Экономическая кибернетика
Системы, модели и их классификация. Управление: виды, принципы и законы. нформация: ее количественное измерение, неопределенность, семиотика. Экономическая система и ее идентификация. Основные принципы анализа и синтеза моделей экономических систем.
Рубрика | Экономико-математическое моделирование |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 08.11.2008 |
Размер файла | 380,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
- превращение переменных величин в константы;
- превращение вероятностных факторов в детерминированные;
- исключение некоторых переменных или их объединение;
- использование предположений о линейном характере зависимостей между переменными;
- введение жестких исходных предпосылок и ограничений;
- уменьшение количества степеней свободы путем наложения более жестких граничных условий.
Расширение модели предполагает обратное. Заметим, что не существует надежных и эффективных рецептов относительно того, как следует осуществлять процесс моделирования, поэтому процесс разработки модели зачастую носит эвристический характер, что дает возможность исследователю проявить свои творческие способности.
Творческий характер процесса моделирования определяет разнообразие критериев оценки качества модели. С точки зрения разработчика "хорошей" моделью является нетривиальная, мощная и изящная модель. Нетривиальная модель позволяет проникнуть в сущность поведения системы и вскрыть летали, не очевидные при непосредственном наблюдении. Мощная позволяет получить множество таких нетривиальных выводов. Изящная имеет достаточно простую структуру и реализуемость. С точки зрения пользователей, которые проявляют больше прагматизма при оценке модели, "хорошая" модель - это модель релевантная, точная, результативная, экономичная. Модель является релевантной (от англ. relevance - уместность), если она соответствует поставленной перед ней цели; точной, если ее результаты достоверны; результативной, если полученные результаты дают продуктивные выводы; и экономичной, если эффект от использования полученных результатов превосходят затраты на ее разработку и реализацию.
В любом случае исследователь должен обосновывать необходимость использования конкретно применяемой модели.
Обоснование модели предполагает выполнение следующих процедур:
Верификация, проведение которой убеждает в том, что модель ведет себя так, как было задумано.
Оценка адекватности - проверка соответствия между поведением модели и поведением реальной системы.
Проблемный анализ - формулировка значимых выводов на основе результатов, полученных в ходе моделирования.
Как показывает опыт, наибольшая обоснованность модели достигается:
использованием здравого смысла и логики;
максимальным использованием эмпирических данных;
проверкой правильности исходных предположений и корректности преобразований от входа к выходу;
применением на стадии доводки модели контрольных испытаний модели, подтверждающих работоспособность модели;
сравнением соответствия входов и выходов модели и реальной системы (если они доступны) с использованием статистических методов и испытаний типа теста Тьюринга;
проведением, когда это целесообразно, натурных или полевых испытаний модели или ее подмоделей;
проведением анализа чувствительности модели по отношению к изменяющимся внешним условиям;
сравнением результатов модельных прогнозов с результатами функционирования реальной системы, которая подвергалась моделированию.
ГЛАВА 3. УПРАВЛЕНИЕ
Следует признать, что все наше представление об управлении наивно, примитивно и находится во власти почти фатального представления о причинности. Управление большинству людей (как это прискорбно для развитого общества) представляется процессом грубого принуждения. Так, например, считают, что полицейский, регулирующий уличное движение, осуществляет «управление». Однако на самом деле он просто пытается принять ответственное решение имея явно недостаточную информацию и принципиально используя метод принуждения (ибо он легализован законодательством).
Рассмотрим примерно аналогичную, хотя и несколько более сложную ситуацию, которая возникает при высадке пассажиров с только что прибывшего парохода. Пароход приближается к причалу, пассажиры готовы к высадке, служащие порта ожидают прибытия судна. Вся эта ситуация представляет собой систему - машину для высадки пассажиров. Что же происходит на самом деле? Начинаются шум и беспорядок, продолжающиеся долгое время. Во время всей этой неразберихи пассажиров толкают то туда, то обратно, их багаж тащат, их терпение все больше и больше истощается. Задержавшись на длительное время, в течение которого пассажиры испытывают большие неудобства и много волнений, они наконец отправляются дальше на поездах, отходящих из порта по расписанию. которое подчас не имеет ничего общего с расписанием, указанным в путеводителе. Бедняги пассажиры философски покорно воспринимают все происходящее, считая, что таковы черты современной жизни. Они верят в то, что ими «управляют». Такое впечатление, возможно, создается потому, что люди видят одетых в официальную форму чиновников, отдающих распоряжения. В этом примере невозможно обнаружить даже отдаленные черты, свойственные управлению, осуществляемому в природе.
Замечательной особенностью естественных, и в первую очередь биологических, механизмов управления является то, что они представляют собой гомеостаты. Нужно обязательно правильно понять, что такое гомеостат. Термостат, например, безусловно, представляет собой машину, предназначенную для поддержания температуры в заданных пределах. Гомеостат воплощает в себе расширение понятия такой машины, будучи устройством, управления, предназначенным для поддержания значений любой переменной (совершенно не обязательно" температуры) в заданных пределах. Классическим примером из области биологии является механизм гомеостазиса температуры крови человека. Общеизвестно, что температура человеческого тела меняется очень незначительно, хотя. человек может переходить из холодильника в котельную. Аналогичный механизм гомеостазиса повсеместно наблюдается в природе. Возьмем совершенно иной пример и рассмотрим гомеостазис, управляющий численностью животных в природе. В природе, например, достаточное число гусениц для прокормки птиц (которые, поедая их, тем самым ограничивают численность гусениц) и для уничтожения растительности (что ограничивает ее развитие), а также для появления достаточного числа бабочек и мотыльков. В то же время мы обычно не наблюдаем нашествия гусениц. Таким образом, система, очевидно, является гомеостатической, хотя нити механизма обеспечения пищей настолько запутаны, что точные связи трудно обнаружить и описать. Тем не менее в некоторых частных случаях удается достаточно изолировать систему для всестороннего исследования. Так, например, распространение кактуса опунция, начавшего вытеснять другую растительность в Австралии, было приостановлено кактусовой молью (Cactoblastis), которой в дальнейшем начало не хватать пищи. Таким образом, в настоящее время эти растительный и животный виды взаимно регулируют свою численность.
