработки.

Анализ прогнозного графа включает в себя:

1) поиск циклов и тупиковых событий в прогнозном графе;

2) ранжирование событий в прогнозном графе;

3) вычисление вероятностных и временных характеристик;

4) варьирование вероятностных и временных характеристик.

События в прогнозном графе (т. е. вершины его, соединенные дугами) -- это проблемы (исходные и промежуточные цели) и эксперты.

Граф должен удовлетворять следующим условиям:

- в нем не должно быть событий, из которых не выходит ни одной связи, если только эти события не завершающие (имеющие пустые предпосылки ij);

- в нем не должно быть событий, в которые не входит ни одной связи, если только эти события не исходные цели (проблемы);

- в нем не должно быть замкнутых контуров, т. е. не должно быть связей, соединяющих какое-либо событие с ним же самим;

- в нем не должно быть событий, имеющих одинаковые шифры. Поэтому первое, что следует сделать при анализе графа, -- выявить все ошибки, допущенные при его составлении.

Рассмотрим порядок поиска тупиковых событий и циклов. Событие, в которое не входит ни одна работа и которое не является исходным событием для данного графа, называется тупиковым событием первого рода. Событие же, из которого не выходит ни одна работа и которое не является конечным для данного графа, является тупиковым событием второго рода.

Исходная информация формируется в виде некоторого массива (событие и связи -- работы), затем путем последовательного выбора кодов связи и выделения из них кодов начальных событий создается новый массив, содержащий начальные события с признаками работ, исходящих из этих событий. Наконец, выделяются конечные события, их включают в сформированный массив с признаками работ, входящих в данные события.

После пересмотра всех связей-работ входной информации сформированный массив будет включать все события графа с соответствующими признаками входящих и исходящих связей. При этом признаки тупиковых событий первого и второго рода примут, например, соответственно следующий вид: 01 и 10. Признаком кодов всех нетупиковых условий будет в этом случае сочетание 11. В результате просмотра признаков всех событий, записанных в сформированный массив, выявятся тупиковые события первого и второго рода.

Согласно данному алгоритму начальные и конечные события графа снабжены соответствующими признаками.

Допустим, имеется прогнозный граф с М вершинами и N дугами. На вершинах m=l,2,... , М данного графа определяется функция

1, если вершина принадлежит контуру или пути, начинающемуся

?(m)= на контуре;

0, в противном случае.

Вычисляют ?(m) рекуррентным образом при пoмощи последовательности

Вспомогательных функций ?k(m) ? ?k-1,m=1,2,…,M сходящейся к ?(m): ?k0(m)? ?k0(m)? ?(m) при некотором конечном k0. Строится функция ?k(m) следующим образом.

Положим ?0(m) ? 1, a ?k-1(m) вычислена. Вычисляем ?k(m) следующим образом: последовательно просматриваем список дуг (i, j), i и j -- начало и конец дуги. Если ?k-1(i) = 0, то переходим к следующей дуге. В противном случае если ?k-1(i)=1, то ?k(j)=1. Всем ?k(m), не определенным после полного просмотра списка дуг, приписывают значение 0.

Рассмотрим геометрический смысл этого рекуррентного построения. Первоначально значение ?1(m) = l получает каждая вершина, в которую входит хотя бы одна дуга. Следовательно, ?1(m) = 0 на тех вершинах, куда не входит ни одна дуга. Эти вершины исключаются из дальнейшего рассмотрения, так как они не могут лежать на контуре или на пути, выходящем из контура.

Граф сокращается за счет исключения дуг, выходящих из начальных вершин (т. е. вершин, не имеющих входящих в них дуг). Но в нем появляются новые начальные вершины, поскольку из графа исключаются все незамкнутые пути, выходящие из начальных вершин (т. е. мы подойдем к контуру, если он имеется в графе).

