Моделирование систем массового обслуживания

Общие понятия теории массового обслуживания. Особенности моделирования систем массового обслуживания. Графы состояний СМО, уравнения, их описывающие. Общая характеристика разновидностей моделей. Анализ системы массового обслуживания супермаркета.

Рубрика Экономико-математическое моделирование
Вид курсовая работа
Язык русский
Дата добавления 17.11.2009
Размер файла 217,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

С= (Сиоип) >min

Поскольку издержки обращения включают затраты, связанные с эксплуатацией СМО - Сэкс и простоем каналов обслуживания - Спр, а издержки заявок включают потери, связанные с уходом не обслуженных заявок - Снз, и с пребыванием в очереди - Соч, тогда целевую функцию можно переписать с учетом этих показателей таким образом:

С={(Спрnсвэкзnз)+СочРобсл(Точ+tобс)+СизРоткл}>min.

В зависимости от поставленной задачи в качестве варьируемых, т.е управляемых, показателей могут быть: количество каналов обслуживания, организация каналов обслуживания (параллельно, последовательно, смешанным образом), дисциплина очереди, приоритетность обслуживания заявок, взаимопомощь между каналами и др. Часть показателей в задаче фигурирует в качестве неуправляемых, которые обычно являются исходными данными. В качестве критерия эффективности в целевой функции могут быть так же товарооборот, прибыль, или доход, например, рентабельность, тогда оптимальные значения управляемых показателей СМО находятся очевидно, уже при максимизации, как в предыдущем варианте.

В некоторых случаях следует пользоваться другим вариантом записи целевой функции:

С={Сэкзnз+Cпр(n-n з)+Cоткотк*л+Ссист* nз}>min

В качестве общего критерия может быть выбран, например, уровень культуры обслуживания покупателей на предприятиях, тогда целевая функция может быть представлена следующей моделью:

Коб=[(Зпуу)+(Зпвв)+(Зпдд)+(Зпзз)+(Зпо0)+(Зкткт)]*Кмп,

где Зпу - значимость показателя устойчивости ассортимента товаров;

Ку - коэффициент устойчивости ассортимента товаров;

Зпв - значимость показателя внедрения прогрессивных методов продажи товаров;

Кв - коэффициент внедрения прогрессивных методов продажи товаров;

Зпд - значимость показателя дополнительного обслуживания;

Кд - коэффициент дополнительного обслуживания;

Зпз - значимость показателя завершенности покупки;

Кз - коэффициент завершенности покупки;

Зпо - значимость показателя затрат времени на ожидание в обслуживании;

Ко - показатель затрат времени на ожидание обслуживания;

Зкт - значимость показателя качества труда коллектива;

Ккт - коэффициент качества труда коллектива;

Кмп - показатель культуры обслуживания по мнению покупателей;

Для анализа СМО можно выбирать и другие критерии оценки эффективности работы СМО. Например, в качестве такого критерия для систем с отказами можно выбирать вероятность отказа Ротк, значение которого не превышало бы заранее заданной величины. Например, требование Ротк<0,1 означает, что не менее чем в 90% случаев система должна справляться с обслуживанием потока заявок при заданной интенсивности л. Можно ограничить среднее время пребывания заявки в очереди или в системе. В качестве показателей, подлежащих определению, могут выступать: либо число каналов n при заданной интенсивности обслуживания м, либо интенсивность м при заданном числе каналов.

После построения целевой функции необходимо определить условия решения задачи, найти ограничения, установить исходные значения показателей, выделить неуправляемые показатели, построить или подобрать совокупность моделей взаимосвязи всех показателей для анализируемого типа СМО, чтобы в конечном итоге найти оптимальные значения управляемых показателей, например количество поваров, официантов, кассиров, грузчиков, объемы складских помещений и др

Глава III. Модели систем массового обслуживания

3.1 Одноканальная СМО с отказами в обслуживании

Проведем анализ простой одноканальной СМО с отказами в обслуживании, на которую поступает пуассоновский поток заявок с интенсивностью л, а обслуживание происходит под действием пуассоновского потока с интенсивностью м.

Работу одноканальной СМО n=1 можно представить в виде размеченного графа состояний (3.1).

Переходы СМО из одного состояния S0 в другое S1 происходят под действием входного потока заявок с интенсивностью л, а обратный переход - под действием потока обслуживания с интенсивностью м.

л

S0

S1

м

S0 - канал обслуживания свободен; S1 - канал занят обслуживанием;

Рис. 3.1 Размеченный граф состояний одноканальной СМО

Запишем систему дифференциальных уравнений Колмогорова для вероятностей состояния по изложенным выше правилам:

Откуда получим дифференциальное уравнение для определения вероятности р0(t) состояния S0:

Это уравнение можно решить при начальных условиях в предположении, что система в момент t=0 находилась в состоянии S0, тогда р0(0)=1, р1(0)=0.

В этом случае решение дифференциального уровнения позволяет определить вероятность того, что канал свободен и не занят обслуживанием:

Тогда нетрудно получить выражение для вероятности определения вероятности занятости канала:

Вероятность р0(t) уменьшается с течением времени и в пределе при t>? стремится к величине

а вероятность р1(t) в то же время увеличивается от 0, стремясь в пределе при t>? к величине

Эти пределы вероятностей могут быть получены непосредственно из уравнений Колмогорова при условии

Функции р0(t) и р1(t) определяют переходный процесс в одноканальной СМО и описывают процесс экспоненциального приближения СМО к своему предельному состоянию с постоянной времени характерной для рассматриваемой системы.

С достаточной для практики точностью можно считать, что переходный процесс в СМО заканчивается в течение времени, равно 3ф.

Вероятность р0(t) определяет относительную пропускную способность СМО, которая определяет долю обслуживаемых заявок по отношению к полному числу поступающих заявок, в единицу времени.

Действительно, р0(t) есть вероятность того, что заявка, пришедшая в момент t, будет принята к обслуживанию. Всего в единицу времени приходит в среднем л заявок и из них обслуживается лр0 заявок.