Если известно, что это за система, которая порождает определенную ситуацию, подлежащую изучению, каким образом она характеризуется в количественном отношении, каковы логические взаимосвязи внутри системы и каковы они по отношению к остальной части мира, то может быть использована вся мощь предсказания. Составные части управления - стратегия, решение, схема управления достаточно эффективны, так как они могут "справиться" с тем, что может произойти в процессе функционирования системы. Хотя исследование операции начинают с оценки параметров, оно заканчивается вычислением значении вероятностей тех или иных событий.
В примере, который мы хотели вам привести, бросается в глаза существенное различие между настоящим и будущим, между дедукцией и индукцией, а также между управлением, основанным на анализе фактов, и управлением, основанным на понимании основной системы, - порождающей факты. История эта сама по себе не такая уж выдающаяся, но со смыслом. В крупном универсальном магазине было решено выяснить, какой отдел имеет наибольший оборот и прибыль в расчете на квадратный метр площади, и посмотреть, к какому заключению можно придти, если исходить из подученного ответа.
Подсчет показал, что наиболее доходным оказалось кафе-кондитерская. Некий управленческий ум, питаемый этой информацией, мог бы принять решение такого вида: «Необходимо переделать весь универсальный магазин в ресторан». Обратите внимание, что это заключение правильно лишь в том случае, если бы в данный момент каждый посетитель пришел бы вдруг к выводу о необходимости выпить чашку чая. Тогда прибыль могли бы даже превысить любые предложения. Однако совершенно очевидно, что это невозможно, одинаково ясно, что система, которую учреждает универсальный магазин, не допустит реализации этой стратегии в будущем, и6o новая система, целью которой будет получение максимального дохода, вообще не будет иметь посетителей.
Ст. Бир
Наличие управления является существенным признаком сложной системы, обеспечивающим ее целостность.
Определение 3.1. Управление - это целенаправленное воздействие одной системы на другую для изменения ее поведения (состояния) в соответствии с изменяющимися условиями внешней среды.
Понятие управления является базовым в кибернетике, поскольку определяет предмет исследования этой науки. Любую систему, которая является объектом кибернетического исследования, можно представить в виде системы управления.
Системой управления называется организованная динамическая система с обратной связью, в которой реализуются причинно-следственные связи с помощью, по крайней мере, двух каналов.
Пусть х характеризует вход, определяющий цель функционирования системы управления S. Управляющая система S1 вырабатывает управляющие воздействия m, передаваемые на вход управляемой системы S2. На систему S оказывают влияние возмущающие воздействия . Результаты работы системы у по каналу обратной связи поступают на вход S2, анализируются и используются для выработки последующих управляющих воздействий. Сказанное позволяет выполнить формализацию, которая определяет правила функционирования системы управления S.
Начало процесса управления: S1 вырабатывает управляющее воздействие , исходя из цели управления и априорной информации о законах функционирования системы во внешней среде А, если таковая имеется:
. (3.1)
Реакция объекта управления под действием возмущений:
. (3.2)
На следующем шаге подсистема S1 при принятии решений использует данные об у (фактическом) и прогнозные значения сот.
. (3.3)
Условия существования системы управления
Главными условиями существования системы управления являются следующие:
Организованность: в системе управления выделяются элементы, которые относятся либо к управляющей, либо к управляемой подсистеме:
.
Разнообразие: каждая из двух выделенных подсистем должна допускать возможность появления нескольких (многих) состояний:
.
Примечание. Проблема оценки разнообразия управляющей системы и ее соотношения с разнообразием управляемого объекта имеет важное теоретическое и практическое значение.
Закон необходимого разнообразия формулируется У.Р. Эшби следующим образом: "количество исходов управляемой системы, если оно минимально, может быть еще уменьшено только за счет соответствующего увеличения разнообразия управляющей системы". Это значит, что для решения задачи управления необходимо, чтобы информационная мощность управляющей системы (или ее собственное информационное разнообразие) была не меньше разнообразия объекта управления (т.е. решаемой задачи управления).
Пусть в дискретные моменты времени происходит изменение вектора входов объекта управления, а управляющая система вырабатывает вектор управляющих воздействий, в результате которых состояние объекта управления определяется как . Перевод управляемого объекта из состояния в некоторое состояние требует решения задачи прогнозирования , оценки параметров системы, решения задачи идентификации выбора подходящего :
.
Если разнообразие задачи управления, измеряемой количеством информации, определить как V, а информационную мощность управляющей системы W, то для осуществления перехода необходимо, чтобы в каждый момент времени t выполнялось условие .
В реальных системах управления полное разнообразие объекта управления и воздействий внешней среды настолько велико, что последнее условие, вообще говоря, не выполняется. Поэтому управляющая система формирует гомоморфную модель, использует принцип управления воздействием на "главный" фактор, прибегая к агрегированию, линеаризации связей, аппроксимируя стохастические зависимости детерминированными и проч. Часто воздействия не учтенных в моделях факторов вводятся в модель с помощью так называемого "внешнего дополнения". Согласно концепции Ст. Бира, некий "черный ящик" служит дополнением к модели объекта управления, функционируя в качестве блока неформализуемых решений, рандомизатора - датчика случайных чисел и внося поправки в модельные расчеты. Таким образом, принцип "внешнего дополнения" обеспечивает реализацию системного подхода, учет влияния внешней среды, открытый характер системы управления, поскольку "замкнутая система не способна, отправляясь от различных начальных условий, достигать определенных целей".
