Модель экспертной оценки

Сравнительная характеристика эффективности и простоты применения зажиточных за Кондорсе правил голосования Копленда и Симпсона, законов Бордо и оптимальности по Парето с целью разработки автоматизированной программы для нахождения победителя выборов.

Рубрика Экономико-математическое моделирование
Вид курсовая работа
Язык русский
Дата добавления 20.08.2010
Размер файла 141,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Продемонстрируем решение контрольного примера по правилу Копленда. Определяем оценку Копленда.

Кандидат а является лучшим за b для 1+1+3 избирателей, а для 4-х избирателей кандидат b является лучшим за а. Определим такие преимущества для каждого кандидата, сравним его со всеми другими.

ab - 5

ac - 5

ad - 5

ae - 1

ba - 4

ca - 4

da - 4

ea - 8

bc - 5

bd - 4

de - 5

cb - 4

db - 5

eb - 4

cd - 5

ce - 5

dc - 4

ec - 4

de - 5

ed - 4

Определим оценку Копленда для каждого кандидата. Кандидат а является лучшим за b (добавляем +1); он также является лучшим за c и d (добавляем два разы +1) и худшим за e (добавляем -1). Следовательно, оценка Копленда для а ровна 2.

Найдем оценку для других кандидатов.

a=+1+1+1-1=2

b=-1+1-1+1=0

c=-1-1+1+=0

d=-1+1-1+1=0

e=+1-1-1-1=-2

Среди полученных оценок определяем максимальную. Как видим, она равняется 2 и принадлежит кандидату а. Следовательно, а - победитель Копленда.

Если бы у нас получились два кандидата с максимальной оценкой, например b и f, мы бы избрали кандидата b, так как он расположен ближе за алфавитом.

Для этого же профиля найдем победителя Борда.

Следовательно, получаем такие оценки:

a=1*4+4*0+1*3+3*3=16

b=3*1+2*4+1*1+2*3=18

c=2*1+4*4+0+0=18

d=1*1+4*3+2*1+1*3=18

e=1*4+1*4+3*4+0=20

Победителем за Борда является кандидат е.

Как видим, оценки Борда ранжируют кандидатов в порядке, противоположном до того, который получается по оценкам Копленда.

Выводы

Данная курсовая работа была посвящена обзору методов голосования большинством голосов. Была проведена сравнительная характеристика каждого из методов и из их множественного числа избраны наилучшие. К ним относятся:

1. зажиточные за Кондорсе правила Копленда и Симпсона, дерево многоэтапного исключения;

2. один из методов подсчета очков - правило Борда.

Все эти правила удовлетворяют условиям оптимума по Парето, монотонности и анонимности. Кроме того, правило Борда удовлетворяет также аксиоме участия и пополнения.

Для программной реализации были избраны методы Копленда и Борда.

Результаты работы программы продемонстрированы на контрольном примере.

Список литературы

Мулен Э. "Кооперативное принятие решений: Аксиомы и модели" - Москва, Мир, 1991.

Миркин Б. Проблема группового выбора. - Москва, Наука, 1974.

Льюс Р.Д., Райфа Х. Игры и решения. М.: ИЛ, 1961.

Антонов А. В. "Системный анализ", М.-2004г.

Ларичев О.И. Наука и искусство принятия решений. - М: Наука, 1979. - 200 с.

Макаров И.М. Теория выбора и принятия решений. - М.: Наука,1987. - 350 с.

Кузнецов А.В., Сакович В.А., Холод Н.И. "Высшая математика. Математическое программирование ", Минск, Вышейшая школа, 2001г.

Красс М.С., Чупрынов Б.П. "Основы математики и ее приложения в экономическом образовании", Издательство "Дело", Москва 2001г.

В.И. Ермаков "Общий курс высшей математики для экономистов", Москва, Инфра-М, 2000г.

Теория прогнозирования и принятия решений. М:1989. 160 стр.

Дополнения

Программа

uses wincrt;

label в, z;

type mas = string[6];

type ball =array[1..10] of shortint;

var N: byte; {кол-во избирателей}

M: byte; {кол-во кандидатов}

s: byte; {кол-во групп}

rang: array[1..10,1..100] of mas; {профиль преимуществ}

к,i,j,l,r,contrl: byte;

а,b: byte; {для проведения парных сравнений}

kopl: ball; {массив оценок Копленда}

vybor1, vybor2: mas;

bord: ball; {массив оценок Борда}

name: array[1..10] of mas; {массив имен кандидатов}

many: array[1..100] of byte; {массив групп избирателей}

n1: array[1..10] of mas;

c: char;