Тогда доля обслуживаемых заявок по отношению ко всему потоку заявок определятся величиной

В пределе при t>? практически уже при t>3ф значение относительной пропускной способности будет равно

Абсолютная пропускная способность, определяющая число заявок, обслуживаемых в единицу времени в пределе при t>?, равна:

Соответственно доля заявок, получивших отказ, составляет в этих же предельных условиях:

а общее число не обслуженных заявок равно

Примерами одноканальных СМО с отказами в обслуживании являются: стол заказов в магазине, диспетчерская автотранспортного предприятия, контора склада, офис управления коммерческой фирмы, с которыми устанавливается связь по телефону.

3.2 Многоканальная СМО с отказами в обслуживании

В коммерческой деятельности примерами многоканальных СМО являются офисы коммерческих предприятий с несколькими телефонными каналами, бесплатная справочная служба по наличию в авто магазинах самых дешевых автомобилей в Москве имеет 7 телефонных номеров, а дозвониться и получить справку, как известно, очень трудно.

Следовательно, авто магазины теряют клиентов, возможность увеличить количество проданных автомобилей и выручку от продаж, товарооборот, прибыль.

Туристические фирмы по продаже путевок имеют два, три, четыре и более каналов, как, например, фирма Express-Line.

Рассмотрим многоканальную СМО с отказами в обслуживании на рис. 3.2, на вход которой поступает пуассоновский поток заявок с интенсивностью л.

л л л л л

S0

S1

Sk

Sn

м 2м kм (k+1)м nм

Рис. 3.2. Размеченный граф состояний многоканальной СМО с отказами

Поток обслуживания в каждом канале имеет интенсивность м. По числу заявок СМО определяются ее состояния Sk, представленные в виде размеченного графа:

S0 - все каналы свободны k=0,

S1 - занят только один канал, k=1,

S2 - заняты только два канала, k=2,

Sk - заняты k каналов,

Sn - заняты все n каналов, k= n.

Состояния многоканальной СМО меняются скачкообразно в случайные моменты времени. Переход из одного состояния, например S0 в S1, происходит под воздействием входного потока заявок с интенсивностью л, а обратно - под воздействием потока обслуживания заявок с интенсивностью м. Для перехода системы из состояния Sk в Sk-1 безразлично, какой именно из каналов освободиться, поэтому поток событий, переводящий СМО, имеет интенсивность kм, следовательно, поток событий, переводящий систему из Sn в Sn-1, имеет интенсивность nм. Так формулируется классическая задача Эрланга, названная по имени датского инженера - математика- основателя теории массового обслуживания.

Случайный процесс, протекающий в СМО, представляет собой частный случай процесса «рождения- гибели» и описывается системой дифференциальных уравнений Эрланга, которые позволяют получить выражения для предельных вероятностей состояния рассматриваемой системы, называемые формулами Эрланга:

.

Вычислив все вероятности состояний n - канальной СМО с отказами р0 , р1, р2, …,рk,…, рn, можно найти характеристики системы обслуживания.

Вероятность отказа в обслуживании определяется вероятностью того, что поступившая заявка на обслуживание найдет все n каналов занятыми, система будет находиться в состоянии Sn:

k=n.

В системах с отказами события отказа и обслуживания составляют полную группу событий, поэтому

Роткобс=1

На этом основании относительная пропускная способность опредляется по формуле

Q = Pобс= 1-Ротк=1-Рn

Абсолютную пропускную способность СМО можно определить по формуле

А=л*Робс

Вероятность обслуживания, или доля обслуженных заявок, определяет относительную пропускную способность СМО, которая может быть определена и по другой формуле:

Из этого выражения можно определить среднее число заявок, находящихся под обслуживанием, или, что же самое, среднее число занятых обслуживанием каналов

Коэффициент занятости каналов обслуживанием определятся отношением среднего числа занятых каналов к их общему числу

Вероятность занятости каналов обслуживанием, которая учитывает среднее время занятости tзан и простоя tпр каналов, определяется следующим образом:

Из этого выражения можно определить среднее время простоя каналов

Среднее время пребывания заявки в системе в установившемся режиме определятся формулой Литтла

Тсмо= nз/л.

3.3 Модель многофазной системы обслуживания туристов

В реальной жизни система обслуживания туристов выглядит значительно сложнее, поэтому необходимо детализировать постановку задачи, учитывая запросы, требования как со стороны клиентов, так и турфирмы.

Для увеличения эффективности работы турфирмы необходимо смоделировать в целом поведение потенциального клиента от начала операции до ее завершения. Структура взаимосвязи основных систем массового обслуживания фактически состоит из СМО разного вида (рис. 3.3).

Поиск Выбор Выбор Решение

поиск фирмы тура по туру

Оплата Перелет Исход

Рис. 3.3 Модель многофазной системы обслуживания туристов

Проблема с позиции массового обслуживания туристов, уезжающих на отдых, заключается в определении точного места отдыха (тура), адекватного требованиям претендента, соответствующего его здоровью и финансовым возможностям и представлениям об отдыхе в целом. В этом ему могут способствовать турфирмы, поиск которых осуществляется обычно из рекламных сообщений СМОр, затем после выбора фирмы происходит получение консультаций по телефону СМОт, после удовлетворительного разговора приезд в турфирму и получение более детальных консультаций лично с референтом, затем оплата путевки и получение обслуживания от авиакомпании по перелету СМОа и в конечном счете обслуживания в отеле СМ00. Дальнейшее развитие рекомендаций по улучшению работы СМО фирмы связано с изменением профессионального содержания переговоров с клиентами по телефону. Для этого необходимо углубить анализ, связанный с детализацией диалога референта с клиентами, поскольку далеко не каждый переговоры по телефону приводит к заключению договора на приобретение путевки. Проведение формализации задачи обслуживания указало на необходимость формирования полного (необходимого и достаточного) перечня характеристик и их точных значений предмета коммерческой сделки. Затем проводятся ранжирование этих характеристик, например методом парных сравнений, и расположения в диалоге по степени их значимости, например: время года (зима), месяц (январь), климат (сухой), температура воздуха (+25"С), влажность (40%), географическое место (ближе к экватору), время авиаперелета (до 5 часов), трансферт, страна (Египет), город (Хургада), море (Красное), температура воды в море (+23°С), ранг отеля (4 звезды, работающий кондиционер, гарантия наличия шампуня в номере), удаленность от моря (до 300 м), удаленность от магазинов (рядом), удаленность от дискотек и других источников шума (подальше, тишина в течение сна в отеле), питание (шведский стол -- завтрак, ужин, частота изменения меню за неделю), отели (Princes, Marlin-In, Hour-Palace), экскурсии (Каир, Луксор, коралловые острова, подводное плавание), увеселительные шоу, спортивные игры, цена путевки, форма оплаты, содержание страховки, что брать с собой, что купить на месте, гарантии, штрафные санкции.