Динамичность:
,
,
где T - упорядоченное числовое множество.
Наличие прямых и обратных связей, обеспечивающих причинно-следственные зависимости в системе управления:
(3.4)
Наличие цели управления, достижение которой является макро-Функцией управляемой системы:
. (3.5)
Цель системы в зависимости от ее характера задается различным образом. Для систем, работа которых завершается достижением цели, требуется, чтобы y(t) достигло целевого множества . В частном случае, чтобы выполнялось условие . Для других систем необходимо, чтобы y(t) достигла области , a затем продолжала движение по траектории или не выходила из области .
Управляемость: можно найти такое управляющее воздействие m, которое за конечное число шагов переведет систему в искомое состояние, обеспечивающее достижение цели:
, (3.6)
такое, что ,
где , ,
- соответственно функция переходов и функция выхода системы,
- количественное выражение цели, . Введение понятия управляемости системы вызывает необходимость рассмотрения вопросов качества управления и его эффективности.
Пусть - некоторое заданное целевое множество:
, (3.7)
- множество допустимых управлений.
Если управляющее воздействие преобразует некоторое исходное событие (t0, u0) в и t1 есть время первого достижения, то t1 называется моментом достижения, а разность (t1-t0) - временем достижения.
Вещественное число, вычисляемое как некоторый функционал:
, (3.8)
где ,
называется качеством управления относительно начального события (t0, u0).
Определение 3.2. Абстрактной задачей управления называется сложное математическое понятие, образованное совокупностью:
(3.9)
где S - динамическая система,
Т - множество моментов времени,
- целевое множество, ,
- множество допустимых управлений,
- подмножество множества (начальных событий),
- функционал качества управления;
и требованием: "для каждого начального события определить некоторое допустимое управление , которое переводит (t0,x0) в и которое при этом минимизирует функционал , где t1 - момент первого достижения, а u1 - точка первого достижения множества Y ".
Определение 3.2 является весьма общим, однако служит базой для дальнейшего исследования необходимых условий оптимальности систем управления. Выяснение вопросов существования оптимального решения и поиска такого решения является содержанием математической теории управления (теория Гамилътона-Якоби, принцип максимума Понтрягина, методы функционального анализа, ряд численных методов).
Определение 3.3. Рассмотрим произвольную динамическую систему S. Законом управления называется отображение , ставящее в соответствие каждому состоянию u(t) и каждому моменту времени / значение входного воздействия в этот момент времени.
При этом другие параметры динамической системы S могут влиять на конкретный вид функции .
Принцип, в соответствии с которым входные воздействия должны вычисляться через состояния, был сформулирован Ричардом Беллманом, указавшим на его первостепенную важность. В этом принципе заключена важнейшая идея теории управления. Это научная интерпретация принципа "обратной связи", составляющего основу любого управления.
Важно отметить, что в текущем состоянии системы содержится вся информация, необходимая для определения требуемого управляющего воздействия, поскольку, по определению динамической системы, будущее поведение системы полностью определяется его нынешним состоянием и будущими управляющими воздействиями.
Оптимальное управление заключается в выборе и реализации таких управлении , которые являются наилучшими с точки зрения эффективности достижения цели управления.
Можно выделить два основных типа критериев эффективности систем управления.
Критерий эффективности первого рода - степень достижения цели системой. Если цель системы задана областью цели или точкой , то критерием эффективности I рода является отклонение , определяемое в терминах . Цель считается достигнутой, если
, или (3.10)
где - заданная малая величина.
При задании целевой функции
, (3.11)
,
если существует F*=extrF, критерий I рода - разность (F*-F).
Критерий эффективности второго рода - оценка эффективности траектории движения системы и цели. Он определяется как некоторая функция:
. (3.12)
Критерий II рода позволяет сравнивать и оценивать различные изменения состояний системы в ходе достижения цели. Так, улучшение работы системы по критерию второго рода позволяет достичь цели при лучших значениях входов: обеспечить выпуск того же количества продукции при меньших затратах факторов производства X; или при лучших значениях состояний системы: минимальном времени непроизводительного простоя системы, минимуме отходов и брака и т.д.
В ряде случаев могут быть использованы критерии третьего типа - смешанные, в которых отражается сочетание приведенных показателей эффективности пути и степени достижения цели системой.
Многокритериальная система управления. Для многих сложных систем получить критерий эффективности в виде скалярной функции не представляется возможным. В этом случае используется векторный критерий, составляющими которого являются самостоятельные, независимые критерии. Такие системы называются многокритериальными.
Паллиативным решением является искусственное введение коэффициентов, позволяющих получить линейную комбинацию составляющих векторного критерия, приводя его таким образом к скалярному виду. Однако, принимая во внимание независимость составляющих критериев, процедура определения предпочтений на множестве критериев и введение обобщенного критерия представляют зачастую большую сложность. Достаточно эффективным способом, используемым в случае векторного критерия, является выбор управлений, оптимальных по Парето. Множество оптимальных по Парето решений составляют такие, ни одно из которых не доминируется в определенном смысле никаким другим решением из этого множества. Таким образом, каждое из множества оптимальных по Парето управлений лучше любого другого по одному из независимых критериев.