Если ?(m)=0 (т=1, 2,...,М), то контуров в графе нет. Если же ?(m)?0, то граф содержит контуры. В этом случае строится функция:

1, если вершина принадлежит контуру или пути, начинающемуся

?*(m) = на контуре;

0, в противном случае.

Чтобы вычислить функции ?*k, нужно построить последовательность по дугам с обратной ориентацией точно так же, как последовательность ?k.

Вершины, в которых ф(т)=ф*(т)=*1, принадлежат одному из контуров.

Рассмотрим порядок ранжирования событий в графе с целью преобразования исходной информации к виду, удобному для вычисления временных и вероятностных характеристик. Используем для этого одну из модификаций стандартных способов ранжирования событий, применяемых в сетевом планировании.

Множество событий в графе разбивается на слои, начиная с уровня событий, не имеющих предпосылок i,j (так называемая «земля» -- события класса ko). Событие Si принадлежит уровню ?, если все его предпосылки принадлежат меньшим уровням и хотя бы одна -- в точности уровню ? -- 1 (? = 1, 2, . . . , q, . . . ), начиная с «заземленного уровня» (класс k0), q -- число уровней в графе).

Вычисление временных характеристик производят по следующей формуле:

где t(Si) -- время свершения события S, графа;

tj -- время свершения события Si согласно варианту эксперта j (j=l, 2, . . ., Ri);

Vj -- вес эксперта j;

Ri -- количество экспертов, оценивающих событие Si в графе (i= 1, 2, . . . , т+п).

Временные характеристики для каждого варианта (эксперта j) определяются так:

tj(Si) =max t(Sir)+tij ,

где tj(Si) -- время реализации проблемы Si согласно варианту эксперта j;

t (Sir) -- время свершения выдвинутых экспертом j условий Sirj предпосылке;

tij -- условное время, заданное экспертом;

Sir -- событие, входящее в предпосылку i,j цели Si (r =l, 2,..., nj).

Аналогично (с незначительными изменениями) вычисляются и стоимостные характеристики.

Вероятностные характеристики рассчитывают следующим образом.

1. Вероятность свершения условий, выдвинутых Эj экспертом при наличии значения абсолютных вероятностей событий «заземленного уровня» (пустые ij -- предпосылки):

Pэj (Sir) =P(Si1 ? Si2 ?? Sinj)=pi1 · pi2 ·… ·pinj ,

где pi1 , pi2 ,… ,pinj -- абсолютные вероятности свершения отдельных условий, выдвинутых экспертом j;

nij -- количество условий, выдвинутых j-м экспертом; Pэj (Sir) -- вероятность выполнения ij предпосылки.

2. Pэj (Sir) -- вероятность свершения события Si анализируемого экспертом j при предпосылке ij;

pij -- условная вероятность, выставленная Эj экспертом:

pэj (Si)= pэj (Sir) pij .

3. Для всех пар экспертов определяются условные вероятности:

где ppl) вычисляется по общим формулам теории вероятностей. Например:

Si=(Э1 (S2 , S3 , S4) , Э2 (S3 , S4, S5) ) ;

p (Э1 ? Э2) =p ( (S2 ? S3 ? S4) ? (S3 ? S4 ? S5) ) = p(S2? S3 ? S4? S5) =

= p2 ·p3 ·p4 ·p5;

Если для какой-либо пары экспертов p(Эр / Эl) или р(Эlр) ?0,5, то производится усреднение вероятностей по формуле:

V р l = min(Vр, Vl)

(p, l = 1, 2, … ,k).

После этого присваивается

pp), если ppl) р(Эlр) ;

pр Эl) =

pl) в противном случае.

Заметим , что усреднение начинается с тех пар экспертов , которые имеют максимальное значение условных взаимных вероятностей (среди равнозначных порядок безразличен).