{данные контрольного примера}

{---------------------------}

procedure example;

var и, j: byte;

begin

clrscr; M:=5; n:=9; s:=4;

name[1]:='a'; name[2]:='b'; name[3]:='c'; name[4]:='d'; name[5]:='e';

many[1]:=1; many[2]:=4; many[3]:=1; many[4]:=3;

rang[1,1]:='a'; rang[1,2]:='c'; rang[1,3]:='e'; rang[1,4]:='e';

rang[2,1]:='b'; rang[2,2]:='d'; rang[2,3]:='a'; rang[2,4]:='a';

rang[3,1]:='c'; rang[3,2]:='b'; rang[3,3]:='d'; rang[3,4]:='b';

rang[4,1]:='d'; rang[4,2]:='e'; rang[4,3]:='b'; rang[4,4]:='d';

rang[5,1]:='e'; rang[5,2]:='a'; rang[5,3]:='c'; rang[5,4]:='c';

gotoXY(15,1);

writeln; writeln('Число избирателей: ', N);

writeln('Число кандидатов: ', M);

writeln('Профиль преимуществ:');

for i:=1 to 40 do

write('-');

writeln; write('Число избирателей ');

gotoXY(19,7);

for i:=1 to s do

write(many[i] ' ');

writeln; gotoXY(19,9);

for i:=1 to M do

begin

for j:=1 to s do

write(rang[і,j] ' ');

gotoXY(19, 9+i);

end;

gotoXY(1,15);

end;

{---------------------------}

{проверяет правильность ввода варианта выбора} procedure right;

label l;

begin

l: readln(c);

if (c<>'0') and (c<>'1') then

begin

write('Повторите попытку: ');

goto l;

end;

end;

{---------------------------}

{выводит список имен кандидатов}

procedure help;

var x,y,i: byte;

begin

x:=WhereX;

y:=WhereY;

gotoXY(1,24);

write('Имена кандидатов: ');

for i:=1 to M do

if i<>M then write(name[i] ', ')

else write(name[i]);

gotoXY(x,y);

end;

{---------------------------}

{определение победителя выборов}

procedure victory(v: ball; s: string);

var max, t: shortint;

hl: array[1..10] of byte;

begin

{определение максимальной оценки}

help;

max:=v[1];

for i:=1 to M do

if max<v[i] then

max:=v[i];

t:=1;

{определение кандидатов с максимальной оценкой}

for i:=1 to M do

if (v[i]-max)=0 then

begin

hl[t]:=i;

t:=t+1;

end;

if (t-1)=1 then

begin

write('Победитель за ', s ' с сохранением нейтральности: ');

writeln(name[hl[1]]); writeln('Сумма очков - ', max);

end

else

begin

vybor1:=name[hl[1]];

for i:=2 to t-1 do

if name[hl[i]]<vybor1 then

vybor1:=name[hl[i]];

write('Победитель за ', s ' без сохранения нейтральности: ');

writeln(vybor1);

writeln('Сумма очков - ', max);

writeln('избранный из множественного числа наилучших:');

for i:=1 to t-1 do

writeln(name[hl[i]]);

end;

end;

{---------------------------}

{основная программа}

begin

gotoXY(21,1); writeln('Определение победителя выборов');

writeln; writeln('Запуск контрольного примера - 1; Самостоятельное внесение профиля 0');

right;

if c='1' then

begin

example;

help;

goto z;

end

else clrscr;

write('Введите количество кандидатов: ');

readln(M);

write('Введите количество избирателей: ');

readln(N);

writeln('Введите имена кандидатов');

for i:=1 to M do

begin

write('Кандидат ', и ': ');

readln(name[i]);

end;

writeln('Как будет осуществляться занос

информации?');

write('1- отдельными избирателями, 0- комитетом: ');

right;

if c='1' then

for i:=1 to N do

many[i]:=1;

clrscr; writeln('Введите профиль преимуществ');

s:=1; contrl:=0;

while contrl<>N do

begin

if c='1' then writeln('Избиратель ', s)

else writeln('Группа ', s);

for i:=1 to m do

n1[i]:='';

help;

for j:=1 to M do

begin

y:readln(vybor1);

{проверка на корректность введенного профиля}

r:=0; a:=0; b:=0;

n1[j]:=vybor1;

for l:=1 to M do

begin

if vybor1=name[l] then

begin

b:=1;

for a:=1 to M do

{такое имя уже было введено в данном профиле}

if (vybor1=n1[a]) and ((a-j)<>0) then r:=1;

end;

{имя введенного кандидата не совпадает с ни одним из списка}

if (vybor1<>name[l]) and (l=M) and

(b<>1) then r:=1;

end;

if r=1 then

begin

n1[j]:='';

writeln('Внимательно вводите имена кандидатов');

goto в;

end

else rang[j,s]:=vybor1; {профиль корректен}

end;

if c='0' then

begin

writeln('Количество избирателей в

группе ', s);

readln(many[s]);

contrl:=contrl+many[s];

end

else

contrl:=contrl+1;

s:=s+1;

clrscr;

end; {while}

{Определение оценок Копленда}

z: contrl:=1;

while contrl<=M do

begin

k:=contrl+1;

vybor1:=name[contrl]; vybor2:=name[k];

while k<=M do

begin

i:=1; a:=0; b:=0;