Иерархические системы управления. Важный класс систем управления образуют системы произвольной природы (технические, экономические, биологические, социальные) и назначения, имеющие многоуровневую структуру в функциональном, организационном или каком-либо ином плане. Характерными признаками иерархических систем управления (ИСУ) являются: вертикальная декомпозиция системы на подсистемы, приоритет подсистем верхнего уровня по отношению к нижележащим, наличие обратных связей между уровнями. Широкое использование и универсальность ИСУ обусловлены рядом преимуществ по сравнению с системами радиального (централизованного) управления:
свобода локальных действий в рамках наложенных ограничений;
возможности целесообразного сочетания локальных критериев функционирования отдельных подсистем и глобального критерия оптимальности системы в целом;
возможности сжатого, агрегированного представления актуальной информации о результатах управления, поступающей по каналам обратной связи;
повышенная надежность системы управления, наличие свойств управляемости, адаптивности, организованности и ряда других свойств, специфичных для конкретных систем;
универсальность концепции управления и подходов к решению задач управления в ИСУ;
экономическая целесообразность по сравнению с системами управления иной структуры. Последнее качество требует обоснования в каждом конкретном случае.
Теория управления ИСУ включает следующие основные разделы:
структурный анализ и синтез ИСУ;
проблема координации в ИСУ;
оптимизация функционирования ИСУ.
Задачи, решаемые в названных разделах, будут рассмотрены в соответствующих главах настоящего учебника.
Принцип иерархичности управления является выражением целостности систем; он, предопределяя организованность, позволяет найти способы управления сложными системами. Если организованность системы отсутствует, невозможно определить задачи управления даже для простых объектов.
Этот принцип предусматривает способ расчленения системы на элементы и взаимодействующие подсистемы и многоступенчатого построения управляющих систем, в которых функции управления распределяются между соподчиненными частями. В расчлененной системе одна часть оказывается "вложенной" в другую и является ее структурной составляющей. В такой системе существует взаимосвязь подсистем по одним отношениям и их свойствам и независимость по другим.
Определение 3.4. Общая задача оптимизации.
Пусть - некоторая функция, отображающая множество M множество Q, которое упорядочено отношением "". Тогда задача оптимизации может быть сформулирована следующим образом: для данного подмножества найти такое , что для всех выполняется условие:
. (3.13)
Множество М является множеством решений задачи управления, множество - множеством допустимых решений, функция - целевой функцией, а Q - множеством оценок. Элемент , удовлетворяющий условию (3.13) при всех , называется решением задачи оптимизации, задаваемой парой .
Зачастую функцию определяют с помощью функций:
и , (3.14)
.
В этом случае функцию Р называют выходной функцией, а функцию - функцией качества или оценочной функцией; задача оптимизации тогда определяется тройкой (Р,,М) или парой (Р,), если .
Определение 3.5. Система называется системой принятия решений, если существует такое семейство задач принятия решений , решения которых принадлежит множеству М, и такое отображение , что для любого и пара (х,у) принадлежит системе S тогда и только тогда, когда найдется такое , что является решением задачи Dx, а Р(m)=у.
Следствие. Любую систему управления S можно представить как систему принятия решений и наоборот, просто опираясь на предположение о целесообразности ее поведения.
Принятие решений в системе управления производится на основе отбора и преобразования информации. Цитируя У.Р. Эшби, можно отметить, что "любая система, выполняющая подходящий отбор (на ступень выше случайного), производит его на основе полученной информации.
Принято различать системы управления и процессы управления.
Рассмотрение содержания или функций управления относится к процессам управления. Состав функций управления определяется особенностями системы управления и целями исследования.
Виды связей в системах управления
Вид соединения элементов, при котором выходное воздействие одного элемента передается на вход другого элемента, называется прямой связью. Прямая связь между двумя элементами системы может осуществляться непосредственно или через другие ее элементы. В случае опосредованного воздействия выходной сигнал одного элемента поступает на вход другого с передаточным коэффициентом промежуточного элемента.
Вид соединения элементов, при котором выходное воздействие одного элемента передается на вход того же самого элемента, называется обратной связью. Обратная связь может осуществляться либо непосредственно от выхода элемента системы на его вход, либо через другие элементы данной системы. Обратная связь бывает внешняя и внутренняя. Внешней, или главной называется такая связь, посредством которой осуществляется передача части выходного сигнала всей системы управления на ее вход. Внутренние, или местные обратные связи соединяют выход отдельных элементов или групп последовательно соединенных элементов с их входом. Различают положительную и отрицательную обратную связь. Если под действием обратной связи первоначальное отклонение управляемой величины у, вызванное возмущающими воздействиями , уменьшается, то считают, что имеет место отрицательная обратная связь. В противном случае говорят о положительной обратной связи. Следовательно, положительная обратная связь усиливает действие входного сигнала, отрицательная -ослабляет.
Положительная обратная связь используется во многих технических устройствах для увеличения коэффициента передачи. В экономике на принципе положительной обратной связи основаны системы материального стимулирования. Положительными являются обратные связи в схеме межотраслевого баланса.
Примером использования отрицательной обратной связи является термостат. Обычно положительная обратная связь приводит к неустойчивой работе системы, т.к. соответствует увеличению возникшего в системе отклонения. Отрицательная обратная связь способствует восстановлению равновесия в системе. Поэтому системы с отрицательной обратной связью являются относительно устойчивыми.
Если сигнал обратной связи пропорционален установившемуся значению входной величины и не зависит от времени и скорости ее изменения, то такая обратная связь называется жесткой. Сигналы гибкой обратной связи пропорциональны скорости изменения входной величины. Мерой величины обратной связи служит коэффициент обратной связи.