Есть еще один очень существенный показатель, выгодный для клиента, установить который предлагается самостоятельно въедливому читателю. Затем можно, используя метод опарного сравнения перечисленных характеристик хi, сформировать матрицу п х п сравнения, элементы которой заполняются последовательно по строкам по следующему правилу:

0, если характеристика менее значима,

аij = 1, если характеристика равнозначима,

2, если характеристика доминирует.

После этого определяются значения сумм оценок по каждому показателю строки Si =? aij , вес каждой характеристики Mi = Si /n2 и соответственно интегральный критерий, на основе которого можно провести выбор турфирмы, тура или отеля, по формуле

F = ? Mi * xi --» max.

С целью исключения возможных ошибок в этой процедуре вводят, например, 5-балльную шкалу оценок с градацией характеристик Бi i) по принципу хуже (Бi = 1 балл) - лучше (Бi = 5 баллов). Например, чем дороже тур, тем хуже, чем он дешевле, тем лучше. На этом основании целевая функция будет иметь другой вид:

Fb = ? Mi * Бi * xi --> max.

Таким образом, можно на основе применения математических методов и моделей, используя преимущества формализации, точнее и более объективно сформулировать постановку задач и значительно улучшить показатели СМО в коммерческой деятельности для достижения поставленных целей.

3.4 Одноканальная СМО с ограниченной длиной очереди

В коммерческой деятельности чаще встречаются СМО с ожиданием (очередью).

Рассмотрим простую одноканальную СМО с ограниченной очередью, в которой число мест в очереди т - фиксированная величина. Следовательно, заявка, поступившая в тот момент, когда все места в очереди заняты, не принимается к обслуживанию, не встает в очередь и .покидает систему.

Граф этой СМО представлен на рис. 3.4 и совпадает с графом рис. 2.1 описывающим процесс «рождения--гибели», с тем отличием, что при наличии только одного канала.

л л л л ... л

м м м м ... м

Рис. 3.4. Размеченный граф процесса «рождения - гибели» обслуживания все интенсивности потоков обслуживания равны

Состояния СМО можно представить следующим образом:

S0 - канал обслуживания свободен,

S, - канал обслуживания занят, но очереди нет,

S2 - канал обслуживания занят, в очереди стоит одна заявка,

S3 - канал обслуживания занят, в очереди стоят две заявки,

Sm+1 - канал обслуживания занят, в очереди все т мест заняты, любая следующая заявка получает отказ.

Для описания случайного процесса СМО можно воспользоваться изложенными ранее правилами и формулами. Напишем выражения, определяющие предельные вероятности состояний:

p1 = с * со

p22 * с0

pkk * с0

Pm+1 = pm=1 * с0

p0=[1+с+с23+...+сm+1]-1

Выражение для р0 можно в аанном случае записать проще, пользуясь тем, что в знаменателе стоит геометрическая прогрессия относительно р, тогда после соответствующих преобразований получаем:

с= (1- с )

(1- сm+2)

Эта формула справедлива для всех р, отличных от 1, если же р = 1, то р0 = 1/(т + 2), а все остальные вероятности также равны 1/(т + 2). Если предположить т = 0, то мы переходим от рассмотрения одноканальной СМО с ожиданием к уже рассмотренной одноканальной СМО с отказами в обслуживании. Действительно, выражение для предельной вероятности р0 в случае т = 0 имеет вид:

pо = м / (л+м)

И в случае л = м имеет величину р0 = 1 / 2.

Определим основные характеристики одноканальной СМО с ожиданием: относительную и абсолютную пропускную способность, вероятность отказа, а также среднюю длину очереди и среднее время ожидания заявки в очереди.

Заявка получает отказ, если она поступает в момент времени, когда СМО уже находится в состоянии Sm+1 и, следовательно, все места в очереди да заняты и один канал обслуживает Поэтому вероятность отказа определяется вероятностью появлением

Состояния Sm+1:

Pотк = pm+1 = сm+1 * p0

Относительная пропускная способность, или доля обслуживаемых заявок, поступающих в единицу времени, определяется выражением

Q = 1- pотк = 1- сm+1 * p0

абсолютная пропускная способность равна:

A = Q * л

Среднее число заявок Lоч стоящих в очереди на обслуживание, определяется математическим ожиданием случайной величины к - числа заявок, стоящих в очереди

Lоч-= M(k).

случайная величина к принимает следующие только целочисленные значения:

1 - в очереди стоит одна заявка,

2 - в очереди две заявки,

т-в очереди все места заняты

Вероятности этих значений определяются соответствующими вероятностями состояний, начиная с состояния S2. Закон распределения дискретной случайной величины к изображается следующим образом:

k

1

2

m

pi

p2

p3

pm+1

Математическое ожидание этой случайной величины равно:

Lоч = 1* p2 +2* p3 +...+ m* pm+1

В общем случае при p ?1 эту сумму можно преобразовать, пользуясь моделями геометрической прогрессии, к более удобному виду:

Lоч = p2 * 1- pm * (m-m*p+1) * p0

( 1- p )2

В частном случае при р = 1, когда все вероятности pk оказываются равными, можно воспользоваться выражением для суммы членов числового ряда

1+2+3+ m = m(m+1)

2

Тогда получим формулу

L'оч = m(m+1) * p0 = m(m+1) (p=1).

2 2(m+1)

Применяя аналогичные рассуждения и преобразования, можно показать, что среднее время ожидания обслуживания за явки а очереди определяется формулами Литтла

Точ = Lоч/А (при р ? 1) и Т1оч = L'оч /А(при р = 1).