Значение p Э рVЭ l и Vp Vl рассматривается как данные нового эксперта (вероятность и вес эксперта). Оценка pр Эl) служит для переноса ранее полученных значений условных вероятностей на нового эксперта. Оба первичных эксперта из процедуры исключаются. Если после проведения всех усреднений остается один эксперт, то значение p Э рVЭ l , полученное после усреднения последней пары, присваивается p(Si). Если остается более одного эксперта, то оценка p(Si ) вычисляется по формуле

r

p(Si ) = 1-П (1- p? ),

?=1

где r - число оставшихся экспертов;

p? - вероятности оставшихся экспертов (? = 1, 2, . . . ,r), что в предыдущих обозначениях соответствует рЭру Эl (не надо путать ее с оценкой pp v Эl);

p(Si )- вероятность свершения события Si , анализируемого экспертами j (j=1, 2, . . . , ki ).

На практике при проведении экспертизы по методу прогнозного графа оказалось, что экспертам довольно трудно осуществить оценку вероятности, поэтому было признано целесообразным перейти к одной оценке -- по времени, сделав оценку производной от него.

Для каждой цели Si(i=l,2,...,т+п) находится экспериментальный закон распределения вероятности Pi(t) ее достижения не позже, чем на время t (считая от настоящего момента).

С этой целью должна быть решена система уравнений

где pi (t) -- закон распределения вероятности достижения цели S к времени t;

pijr(t) -- закон распределения вероятности времени достижения промежуточных целей Sir, входящих в ij предпосылки цели Si;

tij -- относительная оценка времени свершения целей при условии выполнения ij предпосылок;

i = 1, 2,..., (m + n) (m + n -- количество событий в графе);

j =1, 2, . . ., Ri (Ri -- количество экспертов, участвующих в оценке цели);

r=1, 2, . .., пj (пj -- число промежуточных целей, входящих в предпосылку ij);

?ij = ?ij - ?ij -- вес соответствующего предсказания;

?ij -- оценка собственной компетентности эксперта;

?ij -- степень уверенности в прогнозе.

Суммы в числителе и знаменателе распространены на всех экспертов, принимавших участие в оценке цели Si. Граф соподчиненности называется правильным, если из этой системы уравнений однозначным образом могут быть найдены все функции pi (t).

Так, в частности, будет, если все цели разбиваются на непересекающиеся классы k0, k1,..., ki таким образом, что предпосылки ij для цели Si из некоторого класса kr (r=0,1,...,l) могут состоять лишь из целей, принадлежащих kp<p<_r. Для класса k0 это означает, очевидно, отсутствие каких-либо предпосылок. Зависимость pijr(t - tij) определяют исходя из абсолютных оценок вероятности свершения, которые задаются для заземленных событий (класса k0). Данное уравнение для событий этого класса приобретает форму:

где Q(x) -- функция, равная нулю при отрицательных значениях аргумента и равная единице при нулевом или положительном аргументе.

Член ?ijQ(t - tij) появляется в сумме всякий раз, когда эксперт j дает оценку времени tij достижения цели Si, не сопровождая ее никакими условиями (с пустой предпосылкой ij).

Оценки времени в прогнозах обычно даются лишь целыми числами (дней, месяцев или лет). При этом функцию распределения pi (t) удобно задавать векторами pi (1), pi (2),..., pi (?), где ? -- первое значение tij , для которого pi (t) достигает максимального значения (обычно это значение равно единице).

Для найденных экспериментальных распределений находятся обычные статистические характеристики: средние значения (или медианы), среднеквадратичные отклонения (или квартили). Так как распределение несимметрично, в ряде случаев необходимо рассматривать левые и правые среднеквадратичные отклонения.

Среднее значение для распределения pi(t) вычисляется по формуле

?

Ei = ? ? (pi (?) - pi (? - 1)),

? =1

Для нахождения медианы Mi и расстояний от медианы до квартилей pi ' и qi" предполагается, что между указанными значениями в целочисленных точках функции распределения меняются по линейному закону.