Обратная связь является одним из важнейших понятий кибернетики, оно помогает понять многие явления, происходящие в системах управления любой природы. Важную роль обратная связь играет в распознавании образов и принятии решений. Положительную обратную связь используют в системах обучения. В организационных системах обратные связи используются для выработки управляющих сигналов, для выработки критерия эффективности управления и оценки качества управления. В биологических системах обратная связь обеспечивает поддержание в нормальном состоянии основных показателей жизнедеятельности: температуры и массы тела, уровня сахара и гемоглобина в крови, другие. В экономических системах обратная связь играет важную роль в обеспечении эффективного управления.
Свойства систем управления существенно зависят от способа формирования управляющих воздействий. При этом полезно рассмотреть разомкнутые и замкнутые системы.
Виды управления
Жесткое управление. Под жестким управлением понимается воздействие на систему или процесс, направленное на достижение заданного типа поведения. Процесс управления характеризуется наличием разомкнутого контура, особенность которого состоит в том, что достижение результата не сообщается в устройство управления.
Жесткое управление реализуется в предположении о полной определенности условий внешней среды.
Назначение устройства управления состоит в следующем: на вход программного блока поступает задающее воздействие б(t). Программный блок транслирует систему команд m(t), которые исполнительный блок преобразует в последовательность управляющих воздействий w(t), цель которых состоит в том, чтобы управляемый параметр у(t) максимально соответствовал задающему воздействию б(t). Поскольку обычно на процесс влияют внешние воздействия x(t), они должны по возможности учитываться и заранее компенсироваться устройством управления. Но так как предвидеть все возмущения заранее невозможно, выполнения равенства б(t)=y(t) добиться трудно. Алгоритмическое и техническое решение системы жесткого управления относительно простое, но область его применения на практике весьма ограничена: простейшие автоматические технические устройства, жесткое администрирование.
Регулирование. Регулирование представляет собой процесс, в ходе которого регулируемый параметр у измеряется и сравнивается с б. При отклонении этих величин регулятор через исполнительный блок воздействуют регулирующей величиной w на процесс или объект с тем, чтобы обеспечить выполнение условия б(t)=y(t). Для регулирования характерно наличие замкнутого контура.
Различаются два основных вида систем регулирования:
регулирование по отклонению имеет место, когда достигнутый результат у через цепь обратной связи после измерения поступает в регулирующее устройство, которое генерирует соответствующий управляющий сигнал m(t). Регулирование по отклонению от управляемой величины реализуется в системах стабилизации. Задачами стабилизации являются задачи поддержания выходных величин y(t) вблизи некоторых неизменных заданных значений Y. Так, задачи стабилизации решаются при осуществлении технологических операций, так как соответствие выполняемых работ технологическому процессу является необходимым условием получения продукции с заданными свойствами. В системах энергоснабжения должны быть стабилизированы напряжение и частота тока в сети вне зависимости от изменения потребления электроэнергии. Другим типом регулирования по отклонению являются системы с программным управлением. Задачи такою типа возникают, когда необходимо, чтобы состояние управляемого объекта удерживалось вблизи изменяющегося во времени по заранее заданному закону значению y(t). Задачи программного управления возникают в производственных системах при выполнении работ в соответствии с планом. Системы программного управления широко применяются в технике для автоматизации технологических процессов (станок с программным управлением); регулирование по возмущению происходит, если возмущения x(t) учитываются, измеряются и компенсируются регулятором по контуру, включающему измерительный блок 2 (см.рис.3.3).
Часто встречаются ситуации, когда закон изменения во времени заданного состояния системы заранее неизвестен, а определяется в ходе самого процесса в соответствии с внешним сигналом. Система управления, предназначенная для изменения состояния Y(t) управляемого объекта по закону, задаваемому внешним, неизвестным заранее сигналом, называется следящей системой. При этом внешний сигнал называется ведущей величиной. Примером следящего управления является "задача преследования" из области военной кибернетики, так же, как и следящее управление с упреждением (управление зенитным орудием). Упреждающим может быть и управление экономическим объектом, например, при решении задачи бездефицитного снабжения потребителей деталями со склада, другие задачи управления запасами.
Основная формула теории регулирования. Методы регулирования основаны на использовании обратной связи. Рассмотрим простую систему регулирования, имеющую один вход X и выход Y.
Рассмотрим некоторую регулируемую систему S, которая подвергается определенным воздействиям X, дающим в итоге требуемый результат Y. Результат воздействует на регулятор R, который, в свою очередь, воздействует на регулируемую систему. Комплекс регулируемой системы и регулятора составляет систему регулирования. Преобразование состояния входа Х в состояние выхода Y формально можно отобразить как: Y = SX. Этот способ отображения соответствует разомкнутому контуру управления. Как показано на рис.3.4, состояние выхода регулируемой системы S передается на вход регулятора R, выходом которого является величина ?X. Это состояние прибавляется к состоянию входа системы S: Х+?Х.
Предположим, что регулируемая система работает как пропорциональный преобразователь: Y=SX.
При S>l пропорциональное преобразование называется усилением, а при S<1 - ослаблением. Показатель - называется пропускной способностью регулируемой системы.
Предположим также, что регулятор тоже осуществляет пропорциональное преобразование, а его пропускная способность равна R. Тогда ?X= RY • С с учетом воздействия регулятора состояние выхода регулируемой системы определится как:
Y = S(X+?X) = S(X+RY) = SX+SRY,
отсюда,
. (3.15)
Выражение (3.15) является основной формулой теории регулирования. Приведенная формула дает возможность рассчитать необходимое значение входной величины, чтобы при заданных параметрах системы S и R получить на выходе искомый результат Y Принимая во внимание то, что , выражение называется пропускной способностью системы регулирования. Из основной формулы теории регулирования вытекает специфическая роль регулятора. При R=0 пропускная способность регулируемой системы была бы равна S:Y=SX. Наличие регулятора требует введения множителя , который характеризует его действие. Сомножитель выражает действие обратной связи в системе регулирования, и его называют оператором или мультипликатором обратной связи.