Такой результат, когда оказывается, что Точ ~ 1/ л, может показаться странным: с увеличением интенсивности потока заявок как будто бы должна возрастать длина очереди и уменьшается среднее время ожидания. Однако следует иметь в виду, что, во-первых, величина Lоч является функцией от л и м и, во-вторых, рассматриваемая СМО имеет ограниченную длину очереди не более m заявок.

Заявка, поступившая в СМО в момент времени, когда все каналы заняты, получает отказ, и, следовательно, время ее «ожидания» в СМО равно нулю. Это приводит в общем случае (при р ? 1) к уменьшению Точ ростом л, поскольку доля таких заявок с ростом л увеличивается.

Если отказаться от ограничения на длину очереди, т.е. устремить m --> >?, то случаи р < 1 и р ?1 начинают существенно различаться. Записанные выше формулы для вероятностей состояний преобразуются в случае р < 1 к виду

р0=1-р

р1 =р*(1-р)

p2=p2(1-p)

pkk *(1 - р)

При достаточно большом к вероятность pk стремится к нулю. Поэтому относительная пропускная способность будет Q = 1, а абсолютная пропускная способность станет равной А --л Q -- л следовательно, обслуживаются все поступившие заявки, причем средняя длина очереди окажется равной:

Lоч = p2 1-p

а среднее время ожидания по формуле Литтла

Точ = Lоч

В пределе р << 1 получаем Точ = с / м т.е. среднее время ожидания быстро уменьшается с увеличением интенсивности потока обслуживания. В противном случае при р ? 1 оказывается, что в СМО отсутствует установившийся режим. Обслуживание не успевает за потоком заявок, и очередь неограниченно растет со временем (при t > ?). Предельные вероятности состояний поэтому не могут быть определены: при Q = 1 они равны нулю. Фактически СМО не выполняет своих функций, поскольку она не в состоянии обслужить все поступающие заявки. Нетрудно определить, что доля обслуживаемых заявок и абсолютная пропускная способность соответственно составляют в среднем с и м, однако неограниченное увеличение очереди, а следовательно, и времени ожидания в ней приводит к тому, что через некоторое время заявки начинают накапливаться в очереди на неограниченно долгое время.

В качестве одной из характеристик СМО используют среднее время Тсмо пребывания заявки в СМО, включающее среднее время пребывания в очереди и среднее время обслуживания. Эта величина вычисляется по формулам Литтла: если длина очереди ограничена -- среднее число заявок, находящихся в очереди, равно:

Lсмо= m+1 ;2

Тсмо= Lсмо; при p ?1

A тогда среднее время пребывания заявки в системе массового обслуживания (как в очереди, так и под обслуживанием) равно:

Тсмо= m+1 при p ?1 2м

3.5 Одноканальная СМО с неограниченной очередью

В коммерческой деятельности в качестве одноканальной СМО с неограниченным ожиданием является, например, коммерческий директор, поскольку он, как правило, вынужден выполнять обслуживание заявок различной природы: документы, переговоры по телефону, встречи и беседы с подчиненными, представителями налоговой инспекции, милиции, товароведами, маркетологами, поставщиками продукции и решать задачи в товарно-финансовой сфере с высокой степенью финансовой ответственности, что связано с обязательным выполнением запросов, которые ожидают иногда нетерпеливо выполнения своих требований, а ошибки неправильного обслуживания, как правило, экономически весьма ощутимы.

В то же время товары, завезенные для продажи (обслуживания), находясь на складе, образуют очередь на обслуживание (продажу).

Длину очереди составляет количество товаров, предназначенных для продажи. В этой ситуации продавцы выступают в роли каналов, обслуживающих товары. Если количество товаров, предназначенных для продажи, велико, то в этом случае мы имеем дело с типичным случаем СМО с ожиданием.

Рассмотрим простейшую одноканальную СМО с ожиданием обслуживания, на которую поступает пуассоновский поток заявок с интенсивностью л и интенсивностью обслуживания µ.

Причем заявка, поступившая в момент, когда канал занят обслуживанием, ставится в очередь и ожидает обслуживания.

Размеченный граф состояний такой системы приведен на рис. 3.5

Количество возможных состояний ее бесконечно:

- канал свободен, очереди нет, ;

- канал занят обслуживанием, очереди нет, ;

- канал занят, одна заявка в очереди, ;

- канал занят , заявка в очереди.

Модели оценки вероятности состояний СМО с неограниченной очередью можно получить из формул, выделенных для СМО с неограниченной очередью, путем перехода к пределу при m>?:

Рис. 3.5 Граф состояний одноканальной СМО с неограниченной очередью.

Следует заметить, что для СМО с ограниченной длиной очереди в формуле

имеет место геометрическая прогрессия с первым членом 1 и знаменателем . Такая последовательность представляет собой сумму бесконечного числа членов при . Эта сумма сходится, если прогрессия, бесконечно убывающая при , что определяет установившийся режим работы СМО, с при очередь при с течением времени может расти до бесконечности.

Поскольку в рассматриваемой СМО ограничение на длину очереди отсутствует, то любая заявка может быть обслужена, поэтому , следовательно, относительная пропускная способность , соответственно , а абсолютная пропускная способность

.

Вероятность пребывания в очереди k заявок равна:

;

Среднее число заявок в очереди -

;

Среднее число заявок в системе -

;

Среднее время пребывания заявки в системе -

;

Среднее время пребывания заявки с системе -

.

Если в одноканальной СМО с ожиданием интенсивность поступления заявок больше интенсивности обслуживания , то очередь будет постоянно увеличиваться. В связи с этим наибольший интерес представляет анализ устойчивых СМО, работающих в стационарном режиме при .

3.6 Многоканальная СМО с ограниченной длиной очереди

Рассмотрим многоканальную СМО , на вход которой поступает пуассоновский поток заявок с интенсивностью , а интенсивность обслуживания каждого канала составляет , максимально возможное число мест в очереди ограничено величиной m. Дискретные состояния СМО определяются количеством заявок, поступивших в систему, которые можно записать.

- все каналы свободны, ;

- занят только один канал (любой), ;

- заняты только два канала (любых), ;

- заняты все каналов, .