Мерой уточнения прогноза по какой-либо цели Si может служить абсолютная величина приращения какой-либо меры разброса распределения pi(t) , например его среднеквадратичного отклонения ?i. Минимальный разброс получается, если распределение pi(t) заменить распределением p'i(t)=Q(t -- Ei), т. е. таким распределением, что pi'(t)=0 при t< Ei и pi'= 1 при t ? E.

Коэффициентом информационной значимости цели Si служит величина

где ik -- приращение, получаемое среднеквадратичным отклонением распределения pk(t) при замене распределения pi(t) на распределение

p'i (t) =Q(t - Et).

Сумма берется по всем конечным целям.

К понятию информационной значимости приближается понятие важности (по срокам) промежуточной цели. Коэффициентом важности (по срокам) цели t называют величину

где k -- относительный вес конечных событий,

iEk -- приращение математического ожидания времени достижения Sk - й (конечной) цели при условии сдвига на одну единицу влево распределения pi(t), т. е. при замене функции pi(t) функцией pi(t+1).

Приведенные коэффициенты имеют большое значение при переводе прогнозов в план. Планом достижения цели является любой подграф прогнозного графа, построенный следующим образом: первая вершина плана -- цель Si ; далее выбирается одна из предпосылок ij; Si1, Si2,..., Sinj и для каждой из них повторяется тот же процесс, что и для вершины Si, пока не перестанут получаться новые вершины. Все построенные таким образом вершины (кроме Si) называют промежуточными целями данного плана.

Поскольку в общем случае цель может обладать многими планами для ее достижения, то на множество планов для достижения любой данной цели вводят понятие близости, определив тем или иным методом расстояние между планами. В работе дается одно из возможных определений: расстояние z1,A2) между двумя планами А1 и А2 принимается равным

z(А1 , А2) = 1 - N1 / N2 ,

где N1 -- число элементов в пересечении множеств целей планов А1 и А2;

N2 - число элементов в их объединении.

Получив близкие планы, производят повторную экспертизу, направленную на то, чтобы сделать их полностью совпадающими. Если в результате подобных действий для какой-нибудь конечной цели удалось получить единственный план, то можно принять его в качестве обобщенного сетевого графика для организации фактической работы (достижения данной цели).

Когда же получить единственный план не удается, возникает проблема выборов в множестве активных планов. Критерием такого выбора может послужить, например, то, что подавляющее большинство экспертов склонилось к какому-то одному плану, причем между ними имеется и большее согласие по срокам достижения цели. Признаком такого согласия может служить малая величина разброса распределения pi(t) для конечной цели данного плана, вычисленного по тем предсказаниям, которые укладываются в рамки рассматриваемого плана.

Если проблему выбора решить не удается, то можно осуществить частичный перевод прогноза в план, в каком-то смысле наилучший с точки зрения достижения поставленных целей. Для этого во множестве промежуточных целей, для которых проблема выбора может быть решена, выбираются цели с максимальными значениями коэффициентов важности и для них осуществляется перевод частей прогнозного графа в сетевые графики.

Коэффициент информационной значимости необходим для выбора тех промежуточных целей, на которые в первую очередь следует обратить внимание с точки зрения уточнения прогноза. В соответствии с этим коэффициентом строится и вся последующая работа с экспертами: увеличивается, скажем, число экспертов по целям с большой информационной значимостью; экспертов снабжают дополнительной информацией и так далее.

Основой получения исходных данных для проведения соответствующих прогностических расчетов служат таблицы экспертных оценок. Их форма должна обеспечить наиболее быстрый и полный сбор информации. Состоят они из нескольких частей.

Первая часть содержит обращение к эксперту с целью ввести эксперта в сущность работы, к которой он привлекается. Кратко описываются цель и задачи применяемой методики прогнозирования, роль эксперта в ее реализации. Желательно, чтобы эксперт поставил себя в положение непосредственного участника событий. Следует порекомендовать эксперту, не ограничиваться лишь сферой своей специальности, смело выдвигать предложения и требования даже за рамками компетентности. Строго оговаривается необходимость четкости и ясности формулировок.