Регулирование как функция управления получила широкое применение в исследовании экономических систем управления.
Основные свойства и характеристики регулируемых систем изучаются технической кибернетикой в разделе теории автоматического управления.
Адаптивное управление. В тех случаях, когда воздействующие на систему факторы являются частично или полностью неопределенными, управление становится возможным только после накопления некоторой информации об этих факторах и характеристиках объекта. Управление в системе с полной априорной информацией об управляемом процессе, которое изменяется по мере накопления информации и применяется для улучшения качества работы системы, называется адаптивным управлением.
В дискретном времени , где Т - время, ?t - интервал его квантования, процесс адаптивного управление может быть представлен следующим образом. Пусть управляемый процесс u является марковским процессом и описывается некоторой характеристикой
Марковский процесс - случайный процесс, обобщенное понятие динамической системы, введенное А.Н. Колмогоровым, процесс, который преобладает тем свойством, что его поведение после момента t зависит только от его значения в этот момент и не зависит от поведения процесса до момента t.
Пусть в момент t заданы состояние процесса и, и состояние информации о процессе Рt образующие точку (хt, Pt) в некотором фазовом пространстве. Переход в новое состояние происходит под воздействием управления хt, и возмущения - случайной величины с вероятностным распределением dP(ut , Рt ; хt ,), которое может являться какой-то частью характеристики информации. Переход в новое состояние может быть определен случайными преобразованиями ?1 и ?2 так, что:
ut+1 = ?1 (ut , Рt ; хt ,); (3.16)
Pt+1 = ?2 (ut , Рt ; хt ,). (3.17)
Управление х, изменяя состояние процесса u, влияет и на характеристику информации Р.
Если преобразования ?1 и ?2 заданы, то управление в момент перехода следует выбирать в виде:
xt = xt (ut , Рt). (3.18)
Управление (3.18) обладает свойством адаптации в том смысле, что оно зависит от всей доступной в момент t информации Рt, о процессе. Но обычно преобразования ?1 , ?2 не заданы, и определение этих преобразований, как и самой характеристики информации, является частью задачи об управлении с адаптацией. Для того, чтобы информация о процессе со временем накапливалась, необходимо специально выбирать ?2 так, чтобы описание процесса Pt+1 было более полным, чем Рt. Изменения в направлении улучшения характеристик информации составляют сущность адаптации. Если с состоянием ut+1 связать некоторый показатель качества управления (ut+1), то за счет большей "информированности" управления вследствие адаптации этот показатель может улучшаться. При этом последовательность преобразований (?1 , ?2)t, t=0,l,2,... дает процесс управления с адаптацией.
Таким образом, общее представление процесса адаптивно управления включает характеристику информации Р и механизм адаптации, определяемый преобразованием T2.
Двойственный характер адаптивного управления проявляется и том, что, с одной стороны, невозможно осуществлять эффективное управление, не зная характеристик объекта, с другой - можно изучать эти характеристики в процессе управления и тем самым улучшат, его. Управляющие воздействия носят двойственный характер: они служат средством как активного познания управляемого объекта, так и непосредственного управления им в текущий момент времени.
В системах адаптивного управления обязательным является наличие обратной связи ввиду непрерывного процесса исследования характеристик объекта.
В системах управления, реализующих принцип адаптации, могут меняться параметры и структура системы (самоорганизация), программа, алгоритм функционирования и управляющие воздействия (самонастройка). Накопление и обобщение опыта обеспечивает возможности обучения и самообучения систем управления.
Адаптивное управление в полной мере присуще системам управления в живой природе. Она дает нам образцы совершенной организации, настройки и функционирования систем управления сложнейшими динамическими процессами, которые современная теория и практика управления стремиться воспроизвести в искусственных системах. Адаптация в экономических системах проявляется в способности системы сохранять в процессе развития существенные параметры не изменяющимися в определенных границах их варьирования, несмотря на разнообразие воздействий внешней среды.
Самоорганизующиеся системы
Распространенное понятие в науке - процесс выравнивания. То есть, если система разделена на пару свободно взаимодействующих подсистем, и одна из них имеет большее количество некоторого вещества чем другая, то будет в конечном счете достигнуто состояние равновесия системы в целом, в котором распределение вещества в обеих подсистемах будет равным. Мы говорим, что более типично, И более "самоорганизованно" выравнивается энергия. Типичный пример этого процесса относится к энергии в форме тепла, и выражен во втором законе термодинамики: если взаимодействуют горячее тело и холодное тело, тепло будет переноситься от горячего к холодному телу пока они не разделят количество теплоты в равной степени; затем перенос прекращается.
В этом случае система, состоящая из этих двух тел, была активна. Энергия в форме тепла, была доступна для переноса от первой подсистемы ко второй, и могла попутно производить полезную работу. Мера того, насколько полезная работа могла производиться, называется энтропией. Энтропия - мера дисбаланса энергии в системе. В термодинамической системе, это отношение количества теплоты доступной для работы к абсолютной температуре системы. Со временем все тепло "выравнивается", это отношение вырастает до единицы. После этого система умирает, в том смысле, что деятельность внутри нее обязательно останавливается. Повышение энтропии происходит автоматически; это - закон природы: при прочих равных условиях, энтропия стремится к своему максимуму.