Пока СМО находится в любом из этих состояний, очереди нет. После того как заняты все каналы обслуживания, последующие заявки образуют очередь, тем самым, определяя дальнейшие состояние системы:

- заняты все каналов и одна заявка стоит в очереди,

;

- заняты все каналов и две заявки стоят в очереди,

;

- заняты все каналов и все мест в очереди,

.

Граф состояний n-канальной СМО с очередью, ограниченной m местами на рис.3.6

Рис. 3.6 Граф состояний n-канальной СМО с ограничением на длину очереди m

Переход СМО в состояние с большими номерами определяется потоком поступающих заявок с интенсивностью , тогда как по условию в обслуживании этих заявок принимают участие одинаковых каналов с интенсивностью потока обслуживания равного для каждого канала. При этом полная интенсивность потока обслуживания возрастает с подключением новых каналов вплоть до такого состояния , когда все n каналов окажутся занятыми. С появлением очереди интенсивность обслуживания более увеличивается, так как она уже достигла максимального значения, равного .

Запишем выражения для предельных вероятностей состояний:

.

Выражение для можно преобразовать, используя формулу геометрической прогрессии для суммы членов со знаменателем :

Образование очереди возможно, когда вновь поступившая заявка застанет в системе не менее требований, т.е. когда в системе будет находиться требований. Эти события независимы, поэтому вероятность того, что все каналы заняты, равна сумме соответствующих вероятностей Поэтому вероятность образования очереди равна:

Вероятность отказа в обслуживании наступает тогда, когда все каналов и все мест в очереди заняты:

Относительная пропускная способность будет равна:

Абсолютная пропускная способность -

Среднее число занятых каналов -

Среднее число простаивающих каналов -

Коэффициент занятости (использования) каналов -

Коэффициент простоя каналов -

Среднее число заявок, находящихся в очередях -

В случае если , эта формула принимает другой вид -

Среднее время ожидания в очереди определяется формулами Литтла -

Среднее время пребывания заявки в СМО, как и для одноканальной СМО, больше среднего времени ожидания в очереди на среднее время обслуживания, равное , поскольку заявка всегда обслуживается только одним каналом:

3.7 Многоканальная СМО с неограниченной очередью

Рассмотрим многоканальную СМО с ожиданием и неограниченной длиной очереди, на которую поступает поток заявок с интенсивностью и которая имеет интенсивность обслуживания каждого канала . Размеченный граф состояний представлен на рис 3.7 Он имеет бесконечное число состояний:

S - все каналы свободны, k=0;

S - занят один канал, остальные свободны, k=1;

S - заняты два канала, остальные свободны, k=2;

S - заняты все n каналов, k=n, очереди нет;

S - заняты все n каналов, одна заявка в очереди, k=n+1,

S - заняты все n каналов, r заявок в очереди, k=n+r,

Вероятности состояний получим из формул для многоканальной СМО с ограниченной очередью при переходе к пределу при m. Следует заметить, что сумма геометрической прогрессии в выражении для p расходится при уровне загрузки p/n>1, очередь будет бесконечно возрастать, а при p/n<1 ряд сходится, что определяет установившийся стационарный режим работы СМО.

Очереди нет

Рис.3.7 Размеченный граф состояний многоканальной СМО

с неограниченной очередью

для которого и определим выражения для предельных вероятностей состояний:

…;

Поскольку отказа в обслуживании в таких системах не может быть, то характеристики пропускной способности равны:

среднее число заявок в очереди -

среднее время ожидания в очереди -

среднее число заявок в СМО -

Вероятность того, что СМО находится в состоянии , когда нет заявок и не занято ни одного канала, определяется выражением

Эта вероятность определяет среднюю долю времени простоя канала обслуживания. Вероятность занятости обслуживанием k заявок -

На этом основании можно определить вероятность, или долю времени занятости всех каналов обслуживанием

Если же все каналы уже заняты обслуживанием, то вероятность состояния определяется выражением

Вероятность оказаться в очереди равна вероятности застать все каналы уже занятыми обслуживанием

Среднее число заявок, находящихся в очереди и ожидающих обслуживания, равно:

Среднее время ожидания заявки в очереди по формуле Литтла: и в системе

среднее число занятых каналов обслуживанием:

;

среднее число свободных каналов:

;

коэффициент занятости каналов обслуживанием:

Важно заметить, что параметр характеризует степень согласования входного потока, например покупателей в магазине с интенсивностью потока обслуживания. Процесс обслуживания будет стабилен при Если же в системе будут возрастать средняя длина очереди и среднее время ожидания покупателями начала обслуживания и, следовательно, СМО будет работать неустойчиво.

3.8 Анализ системы массового обслуживания супермаркета

Одной из важных задач коммерческой деятельности является рациональная организация торгово-технологического процесса массового обслуживания, например в универсаме. В частности, определение мощности кассового узла торгового предприятия является непростой задачей. Такие экономико-организационные показатели, как нагрузка товарооборота на 1м2 торговой площади, пропускная способность предприятия, время пребывания покупателей в магазине, а также показатели уровня технологического решения торгового зала: соотношение площадей зон самообслуживания и расчетного узла, коэффициенты установочной и выставочной площадей, во многом определяются пропускной способностью кассового узла. В этом случае пропускную способность двух зон (фаз) обслуживания: зоны самообслуживания и зоны расчетного узла (рис.4.1).

СМО

СМО

- интенсивность входного потока покупателей;

- интенсивность прихода покупателей зоны самообслуживания;

- интенсивность прихода покупателей в расчетный узел;

- интенсивность потока обслуживания.

Рис.4.1. Модель двухфазной СМО торгового зала универсама

Основная функция расчетного узла состоит в обеспечении высокой пропускной способности покупателей в торговом зале и создании комфортного обслуживания покупателей. Факторы, влияющие на пропускную способность расчетного узла, можно разделить на две группы:

1) экономико-организационные факторы: система материальной ответственности в универсаме; средняя стоимость и структура одной покупки;

2) организационная структура кассового узла;

3) технико-технологические факторы: применяемые типы кассовых аппаратов и кассовых кабин; применяемая контролером-кассиром технология обслуживания покупателей; соответствие мощности кассового узла интенсивности покупательских потоков.

Из перечисленных групп факторов наибольшее влияние оказывают организационное построение кассового узла и соответствие мощности кассового узла интенсивности покупательских потоков.