while i<=s do

begin

for j:=1 to M do

if rang[j,i]=vybor1 then l:=j

else

if rang[j,i]=vybor2 then r:=j;

if l<r then a:=a+many[i]

else

if l>r then b:=b+many[i];

i:=i+1;

end;

if a>b then

begin

kopl[contrl]:=kopl[contrl]+1;

kopl[k]:=kopl[k]-1;

end

else

if a<b then

begin

kopl[k]:=kopl[k]+1;

kopl[contrl]:=kopl[contrl]-1;

end;

k:=k+1;

vybor2:=name[k];

end; {while по к}

contrl:=contrl+1;

end; {while по contrl}

{определение оценок Борда}

for i:=1 to s do

for j:=1 to M do

begin

for k:=1 to M do

if rang[j,i]=name[k] then r:=k;

bord[r]:=many[i]*(M-j)+bord[r];

end;

victory(kopl, 'Коплендом');

writeln ('Нажмите любую клавишу

'); readkey; writeln;

victory(bord, 'Борда');

end.

Результаты работы программы

Самостоятельное внесение профиля.

Введите количество кандидатов: 5

Введите количество избирателей: 9

Введите имена кандидатов

Кандидат 1: а

Кандидат 2: b

Кандидат 3: c

Кандидат 4: d

Кандидат 5: е

Как будет осуществляться занос

информации?

1-отдельными избирателями, 0 -

комитетом: 0

Введите профиль преимуществ

Группа 1

a

b

c

d

e

Количество избирателей в группе 1: 1

Группа 2

c

d

b

e

a

Количество избирателей в группе 2: 4

Группа 3

e

a

d

b

c

Количество избирателей в группе 3: 1

Группа 4

e

a

b

d

c

Количество избирателей в группе 4: 3

Победитель по Копленду с сохранением нейтральности - а

Сумма очков - 2

Победитель по Борду с сохранением нейтральности - е

Сумма очков - 20

Результаты работы программы


Подобные документы

  • Особенности формирования математической модели принятия решений, постановка задачи выбора. Понятие оптимальности по Парето и его роль в математической экономике. Составление алгоритма поиска парето-оптимальных решений, реализация программного средства.

    контрольная работа [1,2 M], добавлен 11.06.2011

  • Типы многокритериальных задач. Принцип оптимальности Парето и принцип равновесия по Нэшу при выборе решения. Понятие функции предпочтения (полезности) и обзор методов решения задачи векторной оптимизации с использованием средств программы Excel.

    реферат [247,4 K], добавлен 14.02.2011

  • Рассмотрение теоретических и практических аспектов задачи принятия решения. Ознакомление со способами решения с помощью построения обобщенного критерия и отношения доминирования по Парето; примеры их применения. Использование критерия ожидаемого выигрыша.

    курсовая работа [118,8 K], добавлен 15.04.2014

  • Классическая теория оптимизации. Функция скаляризации Чебышева. Критерий Парето-оптимальность. Марковские процессы принятия решений. Метод изменения ограничений. Алгоритм нахождения кратчайшего пути. Процесс построения минимального остовного дерева сети.

    контрольная работа [182,8 K], добавлен 18.01.2015

  • Проблемы неравномерного распределения доходов среди населения. Закон распределения Парето: зависимость между размером доходов и количеством людей. Распределение Парето в теории катастроф. Методы обработки данных с распределением с тяжелыми хвостами.

    курсовая работа [413,0 K], добавлен 06.01.2012

  • Экономико-математическая модель распределения средств рекламного бюджета по различным источникам для получения наибольшей прибыли. Оценка деятельности продавцов компании, создание матрицы назначений по должностям с целью увеличения объема продаж.

    контрольная работа [1,9 M], добавлен 16.11.2010

  • Целевая функция, экстремальное значение которой нужно найти в условиях экономических возможностей, как показатель эффективности или критерий оптимальности. Оптимальное использование ресурсов и производственных мощностей. Общая идея симплексного метода.

    контрольная работа [1,1 M], добавлен 18.05.2015

  • Структура и параметры эффективности функционирования систем массового обслуживания. Процесс имитационного моделирования. Распределения и генераторы псевдослучайных чисел. Описание метода решения задачи вручную. Перевод модели на язык программирования.

    курсовая работа [440,4 K], добавлен 30.10.2010

  • Вычисление приближенного значения интеграла методом Симпсона, путем ввода функции, отрезка и шага dx. Решение задачи методом Симпсона с помощью ПЭВМ. Быстрота и точность решения определенного интеграла от функции, имеющей неэлементарную первообразную.

    курсовая работа [601,2 K], добавлен 15.03.2009

  • Проектирование формы входных документов и выходного плана выплат по вкладам на основе исходной информации. Рассмотрение наиболее рациональных путей разработки автоматизированной информационной системы в условиях Маслянинского ДО ОАО Банк "Левобережный".

    курсовая работа [314,6 K], добавлен 28.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.