Понятие энтропии трудно понять, особенно, потому что оно развивается в отдельных отраслях науки в несколько иной форме. В кибернетике, в частности, мы встречаем ее отрицательную версию, названую негэнтропией. Вполне возможно, негэнтропия - мера информации. Это означает, что система, получающая энтропию, теряет информацию. Со временем энтропия повышается до единицы, вся энергия выравнивается и нам нечего сказать о системе как таковой - она умерла. У нее нет информации для передачи.
Эти понятия, и этот основной закон природы, очень сильно влияют на сущность самоорганизации. Снова рассмотрим систему, разделенную в две свободно взаимодействующие подсистемы. предположим, что одна из них более организована, чем другая. Следует ли из этого, что она должна разделить уровень своей организации с менее организованной системой? Аналогично ли "вещество структурированности" теплу, и будет ли оно выравниваться? Ответ - нет; фактически, верно обратное: система, которая организационно несбалансированна, будет иметь тенденцию к еще большей несбалансированности. Причина в том, что понятие организации ближе к доступной информации, чем к доступной энергии; ее совершенствование, следовательно, измеряется скорее ростом негэнтропии, чем энтропии.
Предположим, что две подсистемы начинают с одним и тем же количеством энергии. Подсистема А израсходовала большую часть этой энергии в процессе своей внутренней организации. Подсистема В израсходовала меньшее количество энергии в процессе организации до более низкого уровня. Таким образом, А более организованна и более истощенная в плане энергии, чем В. Соответственно, при возникновении взаимодействия, энергия должна, согласно правилам энтропии, перетекать от В к А. Теперь слишком поздно для В пытаться удержать один уровень организации с А. Она сталкивается с уменьшением запаса энергии, доступной для собственной организации, в то время как А увеличивает свой запас. Так более организованная А "кормится" от менее организованной В. В конечном счете, А разрушает В полностью (в изолированной системе). Заметьте, что граница А, которая служит разделом с В, должна отображаться, как вторжение на территорию В. То есть, степень организации перемещается против направления потока энергии.
Теперь обсудим экологические процессы: они относятся к взаимодействию организма и окружающей среды. Поэтому рассматриваемая система названа (для краткости) экосистемой. Отрицательная обратная связь важна в экосистеме; она сокращает чрезмерно большие животные популяции, например, через экологический гомеостазис. Но именно в экосистеме, мы сталкиваемся также и с положительной обратной связью - тенденцией некоторого изменения быть автоматически усиленным. Распространение более организованного за счет менее организованного - типичный пример положительной обратной связи.
Оба типа обратной связи видны в действии в самом простом организме, который мы можем исследовать: живая клетка. Николас Рашевски, один из тех, кто посвятил себя научному исследованию и строгой формулировке биологических механизмов, излагает эту теорию в его "Математических принципах биологии". Клетка существует в гомеостатическом равновесии с окружающей средой, обмениваясь веществом в обоих направлениях через мембрану. Если некоторое вливание вещества произведено внутри клетки так, что происходит более высокая концентрация вещества внутри чем снаружи, то это вещество будет стремиться диффундировать через мембрану - чтобы просочиться в окружающую среду в небольшом количестве. Но если вещество будет исчерпано внутри клетки, так, что концентрация вещества станет выше снаружи чем внутри, значит, будет возникать диффузия внутрь. Это - энтропический процесс, но он не достигнет окончания, потому что он не изолирован; клетка, например, может продолжать производить вещество неограниченно. Но присутствует тенденция - имеет место бесконечный поиск баланса. Рашевски выражает этот гомеостатический механизм системой уравнений.
Уровень диффузии через мембрану зависит от проницаемости мембраны, и того, что управляет самой природой - размера клетки. Если бы скорость продуцирования вещества спонтанно увеличилась возможной скорости вытекания, то концентрация внутри клетки увеличилась бы до бесконечности. Пусть технологический процесс требует энергии, в виде кислорода. Так как он расходуется внутри клетки, принимая, что имеется бесконечный запас кислорода снаружи, тенденция "выравнивания" требует, чтобы кислород перетекал внутрь. Но система уравнений Рашевски показывает, что норма потребления кислорода стремится к предельному значению. Этот факт должен сдерживать производство внутри клетки. В частности это ограничивает скорость продуцирования чем-то меньшим, чем норма диффузии за пределы клетки - иначе клетка взорвалась бы. Клетка фактически имеет критический радиус, свыше которого никакое стабильное состояние диффузионного взаимодействия не существует. Возможно механизм (в отличие от химии), благодаря которому достигнута эта способность к самоорганизации, не понят должным образом. Однако поведенческие факты ясны. Потребность регулировать уровень производства в соответствии с уровнем оттока удовлетворена регулятором впуска кислорода. Он проверяет повышение концентрации вещества в каждом случае его выхода из под контроля. Это описание изоморфно отображается в описание регулятора хода парового двигателя Ватта.
Кроме того, мы можем обнаружить в той же самой клетке явление положительной обратной связи. Хотя оно достаточно слабо для того, чтобы как-то изменить (непосредственно) экологический гомеостазис, оно может сильно повлиять на самоорганизациею. Предположим, что производство уже рассмотренного вещества внутренне контролируется катализатором, функция которого - замедлять это производство. Катализатор - в форме частиц. Так как произведенное вещество течет наружу, это должно привести к движению частиц катализатора наружу. Следовательно, производство вещества будет невозможно вокруг оболочки клетки. Затем, как это часто случается в природе, случайные изменения создают скопление этих каталитических частиц в одной точке на оболочке клетки. В этой точке, в этом случае, производство вещества будет совершенно запрещено: оно будет возникать с большей концентрацией в любом другом месте. Это означает, что диффузия направлена к точке, где сгруппированы кататалитические частицы - поток, который будет содержать еще частицы.