Рассмотрим обе фазы системы обслуживания:

1) выбор покупателями товаров в зоне самообслуживания;

2) обслуживание покупателей в зоне расчетного узла. Входящий поток покупателей попадает в фазу самообслуживания, и покупатель самостоятельно отбирает нужные ему товарные единицы, формируя их в единую покупку. Причем время этой фазы зависит от того, как взаиморазмещены товарные зоны, какой фронт они имеют, сколько времени тратит покупатель на выбор конкретного товара, какова структура покупки и т.д.

Выходящий поток покупателей из зоны самообслуживания одновременно является входящим потоком в зону кассового узла, который последовательно включает ожидание покупателя в очереди и затем обслуживание его контролером-кассиром. Кассовый узел можно рассматривать как систему обслуживания с потерями или как систему обслуживания с ожиданием.

Однако ни первая, ни вторая рассмотренные системы не позволяют реально описать процесс обслуживания в кассовом узле универсама по следующим причинам:

в первом варианте кассовый узел, мощность которого будет рассчитана на систему с потерями, требует значительных как капитальных вложений, так и текущих затрат на содержание контролеров-кассиров;

во втором варианте кассовый узел, мощность которого будет рассчитана на систему с ожиданиями, приводит к большим затратам времени покупателей в ожидании обслуживания. При этом в часы пик зона расчетного узла «переполняется» и очередь покупателей «перетекает» в зону самообслуживания, что нарушает нормальные условия для выбора товара другими покупателями.

В связи с этим целесообразно рассматривать вторую фазу обслуживания как систему с ограниченной очереди, промежуточную между системой с ожиданием и системой с потерями. При этом предполагается, что одновременно в системе могут находиться не более L, причем L=n+m, где n-количество обслуживаемых клиентов в кассах, m-количество покупателей, стоящих в очереди, причем любая m+1- заявка покидает систему необслуженной.

Это условие позволяет, с одной стороны, ограничить площадь зоны расчетного узла с учетом максимально допустимой длины очереди, а с другой - ввести ограничение на время ожидания покупателями обслуживания в кассовом узле, т.е. учитывать издержки потребления покупателей.

Правомерность постановки задачи в таком виде подтверждается проведенными обследованиями потоков покупателей в универсамах, результаты которых приведены в табл. 4.1, анализ которых выявил тесную связь между средней длинной очереди в кассовом узле и количеством покупателей, не совершивших покупок.

Табл.4.1

Часы работы

День недели

пятница

суббота

воскресенье

оче-редь,

количество

покупателей

без покупок

оче-редь,

количество

покупателей

без покупок

оче-редь,

количество

покупателей

без покупок

чел.

%

чел.

%

чел.

%

с 9 до 10

2

38

5

5

60

5,4

7

64

4,2

с 10 до 11

3

44

5,3

5

67

5

6

62

3,7

с 11 до 12

3

54

6,5

4

60

5,8

7

121

8,8

с 12 до 13

2

43

4,9

4

63

5,5

8

156

10

с 14 до 15

2

48

5,5

6

79

6,7

7

125

6,5

с 15 до 16

3

61

7,3

6

97

6,4

5

85

7,2

с 16 до 17

4

77

7,1

8

140

9,7

5

76

6

с 17 до 18

5

91

6,8

7

92

8,4

4

83

7,2

с 18 до 19

5

130

7,3

6

88

5,9

7

132

8

с 19 до 20

6

105

7,6

6

77

6

с 20 до 21

6

58

7

5

39

4,4

Итого

749

6,5

862

6,3

904

4,5

В организации работы кассового узла универсама имеется еще одна важная особенность, которая значительно влияет на его пропускную способность: наличие экспресс-касс (одной-двух покупок). Изучение структуры потока покупателей в универсамах по типу кассового обслуживания показывает, что поток оборот составляет 12,9% (табл. 4.2).

Табл. 4.2

Дни недели

Потоки покупателей

Товарооборот

всего

по экспресс-кассам

% к дневномупотоку

всего

по экспресс-кассам

% к дневному товарообороту

Летний период

Понедельник

11182

3856

34,5

39669,2

3128,39

7,9

Вторник

10207

1627

15,9

38526,6

1842,25

4,8

Среда

10175

2435

24

33945

2047,37

6

Четверг

10318

2202

21,3

36355,6

1778,9

4,9

Пятница

11377

2469

21,7

43250,9

5572,46

12,9

Суббота

10962

1561

14,2

39873

1307,62

3,3

Воскресенье

10894

2043

18,8

35237,6

1883,38

5,1

Зимний период

Понедельник

10269

1857

18,1

37121,6

2429,73

6,5

Вторник

10784

1665

15,4

38460,9

1950,41

5,1

Среда

11167

3729

33,4

39440,3

4912,99

12,49,4

Четверг

11521

2451

21,3

40000,7

3764,58

9,4

Пятница

11485

1878

16,4

43669,5

2900,73

6,6

Суббота

13689

2498

18,2

52336,9

4752,77

9,1

Воскресенье

13436

4471

33,3

47679,9

6051,93

12,7

Для окончательного построение математической модели процесса обслуживания с учетом перечисленных выше факторов необходимо определить функции распределения случайных величин, а также случайные процессы, описывающие входящие и выходящие потоки покупателей:

1) функцию распределения времени покупателей на выбор товаров в зоне самообслуживания;

2) функцию распределения времени работы контролера-кассира для обычных касс и экспресс-касс;

3) случайный процесс, описывающий входящий поток покупателей в первую фазу обслуживания;

4) случайный процесс, описывающий входящий поток во вторую фазу обслуживания для обычных касс и экспресс-касс.

Моделями для расчета характеристик системы массового обслуживания удобно пользоваться в том случае, если входящий поток требований в систему обслуживания является простейшим пуассоновским потоком, а время обслуживания заявок распределено по экспоненциальному закону.

Исследование потока покупателей в зоне кассового узла показало, что для него может быть принят пуассоновский поток.

Функция распределения времени обслуживания покупателей контролерами-кассирами является экспоненциальной, такое допущение не приводит к большим ошибкам.