Вторая часть содержит описание проблемы, предлагаемой эксперту для анализа.

Третья представляет собой набор научно-технических условий и оценок, выдвигаемых экспертом. Тут же эксперту предлагается назвать других специалистов, которые могли бы взяться за осуществление сформулированных условий, для каждого условия в отдельности. Каждое условие или набор условий, выдвинутых экспертом, оценивается им по нескольким параметрам.

Рекомендуется оценивать следующие основные параметры:

1) промежуток времени (Т) в годах от момента выполнения выдвинутых экспертом условий до решения рассматриваемой проблемы;

2) затраты на решение предложенной проблемы без учета затрат на осуществление условий: форма задания оценок затрат должна позволять экспертам однозначно понимать смысл этих оценок, что значительно уменьшает разброс значений экспертных оценок;

3) степень уверенности эксперта в решении прогнозируемой проблемы на основе выдвинутых им условий;


Подобные документы

  • Исследование системы методов планирования и управления разработкой проектов путем применения сетевых графиков. Правила построения сетевого графа. Расчет параметров и анализ сетей случайной структуры. Определение дисперсии ожидаемого выполнения проекта.

    курсовая работа [265,3 K], добавлен 31.05.2013

  • Проблема автоматизации расчёта сетевого графика. Вычисление критического пути с помощью ЭВМ. Табличный метод решения проблемы, метод графов. Составление алгоритма, написание программы и решение задачи. графический интерфейс пользователя, ввод данных.

    курсовая работа [39,7 K], добавлен 20.11.2008

  • Анализ комплекса работ и оптимизация сетевой модели по критерию минимума времени при заданных ресурсах. Построение сетевого графика, определение критического пути. Отображение временных параметров событий на графике. Проведение оптимизации по времени.

    контрольная работа [192,0 K], добавлен 15.04.2014

  • Основные параметры сетевой модели системы планирования и управления. Правила построения сетевых графиков. Характеристики элементов сетевой модели. Метод пересмотра планов. Численная реализация задачи сетевого планирования. Метод графической оценки.

    реферат [154,4 K], добавлен 19.03.2015

  • Метод сетевого планирования и управления, его цели, задачи и необходимость. Определение минимальной стоимости комплекса производственных работ при заданной продолжительности его выполнения с помощью построения, анализа и оптимизации сетевого графика.

    курсовая работа [39,6 K], добавлен 07.12.2010

  • Построение сетевой модели. Упорядочивание сетевого графика. Определение критического пути. Временные характеристики сетевого графика. Современное сетевое планирование в условиях неопределенности. Оптимизация сетевого графика по схеме "Время-стоимость".

    курсовая работа [537,0 K], добавлен 28.04.2014

  • Понятие, правила построения и направления применения сетевого планирования. Особенности методов критического пути, статистических испытаний (способ Монте-Карло), оценки и пересмотр планов и графического анализа. Принципы построения диаграммы Ганта.

    курсовая работа [1,1 M], добавлен 24.10.2010

  • Системы, системный подход, системный анализ. Основные термины, определения, технологии. Экономико-математические методы, их состав, структура, направленность, классификация. Метод динамического программирования, теории игр. Сетевые методы планирования.

    контрольная работа [334,6 K], добавлен 13.06.2009

  • Понятие сетевого графика, его сущность и особенности, назначение и применение. Правила построения сетевого графика, его порядок и этапы. Способы сокращения длительности выполнения проекта. Критерии и средства осуществления оптимизации сетевого графика.

    реферат [37,2 K], добавлен 25.01.2009

  • Сравнение экономико-математических методов сетевого планирования при решении практических задач управления. Временные характеристики и правила построения сетевых графиков. Оптимизация проекта по времени и стоимости. Особенности метода критического пути.

    курсовая работа [1,5 M], добавлен 29.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.