В этом случае имеется положительная обратная связь. Случайная группа частиц не рассеивается энтропией, а пополняется притоком большего количества частиц. И это в свою очередь усилит тенденцию. Таким образом, клетка приобретает большую структурированность, большую организацию. Клетка имеет теперь самоорганизованную и саморегулирующуюся полярность.
Критерий, по которому можно распознать сложную систему, которая сама организует себя, должен быть четко определен. Некоторые утверждают, что должны быть выполнены многие сложные условия - другие заявляют, что почти любая сложная и разнообразно взаимодействующая система выберет меру самоорганизации самостоятельно. Последняя точка зрения будет обсуждена, но по довольно специфической (возможно идеосинкратической) причине. Организация - скорее атрибут наблюдателя системы, чем системы непосредственно; она представляет собой развитие аргументов, выдвинутых ранее относительно распознавания системы как являющийся системой вообще.
Считается, что субъект этого запроса - сложная, взаимодействующая система с высоким многообразием. Такая система имеет бесчисленное число типов поведения; и согласно здравому смыслу это поведение вынуждает наблюдателя подходяще описать ее либо как зачаточную или организованную. Но даже если он не может объяснять ее поведение и называет ее хаотической, наблюдатель может вполне признавать, что "должна быть причина" для этого поведения. Далее он говорит, что видимый хаос - мера его собственного незнания. Принимая во внимание взаимосвязь и взаимообусловленность естественных явлений, мудро принципиально утверждать, что система организована.
Живой пример в подтверждение этого описания может быть взят непосредственно из термодинамики. В системе, состоящей из молекул газа, может в данный момент существовать радикальный дисбаланс: концентрация молекул в одной части системы. Энтропическим процессом дисбаланс выравнивается, пока не появится полностью однородный газ, ограниченный системой. Это экспериментальный факт, и причина того, почему это происходит, совершенно ясна. Никто не обсуждает того, что энтропия стремится к максимуму. Интересный факт - традиционно термодинамики называют несбалансированную систему упорядоченной (потому что дисбаланс имеет своего рода порядок - большую и меньшую концентрацию молекул), и совершенно уравновешенную систему они называют беспорядочной (потому что она однородна, и молекулы газа могут находиться вообще где угодно). Описанный процесс назван преобразованием порядка в беспорядок. Согласно нему, система получает энтропию и теряет организацию. Но что может быть более упорядоченным, или лучше организованным, чем полностью однородное распределение молекул? Это означает, что вероятность того, что любое место занято любой молекулой точно такая же для всех точек пространства и всех молекул. Это (если мы решим сказать именно так) - совершенство организации, абсолютная упорядоченность. Только, когда вероятности различны, и молекулы сконцентрированы в определенных зонах всей области, то имеет место беспорядок. Таким образом, на тех же самых фактах и той же самой математике, наверное, предпочтительнее использовать понятие преобразования беспорядка в порядок.
Подобные документы
Основы теории продукционных систем: основные понятия и модели. Элементы теории живучести предпринимательства. Вариационные модели продукционных систем. Расчетная часть: компонентная модель продукционной системы и технологическая расчетная таблица.
методичка [100,4 K], добавлен 08.11.2008Теоретические основы экономико-математических задач о смесях. Принципы построения и структура интегрированной системы экономико-математических моделей. Организационно-экономическая характеристика и технико-экономические показатели работы СПК "Родина".
курсовая работа [66,6 K], добавлен 01.04.2011Классификация систем (по отношению ко времени и среде, обусловленности поведения, сложности), их основные свойства. Виды процессов в динамических системах. Кибернетические системы и законы их функционирования. Особенности нелинейных динамических систем.
презентация [204,4 K], добавлен 19.12.2013Использование математических методов в сфере управления, в традиционных экономических расчетах при обосновании потребностей в ресурсах, разработке планов и проектов. Основные признаки иерархической системы управления и количественная оценка решений.
контрольная работа [57,0 K], добавлен 21.01.2010Основы построения и тестирования адекватности экономических моделей множественной регрессии, проблема их спецификации и последствия ошибок. Методическое и информационное обеспечение множественной регрессии. Числовой пример модели множественной регрессии.
курсовая работа [3,4 M], добавлен 10.02.2014Современная экономическая теория. Экономические процессы. Использование моделирования и количественного анализа. Выражение взаимосвязи экономических явлений и процессов. Определение, объект исследования, основные принципы, цели и задачи эконометрики.
реферат [19,3 K], добавлен 04.12.2008Регламентация основ разработки сложных систем. Классификация структурных методологий и их примеры. Основные этапы подхода Мартина. Методологии структурного анализа Йодана/Де Марко и Гейна-Сарсона. Сравнительный анализ SADT-моделей и потоковых моделей.
реферат [81,5 K], добавлен 05.10.2012Функция и экономическая деятельность предприятия. Сущность методов статистического анализа. Технологии проектирования имитационных математических моделей по оценке и анализу финансового состояния предприятия, экономическая эффективность от их внедрения.
дипломная работа [1,1 M], добавлен 12.12.2011Общие принципы системного анализа. Основные этапы построения эконометрических моделей и использования их для прогнозирования. Экстраполяция трендов и ее использование в анализе. Правила составления информации подсистем. Модель "спрос-предложение".
реферат [190,5 K], добавлен 24.01.2011Задачи, функции и этапы построения экономико-математических моделей. Аналитические, анионные, численные и алгоритмические модели. Экономическая модель спортивных сооружений. Модели временных рядов: тенденции и сезонности. Теории массового обслуживания.
реферат [167,6 K], добавлен 22.07.2009