Безусловный интерес представляет анализ характеристик обслуживания потока покупателей в кассовом узле универсама, рассчитанных для трех систем: с потерями, с ожиданием и смешанного типа.

Расчеты параметров процесса обслуживания покупателей в кассовом узле проведены для коммерческого предприятия торговой площадью S=650на основе следующих данных.

Целевая функция может быть записана в общем виде связи (критерия) выручки от реализации от характеристик СМО:

B=f max,

где - кассовый узел состоит из =7 касс обычного типа и =2 экспресс-касс,

всего n=9;

- интенсивность обслуживания покупателей в зоне обычных касс - 0,823 чел./мин;

- интенсивность нагрузки кассовых аппаратов в зоне обычных касс - 6,65,

- интенсивность обслуживания покупателей в зоне экспресс-касс - 2,18 чел./мин;

- интенсивность входящего потока в зону обычных касс - 5,47 чел./мин

- интенсивность нагрузки кассовых аппаратов в зоне экспресс-касс - 1,63,

- интенсивность входящего потока в зону экспресс-касс - 3,55 чел./мин;

- для модели СМО с ограничением на длину очереди в соответствии с проектируемой зоной кассового узла максимально допустимое число покупателей, стоящих в очереди в одну кассу, принимается равным m=10 покупателей.

Следует заметить, что для получения сравнительно небольших по абсолютной величине значений вероятности потерь заявок и времени ожидания покупателей в кассовом узле необходимо соблюдать следующие условия:

В табл.6.6.3 приведены результаты характеристик качества функционирования СМО в зоне расчетного узла.

Расчеты проведены для наиболее напряженного периода времени рабочего дня с 17 до 21 часа. Именно на этот период, как показали результаты обследований, приходится около 50% однодневного потока покупателей.

Из приведенных данных в табл. 4.3 следует, что если бы для расчета была выбрана:

1) модель с отказами, то 22,6% потока покупателей, обслуживаемых обычными кассами, и соответственно 33,6% потока покупателей, обслуживаемых экспресс-кассами, должны были бы уйти без покупок;

2) модель с ожиданием, то потерь заявок в расчетном узле не должно бы быть;

Табл. 4.3 Характеристики системы массового обслуживания покупателей в зоне расчетного узла

Тип кассы

Количество касс в узле

Тип СМО

Характеристики СМО

Среднее число занятых касс,

среднее время ожидания обслуживания,

Вероятность потери заявок,

Обычные кассы

7

с отказами

с ожиданием

с ограничением

на длину

очереди

5,15

6,65

6,7

0

3

2,66

0,226

0

0,0012

Экспресс-кассы

2

с отказами

с ожиданием

с ограничением

на длину

очереди

1,08

1,17

1,6

0

0,91

0,84

0,336

0

0,018

3) модель с ограничением на длину очереди, то только 0,12% потока покупателей, обслуживаемых обычными кассами, и 1,8% потока покупателей, обслуживаемых экспресс-кассами, покинут торговый зал без покупок. Следовательно, модель с ограничением на длину очереди позволяет более точно и реально описать процесс обслуживания покупателей в зоне кассового узла.

Интерес представляет сравнительный расчет мощности кассового узла как с учетом экспресс-касс, так и без них. В табл. 4.4 приведены характеристики системы обслуживания кассового узла трех типоразмеров универсамов, рассчитанные по моделям для СМО с ограничением на длину очереди на наиболее напряженный период рабочего дня с 17 до 21 часа.

Анализ данных этой таблицы показывает, что не учет фактора «Структура потока покупателей по типу кассового обслуживания» на стадии технологического проектирования может привести к увеличению зоны расчетного узла на 22-33%, а отсюда соответственно и к уменьшению установочных и выставочных площадей торгово-технологического оборудования и товарной массы, размещаемой в торговом зале.

Проблема определения мощности кассового узла представляет собой цепочку взаимосвязанных характеристик. Так, увеличение его мощности сокращает время покупателей на ожидание обслуживания, уменьшает вероятность потери требований и, следовательно, потери товарооборота. Наряду с этим необходимо соответственно уменьшить зону самообслуживания, фронт торгово-технологического оборудования, товарную массу в торговом зале. В то же время увеличивается затраты на заработную плату контролеров-кассиров и оборудование дополнительных рабочих мест. Поэтому

Табл. 4.4

№ п/п

Характеристики СМО

Единица измерения

Обозначение

Показатели, рассчитанные по типам универсамов торговой площади, кв. м

Без экспресс-касс

С учетом экспресс-касс

650

1000

2000

650

1000

2000

Обычные кассы

Экспресс-кассы

Обычные кассы

экспресс-кассы

Обычные кассы

экспресс-кассы

1

Количество покупателей

чел.

k

2310

3340

6680

1460

850

2040

1300

4080

2600

2

Интенсивность входящего потока

чел./

мин

л

9,64

13,9

27,9

6,08

3,55

8,55

5,41

17,1

10,8

3

Интенсивность обслуживания

чел./мин

м

0,823

0,823

0,823

0,823

2,18

0,823

2,18

0,823

2,18

4

Интенсивность нагрузки

-

с

11,7

16,95

33,8

6,65

1,63

10,35

2,48

20,7

4,95

5

Количество кассовых аппаратов

шт.

n

12

17

34

7

2

11

3

21

5

6

Общее количество касс расчетного узла

шт.

?n

12

17

34

9

14

26

необходимо проводить оптимизационные расчеты. Рассмотрим характеристики системы обслуживания в кассовом узле универсама торговой площади 650м, рассчитанные по моделям СМО с ограниченной длиной очереди для различных мощностей его кассового узла в табл. 4.5.

На основе анализа данных табл. 4.5 можно сделать вывод, что по мере увеличения количества касс время ожидания покупателей в очереди растет, а затем после определенного момента резко падает. Характер изменения графика времени ожидания покупателей понятен, если параллельно рассматривать изменение вероятности потери требования Вполне очевидно, что когда мощность кассового узла чрезмерно мала, то более 85% покупателей будут уходить необслуженными, а оставшаяся часть покупателей будет обслужена за очень короткое время. Чем больше мощность кассового узла, тем вероятность потери требований будет дожидаться своего обслуживания, а значит, и время их ожидания в очереди соответственно будет расти. После того как ожидания и вероятность потерь будут резко уменьшаться.

Для универсама торговой площадью 650 этот предел для зоны обычных касс лежит между 6 и 7 кассовыми аппаратами. При 7 кассовых аппаратах соответственно среднее время ожидания - 2,66 мин, а вероятность потери заявок очень мала - 0,1%. Таким образом, которая позволит получить минимальные совокупные затраты на массовое обслуживание покупателей.

В связи с этим следующим этапом решения поставленной задачи является оптимизация мощности кассового узла на базе применения моделей СМО разных типов с учетом совокупных затрат и перечисленных выше факторов.

Табл. 4.5.

Тип кассового обслуживания

Количество кассовых аппаратов в узле n, шт.

Характеристики системы обслуживания

Средняя выручка за 1 ч. руб.

Средняя потеря выручки за 1 ч. руб

Число покупателей в зоне расчетного узла

Площадь зоны расчетного узла, Sy, м

Удель ный вес площади зоны узла 650/ Sy

Среднее время ожидания, Т,мин

Вероятность потери заявок

Зоны Обычных касс

1

2

3

4

5

6

7

8

9

10

1,79

3,58

5,33

7,08

8,58

9,29

2,66

0,48

0,16

0,06

0,85

0,7

0,55

0,4

0,25

0,1

0,001

0

0

0

205

415

623

831

1039

1371,1

1384,8

1385

1385

1385

1180

970

760

554

346

13,9

0,13

0

0

0

90

360

800

1420

2150

2880

890

267

53,5

20

15

30

45

60

75

90

105

120

135

150

0,023

0,046

0,069

0,1

0,12

0,14

0,17

0,19

0,21

0,23

Зоны экспресс-касс

1

2

3

2,38

0,84

0,1

0,39

0,002

0

117

188

192

75

3,8

0

260

179

21,3

15

30

45

0,02

0,05

0,07

Заключение

На основе анализа данных табл. 4.5 можно сделать вывод, что по мере увеличения количество касс время ожидания покупателей в очереди растет. А затем после определенного момента резко падает. Характер изменения графика времени ожидания покупателей понятен, если параллельно рассматривать изменение вероятности потери требований Вполне очевидно, что когда мощность кассового узла чрезмерно мала, то более 85% покупателей будут уходить необслуженными, а оставшаяся часть покупателей будет обслужена за очень короткое время. Чем больше мощность кассового узла. Тем вероятность потери требований будет уменьшаться и соответственно тем большее число покупателей будет дожидаться своего обслуживания, а значит, и время их ожидания в очереди соответственно будет расти. После того как расчетный узел превысит оптимальный мощность, время ожидания и вероятность потерь будут резко уменьшаться.

Для универсама торговой площадью 650 кв. метров этот предел для зоны обычных касс лежит между 6-8 кассовыми аппаратами. При 7 кассовых аппаратах соответственно среднее время ожидания- 2,66 мин , а вероятность потери заявок очень мало - 0,1 % . Таким образом, задача состоит в выборе такой мощности кассового узла, которая позволит получит минимальные совокупные затраты на массовое обслуживание покупателей.

В связи с этим следующим этапом решения поставленной задачи является оптимизация мощности кассового узла на базе применения моделей СМО разных типов с учетом совокупных затрат и перечисленных выше факторов.


Подобные документы

  • Элементы теории массового обслуживания. Математическое моделирование систем массового обслуживания, их классификация. Имитационное моделирование систем массового обслуживания. Практическое применение теории, решение задачи математическими методами.

    курсовая работа [395,5 K], добавлен 04.05.2011

  • Решение системы дифференциальных уравнений методом Рунге-Кутта. Исследованы возможности применения имитационного моделирования для исследования систем массового обслуживания. Результаты моделирования базового варианта системы массового обслуживания.

    лабораторная работа [234,0 K], добавлен 21.07.2012

  • Моделирование процесса массового обслуживания. Разнотипные каналы массового обслуживания. Решение одноканальной модели массового обслуживания с отказами. Плотность распределения длительностей обслуживания. Определение абсолютной пропускной способности.

    контрольная работа [256,0 K], добавлен 15.03.2016

  • Функциональные характеристики системы массового обслуживания в сфере автомобильного транспорта, ее структура и основные элементы. Количественные показатели качества функционирования системы массового обслуживания, порядок и главные этапы их определения.

    лабораторная работа [16,2 K], добавлен 11.03.2011

  • Понятие случайного процесса. Задачи теории массового обслуживания. Классификация систем массового обслуживания (СМО). Вероятностная математическая модель. Влияние случайных факторов на поведение объекта. Одноканальная и многоканальная СМО с ожиданием.

    курсовая работа [424,0 K], добавлен 25.09.2014

  • Изучение теоретических аспектов эффективного построения и функционирования системы массового обслуживания, ее основные элементы, классификация, характеристика и эффективность функционирования. Моделирование системы массового обслуживания на языке GPSS.

    курсовая работа [349,1 K], добавлен 24.09.2010

  • Разработка теории динамического программирования, сетевого планирования и управления изготовлением продукта. Составляющие части теории игр в задачах моделирования экономических процессов. Элементы практического применения теории массового обслуживания.

    практическая работа [102,3 K], добавлен 08.01.2011

  • Система массового обслуживания типа M/M/1, ее компоненты. Коэффициент использования обслуживающего устройства. Обозначение M/D/1 для системы массового обслуживания. Параметры и результаты моделирования систем. Среднее время ожидания заявки в очереди.

    лабораторная работа [984,8 K], добавлен 19.05.2013

  • Построение модели многоканальной системы массового обслуживания с ожиданием, а также использованием блоков библиотеки SimEvents. Вероятностные характеристики аудиторской фирмы как системы массового обслуживания, работающей в стационарном режиме.

    лабораторная работа [191,5 K], добавлен 20.05.2013

  • Марковские цепи с конечным числом состояний и дискретным временем, с конечным числом состояний и непрерывным временем и работа с ними. Основные понятия и классификация систем массового обслуживания, их типы и отличия. Сущность метода Монте-Карло.

    дипломная работа [581,9 K], добавлен 25.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.